高中数学第一章教案《立体几何初步》

合集下载

数学高中立体几何初步教案

数学高中立体几何初步教案

数学高中立体几何初步教案
教学目标:
1.了解立体几何的基本概念和性质
2.掌握立体几何的基本公式和计算方法
3.培养学生分析和解决问题的能力
教学内容:
1. 立体几何的基本概念
2. 空间的点、直线、面
3. 空间几何体的投影
4. 空间几何体的旋转体
教学过程:
1.导入:通过展示几何体模型或图片引发学生对立体几何的兴趣
2.讲解立体几何的基本概念和性质,如点、直线、面等的定义和特点
3.讲解空间几何体的投影和旋转体的概念,引导学生理解其形成及应用
4.指导学生完成相关练习和作业,巩固所学知识
5.进行课堂讨论和展示,总结重点知识和难点
教学方法:
1.讲授法:通过教师讲解和示范引导学生理解概念和性质
2.讨论法:通过小组讨论和互动,促进学生思考和交流
3.实践法:通过实际练习和应用, 提高学生解决问题的能力
评价与反思:
1.对学生掌握情况进行诊断性评价,及时调整教学步骤和方法
2.反思教学过程中的不足和改进方案,提高教学效果和学生学习质量拓展与应用:
1.鼓励学生积极参与校内外竞赛或活动,提高立体几何能力
2.激发学生对数学的兴趣, 培养其数学建模和解决实际问题的能力教学反馈:
1.及时对学生的学习情况进行反馈,并提供个性化指导和帮助
2.鼓励学生在学习立体几何中发现问题,并主动探索解决方案
教师签名:_________ 日期:_________。

高中数学教案《立体几何初步》

高中数学教案《立体几何初步》

教学设计:《立体几何初步》一、教学目标1.知识与技能:学生能够理解空间几何体的基本概念,掌握点、线、面的位置关系及基本性质,能够识别并绘制简单的空间图形,理解并计算空间几何体的表面积和体积。

2.过程与方法:通过观察、分析、比较等数学活动,培养学生的空间想象能力和逻辑推理能力;通过小组合作,提高学生解决问题的合作与交流能力。

3.情感态度与价值观:激发学生对立体几何的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解决问题过程中,体验数学的严谨性和美感。

二、教学重点和难点●重点:空间几何体的基本性质,点、线、面的位置关系,空间几何体的表面积和体积计算。

●难点:空间想象能力的培养,复杂空间图形的识别与绘制,以及利用空间几何性质解决实际问题。

三、教学过程1. 导入新课(5分钟)●生活实例引入:展示生活中常见的立体几何体(如建筑、家具、自然物体等),引导学生观察并讨论它们的共同特征,引出立体几何的概念。

●问题驱动:提出一个与立体几何相关的问题,如“如何计算一个房间的体积?”激发学生好奇心,为新课学习做好铺垫。

●明确目标:简要说明本节课的学习目标和任务,让学生有清晰的学习方向。

2. 知识点讲解(15分钟)●基本概念阐述:详细讲解空间几何体的定义、分类及基本性质,包括棱柱、棱锥、圆柱、圆锥等。

●位置关系分析:通过图示和实例,讲解点、线、面在空间中的位置关系,如平行、垂直、相交等,并引导学生理解其性质。

●公式推导:简要推导空间几何体表面积和体积的计算公式,让学生理解公式的来源和适用范围。

3. 直观演示与操作(10分钟)●多媒体演示:利用多媒体课件展示空间几何体的动态形成过程,帮助学生建立直观的空间形象。

●实物模型展示:展示空间几何体的实物模型,让学生亲手触摸、观察,加深对空间图形的认识。

●动手实践:组织学生进行简单的空间图形绘制活动,如用直尺和圆规绘制棱柱的俯视图、左视图等。

4. 问题解决与讨论(15分钟)●例题讲解:选取几道典型例题,讲解如何利用空间几何的性质和公式解决问题。

高中立体几何教案5篇

高中立体几何教案5篇

高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

第一章《立体几何初步》教案

第一章《立体几何初步》教案

北师大版高中数学必修2第一章《立体几何初步》全部教案1.1简单几何体第一课时 1.1.1简单旋转体一、教学目标:1.知识与技能:(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述圆柱、圆锥、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出圆柱、圆锥、圆台、球的结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台、球的结构特征。

难点:圆柱、圆锥、圆台、球的结构特征的概括。

三、教学方法(1)学法:观察、思考、交流、讨论、概括。

(2)教法:探析讨论法。

四、教学过程:(一)、新课导入:1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、研探新知:(Ⅰ)、空间几何体的类型问题提出:1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?探究:空间几何体的类型思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型?思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?多面体思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?旋转体思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?由若干个平面多边形围成的几何体叫做多面体 .思考7:一般地,怎样定义旋转体? 体叫做旋转体 。

高中数学第一章立体几何初步学案

高中数学第一章立体几何初步学案

第一章立体几何初步知识建构综合应用专题一几何体的展开图问题几何体的展开图因几何体的不同而不同,它不仅反映了几何体本身的特点,还能反映空间的平行与垂直关系.通过几何体的展开图形状的研究可以使我们更加形象地理解空间几何体的结构特征.应用1如图(1)(2)(3)三个图形能否折叠成棱柱?请试折叠一下并说明理由.提示:首先判断各图如果能折成棱柱则应该折成什么样的棱柱,再看各图与相应棱柱展开图有什么差异.这个题主要要求学生把握多面体的基本情况,运用纸张折叠,结合想象,掌握简单几何体的性质与构成.应用2如图,圆柱体的底面圆周长为24 cm,高为5 cm,BC为上底面的直径,一壁虎从距圆柱的底端A点2 cm的E处沿着表面爬行到母线CD距C点1 cm的点F处,请你帮助壁虎确定其爬行的最短距离.提示:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.在求空间图形表面两点间的最短距离时,常运用“展开”变换,化曲(折)为直,从而把“折线拉成直线,曲面展成平面”,使问题得以巧妙解决.由于壁虎是沿着圆柱的表面爬行的,故需把圆柱侧面展开成平面图形.根据两点之间线段最短求最短距离.专题二表面积、体积的计算问题几何体的表面积及体积的计算是现实生活中经常能够遇到的问题,如制作物体的下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.这里应注意各数量之间的关系及各元素之间的位置关系,特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的作用,对于圆柱、圆锥、圆台,要重视旋转轴所在的轴截面、底面圆的作用.本部分内容在高考中一直是重点考查的内容,考查形式可以是选择、填空题,也可以是解答题,难度上属于容易题,应引起重视.B1C1D1的棱长为2,动点E,F在应用1如图,正方体ABCD-A棱A1B1上,动点P,Q分别在棱AD,CD上.若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积().A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关提示:选取四面体的面EFQ作为底,P到面EFQ的距离为高.应用2(2011·湖北黄冈高三模拟)如图,正三棱柱的棱长和底面边长均为2,主视图是边长为2的正方形,则左视图的面积为().A.4 B.2 3 C.2 2 D.错误!提示:根据“长对正,高平齐,宽相等"法则找出左视图的各边长再进行计算.专题三空间几何体中的平行和垂直判断或证明空间线面的位置关系,主要是通过平行、垂直关系的判定定理与性质定理进行转换,通过相互转化,推证相关结论.应用1如图,ABCD为正方形,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.(1)求证:GH∥平面CDE;(2)求证:BC⊥平面CDE.提示:(1)证出GH∥CD即可;(2)在平面CDE中找出与BC垂直的两条相交直线CD,ED.应用2如图,在立体图形A-BCD中,各个面均是正三角形,G,F,M分别是BC,AB,AC的中点,过FG的平面与平面ACD相交于EH,求证:平面BMD⊥平面FGHE.提示:可以根据线面垂直证明面面垂直,进一步可以转化为线线垂直,反过来,面面垂直也可以转化为线面垂直,线线垂直,体现了整体与局部之间的关系.专题四球与其他几何体的切接问题球与规则几何体如正方体、长方体的切接问题一直是高考考查的重点和热点问题.本部分内容可以与三视图结合,也可以和表面积、体积结合起来命题,一般以选择或填空题形式出现,难度上属于容易题.应用1一个六棱柱的底面是正六边形,其侧棱垂直于底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为__________.提示:根据球外接于六棱柱,先求出球的半径.B1C1D1的顶点均在同一个球面上,AB应用2长方体ABCD-A=AA1=1,BC=错误!,则A,B两点间的球面距离为__________.提示:长方体的体对角线长为球的直径.应用3四个半径为R的球两两外切,其中三个放在水平桌面上,第四个球放在这三个球之上,在这四个球的中央放一个小球,则这个小球的半径为__________.提示:与球有关的组合体主要是球与其他几何体的切接问题.这类问题要仔细观察、分析,弄清相关元素之间的位置关系和数量关系,选择最佳角度作出截面,把空间问题平面化,进而在平面内加以求解.注意各部分组合之间的关系是解答此类问题的成功所在.应用4如图,在三棱锥S-ABC中,SA=AB=AC=1,∠BAC=90°,SA⊥面ABC,求三棱锥S-ABC的内切球的半径.提示:求简单多面体的内切球的半径常用的方法是作轴截面,把空间问题转化为多边形内切圆问题,如果简单多面体是不规则的,要作轴截面就很困难,因此这种方法用起来很烦琐.我们可以利用另一种既简便又快速的方法——体积法,即把多面体进行分割,且分割成以内切球球心为公共顶点的若干个棱锥,这些棱锥的高都是内切球的半径,然后根据这些棱锥的体积之和等于多面体体积,从而求出半径.真题放送1(2011·江西高考)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为().2(2011·广东高考改编)如图1~3,某几何体的主视图是平行四边形,左视图和俯视图都是矩形,则该几何体的体积为().A.6错误!B.9错误!C.12错误!D.18错误!3(2011·浙江高考)若某几何体的三视图如图所示,则这个几何体的直观图可以是().4(2011·湖北高考)设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是().A.V1比V2大约多一半B.V1比V2大约多两倍半C.V1比V2大约多一倍D.V1比V2大约多一倍半5(2011·四川高考)l1,l2,l3是空间三条不同的直线,则下列命题正确的是().A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面6(2011·福建高考)如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.7(2011·福建高考)在三棱锥P-ABC中,P A⊥底面ABC,P A=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于________.8(2011·江苏高考)如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.答案:综合应用专题一应用1:解:图(1)可折成一个四棱柱.图(2)不能折成棱柱,因为折成后的几何体两底面不在两个平面内.图(3)不能折成棱柱,因为与正方体的每个面相邻的面最多只有四个,因而展开后的图形中,任一个正方形在它的周围最多应只有四个正方形,而图中有一个正方形,在它的周围有了5个正方形,而这是不可能的.应用2:解:将圆柱沿着AB剪开铺平,得如图所示的展开图.过点E作CD的垂线EG,连接EF,则壁虎爬行的最短距离为线段EF的长.根据题意知AE=2 cm,CF=1 cm,因AB=5 cm,则FG=2 cm,又因为EG=AD为圆柱底面圆周长的一半,故知EG=12 cm,利用勾股定理可求得EF=EG2+FG2=错误!=2错误!(cm).即壁虎爬行的最短距离为237cm。

高中数学 第一章 立体几何初步学案 新人教A版必修2

高中数学 第一章 立体几何初步学案 新人教A版必修2

第一章立体几何初步二、重点难点重点:空间直线,平面的位置关系。

柱、锥、台、球的表面积和体积的计算公式。

平行、垂直的定义,判定和性质。

难点:柱、锥、台、球的结构特征的概括。

文字语言,图形语言和符号语言的转化。

平行,垂直判定与性质定理证明与应用。

第一课时棱柱、棱锥、棱台【学习导航】学习要求1.初步理解棱柱、棱锥、棱台的概念。

掌握它们的形成特点。

2.了解棱柱、棱锥、棱台中一些常用名称的含义。

3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价1.棱柱的定义:表示法:思考:棱柱的特点:.【答】2.棱锥的定义:表示法:思考:棱锥的特点:. 【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。

以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。

【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点互助参考7页例1⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。

反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?答:不能.点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。

高中数学 第1章 立体几何初步 1.2.1 平面的基本性质高一数学教案

高中数学 第1章 立体几何初步 1.2.1 平面的基本性质高一数学教案
共线,共点问题
[探究问题]
1.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点?为什么?
[提示]由下边的图可知它们不是相交于一点,而是相交于一条直线.
2.如图所示,在正方体ABCDA1B1C1D1中,E为AB的中点,F为AA1的中点.试问CE,D1F,DA三线是否交于一点?为什么?
③A a,a α⇒A α;④A∈a,a α⇒A α.
A.1B.2
C.3D.4
D[①不正确,如a∩α=A;②不正确,“a∈α”表述错误;③不正确,如图所示,A a,a α,但A∈α;④不正确,“A α”表述错误.]
2.如图所示,点A∈α,B α,C α,则平面ABC与平面α的交点的个数是______个.
①公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
用符号表示为: ⇒AB α.
②公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.
用符号表示为: ⇒α∩β=l且P∈l.
③公理3:经过不在同一条直线上的三点,有且只有一个平面.
(2)α∩β=l,m∩α=A,m∩β=B,A l,B l
点线共面问题
【例2】 已知一条直线与另外三条互相平行的直线都相交,证明:这四条直线共面.
思路探究:法一: → →

法二: → →
[证明]如图.
法一:∵a∥b,∴a,b确定平面α.
又∵l∩a=A,l∩b=B,
∴l上有两点A,B在α内,即直线l α.
2.证明:两两相交且不共点的三条直线在同一平面内.
[解]已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.
求证:直线l1,l2,l3在同一平面内.

立体几何初步教案

立体几何初步教案

立体几何初步教案一、教学目标1. 使学生掌握集合的概念和性质,集合的元素特征,有关数的集合。

2. 培养学生的思维能力,提高学生理解掌握概念的能力。

3. 培养学生认识事物的能力,引导学生爱班、爱校、爱国。

二、教学重点集合的概念,集合元素的三个特征。

三、教学难点集合元素的三个特征,数集与数集关系。

四、教学方法尝试教学法、比较法、谈话法。

五、教学准备1. 制作多媒体课件,包括集合的概念、性质、元素特征等知识点。

2. 准备一些立体几何图形,如长方体、正方体等。

3. 准备一些实际生活中的例子,如班级学生、学校建筑物等。

六、教学过程1. 导入新课:通过展示一些立体几何图形,引导学生回忆初中所学过的平面几何知识,并思考如何将这些知识应用到立体几何中。

2. 学习新课:通过讲解、演示和比较的方法,引导学生掌握集合的概念和性质,以及集合元素的三个特征。

同时,通过例子和练习题加深学生对知识点的理解和掌握。

3. 巩固练习:通过举例和练习题,让学生自己动手解决问题,巩固所学知识。

同时,通过比较的方法,引导学生发现数集与数集之间的关系。

4. 归纳小结:通过总结本节课所学内容,引导学生发现自己的不足之处,并鼓励他们继续努力。

同时,通过布置作业和预告下一节课的内容,引导学生做好预习和复习工作。

七、教学评价1. 课堂练习:通过课堂练习题检查学生对集合概念和性质的掌握情况。

2. 课后作业:通过课后作业题加深学生对知识点的理解和掌握,同时也可以检查他们的学习效果。

3. 单元测试:通过单元测试题检查学生对本单元内容的掌握情况,发现学生的不足之处并指导他们进行改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章立体几何初步示范教案整体设计教学分析本节课是对第一章的基本知识和方法的总结与归纳,从整体上来把握本章内容,使学生的基本知识系统化和网络化,基本方法条理化.值得注意的是对于本章知识结构,学生比较陌生,教师要帮助学生完成,并加以引导.三维目标通过总结和归纳立体几何的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养其分类讨论的思想和提高其抽象思维能力.重点难点教学重点:①空间几何体的结构特征.②由三视图还原为实物图.③面积和体积的计算.④平行与垂直的判定与性质.教学难点:形成知识网络.课时安排1课时教学过程导入新课设计 1.第一章是整个立体几何的基础,为了系统地掌握本章的知识和方法,本节对第一章进行复习.教师点出课题.设计2.大家都知道,农民伯伯在春天忙着耕地、播种、浇水、施肥、治虫,非常辛劳,到了秋天,他们便忙着收获.到了收获的季节,他们既高兴又紧张,因为收获比前面的工作更重要,收获的多少决定着一年的收成.我们前面的学习就像播种,今天的小结就像收获,希望大家重视今天的小结学习.教师点出课题.推进新课新知探究提出问题请同学们自己梳理本章知识结构.对比直线与平面、平面与平面的平行关系与垂直关系.对比面积、体积各自之间的关系.讨论结果:(1)本章知识结构:(2)平行关系与垂直关系的对比:(3)①柱、锥、台的侧面积关系:其中c′、c 分别为上、下底面周长,h′为斜高或母线长,h 为正棱柱或圆柱的高. ②柱、锥、台的体积关系:其中S 上、S 下分别为台体的上、下底面积,h 为高,S 为柱体或锥体的底面积. ③球的表面积和体积:S 球面=4πR 2,V 球=43πR 3.应用示例思路1例1 下列几何体是台体的是( )解析:A 中的“侧棱”没有相交于一点,所以A 不是台体;B 中的几何体没有两个平行的面,所以B 不是台体;很明显C 是棱锥,D 是圆台.答案:D点评:本题主要考查台体的结构特征.像这样的概念辨析题,主要是依靠对简单几何体的结构特征的准确把握.变式训练 1.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( ) A .一个圆台、两个圆锥 B .两个圆台、一个圆柱C .两个圆台、一个圆柱D .一个圆柱、两个圆锥 解析:因为梯形的两底平行,故另一底旋转形成了圆柱面.而两条腰由于与旋转轴相交,故旋转形成了锥体.因此得到一个圆柱、两个圆锥.答案:D2.下列三视图表示的几何体是( )A .圆台B .棱锥C .圆锥D .圆柱解析:由于俯视图是两个同心圆,则这个几何体是旋转体.又侧视图和正视图均是 等腰梯形,所以该几何体是圆台.答案:A3.下列有关棱柱的说法:①棱柱的所有的棱长都相等;②棱柱的所有的侧面都是长方形或正方形;③棱柱的侧面的个数与底面的边数相等;④棱柱的上、下底面形状、大小相同. 正确的有__________.解析:棱柱的所有侧棱长都相等,但底面上的棱与侧棱不一定相等,其侧面都是平行四边形,只有当棱柱是直棱柱时,侧面才是矩形,侧面个数与底面边数相等,棱柱的上、下底面是全等的多边形,由此可知仅有③④正确.答案:③④2 已知正方体外接球的体积是32π3,那么正方体的棱长等于( )A .2 2 B.233 C.423 D.433解析:过正方体的相对侧棱作球的截面,可得正方体的对角线是球的直径.设正方体的棱长为a ,球的半径为R ,则有2R =3a ,所以R =3a 2.则4π3(3a 2)3=32π3,解得a =433. 答案:D点评:解决球与其他几何体的简单组合体问题,通常借助于球的截面来明确构成组合体的几何体的结构特征及其联系,本题利用正方体外接球的直径是正方体的对角线这一隐含条件使得问题顺利获解.空间几何体的表面积和体积问题是高考考查的热点之一.主要以选择题或填空题形式出现,也不排除作为解答题中的最后一问,题目难度属于中、低档题,以考查基础知识为主,不会出现难题.其解决策略是利用截面或展开图等手段,转化为讨论平面图形问题,结合平面几何的知识来求解.变式训练1.如下图(1)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE、△BCF 均为正三角形,EF∥AB,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32(1) (2)解析:如上图(2)所示,过B 作BG⊥EF 于G ,连结CG ,则CG⊥EF,BF =1,△BCG 中,BG =32,BC 边上的高为22,而S △BCG =12×1×22=24, ∴V F —BCG =13×24×12=224.同理过A 作AH⊥EF 于H ,则有V E —AHD =224,显然BCG —ADH 为三棱柱,∴V BCG —ADH =24×1=24.则由图(2)可 知V ADE —BCF =V F —BCG +V E —AHD +V BCG —ADH =23. 答案:A点评:本题求几何体体积的方法称为割补法,经常应用这种方法求多面体体积.割补法对空间想象能力的要求很高且割补法的目的是化不规则为规则.2.某个容器的底部为圆柱,顶部为圆锥,其主视图如下图所示,则这个容器的容积为( )A.7π3 m 3 B.8π3m 3C .3π m 3D .12π m 3解析:由该容器的主视图可知圆柱的底面半径为1 m ,高为2 m ,圆锥的底面半径为1 m ,高为1 m ,则圆柱的体积为2π m 3,圆锥的体积为π3 m 3,所以该容器的容积为7π3 m 3.答案:A点评:三视图是新课标高考的新增内容,在高考中会重点考查,在该知识点出题的可能性非常大,应予以重视.此类题目的解题关键是利用三视图获取体积公式中所涉及的基本量的有关信息,这要依靠对三视图的理解和把握.3.如下图所示,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是( )A.423 B.433 C.36 D.83解析:根据三视图,可知该几何体是正四棱锥,且底面积是4,高为主视图等边三角形的高3,所以体积为13×4×3=433.答案:B例3 如下图,在直三棱柱ABC —A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.求证:(1)AC⊥BC 1;(2)AC 1∥平面CDB 1.证明:(1)直三棱柱ABC —A 1B 1C 1,底面三边长AC =3,BC =4,AB =5,∴AC⊥BC. ∵C 1C⊥AC,∴AC⊥平面BCC 1B 1. 又∵BC 1⊂平面BCC 1B 1, ∴AC⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连结DE , ∵D 是AB 的中点,E 是BC 1的中点, ∴DE∥AC 1.∵DE ⊂平面CDB 1,AC 1平面CDB 1,∴AC 1∥平面CDB 1. 变式训练 如下图(1),在四棱锥P —ABCD 中,底面ABCD 是∠DAB=60°,且边长为a 的菱形.侧面PAD 为正三角形,其所在的平面垂直于底面ABCD.(1)若G 为AD 边的中点,求证:BG⊥平面PAD ; (2)求证:AD⊥PB;(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF⊥平面ABCD ,并证明你的结论.(1) (2)证明:(1)如上图(1),∵在菱形ABCD 中,∠DAB=60°,G 为AD 的中点, ∴BG⊥AD.又平面PAD⊥平面ABCD ,平面PA D∩平面ABCD =AD , ∴BG⊥平面PAD.(2)如上图(2),连结PG.∵△PAD 为正三角形,G 为AD 的中点,∴PG⊥AD.由(1)知BG⊥AD,PG∩BG=G ,PG ⊂平面PGB ,BG ⊂平面PGB ,且PG∩BG=G ,∴AD⊥平面PGB.∵PB ⊂平面PGB ,∴AD⊥PB.(3)解:当F 为PC 的中点时,平面DEF⊥平面ABCD.证明如下:F 为PC 的中点时,在△PBC 中,FE∥PB,又在菱形ABCD 中,GB∥DE,而FE ⊂平面DEF ,DE ⊂平面DEF ,FE∩DE=E ,∴平面DEF∥平面PGB.P G⊥平面ABCD ,而PG ⊂平面PGB , ∴平面PGB⊥平面ABCD. ∴平面DEF⊥平面ABCD.点评:要证两平面垂直,最常用的办法是用判定定理:证一个平面内的一条直线垂直于另一平面,而线垂直面的证明关键在于找到面内有两条相交直线垂直已知直线.要善于运用题目给出的信息,通过计算挖掘题目的垂直与平行关系,这是一种非常重要的思想方法,它可以使复杂问题简单化.思路2例 4 一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的表面积是__________,体积是__________.活动:学生回顾简单几何体的结构特征和三视图.解析:由三视图知该几何体是圆锥,且母线长为5 cm ,底面半径是3 cm ,圆锥的高是4 cm ,所以其表面积是π×3×(3+5)=24π (cm 2),体积是π3×32×4=12π (cm 3).答案:24π cm 212π cm 3点评:本题主要考查三视图和圆锥的体积.解决本题的关键是由三视图能够想象出圆锥. 变式训练1.下图所示的是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).分析:先从三视图想象出实物形状,再根据实物形状画出它的直观图.解:由三视图可知该几何体是一个正三棱台,画法:(1)如左下图所示,作出两个同心的正三角形在一个水平放置的平面内的直观图;(2)建立z′轴,把里面的正三角形向上平移高的大小;(3)连接两正三角形相应顶点,并擦去辅助线,遮住线段用虚线表示,如右上图所示,即得到要画的正三棱台.2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,左下图所示是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是( )A.0 B.7 C.快D.乐解析:如右上图所示,将左上图折成正方体,可得2的下面是7.答案:B例 5 一个正方体的顶点都在球面上,它的棱长是 4 cm,则这个球的体积等于__________cm3.解析:正方体的对角线是球的直径,所以球的半径为432=2 3 (cm),其体积为4π3(23)3=323π (cm3).答案:323π点评:解决组合体问题的关键是明确组合体的结构特征.变式训练1.两相同的正四棱锥组成如下图(1)所示的几何体,可以放在棱长为1的正方体内,使正四棱锥的底面ABCD与正方体下图(2)的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有( )A .1个B .2个C .3个D .无穷多个 解析:方法一:本题可以转化为一个正方形可以有多少个内接正方形,显然有无穷多个. 方法二:通过计算,显然两个正四棱锥的高均为12,考查放入正方体后,面ABCD 所在的截面,显然其面积是不固定的,取值范围是[12,1),所以该几何体的体积取值范围是[16,13).答案:D2.两个半径为1的铁球,熔化成一个大球,则大球的表面积为( ) A .6π B .8π C .434π D .832π 解析:两小球的体积是2×4π3×13=8π3,设大球的半径为R ,则有4π3R 3=8π3,解得R =32.所以大球的表面积为4π(32)2=434π.答案:C 知能训练1.如下图,直观图所示的原平面图形是( )A .任意四边形B .直角梯形C .任意梯形D .等腰梯形解析:显然直观图中边A′D′与B′C′都平行于x′轴,所以它们所对应的原图形中的边AD 、BC 是互相平行的;直观图中A′B′与y′轴平行,所以在原图形中对应的边AB 垂直于BC ;但是直观图中C′D′与y′轴不平行,所以在原图形中对应的边CD 不垂直于BC ,即AB 与CD 不平行.所以原图形应是直角梯形.答案:B2.正方体的体积是64,则其表面积是( ) A .64 B .16 C .96 D .不确定解析:由于正方体的体积是64,则其棱长为4,则其表面积为6×42=96. 答案:C3.某四面体的各个面都是边长为1的等边三角形,则此四面体的表面积是( )A .4 B.34C .2 3 D. 3 解析:每个等边三角形的面积都是34,所以此四面体的表面积是4×34= 3. 答案:D4.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的全面积为__________.解析:圆柱的侧面积S 侧=6π×4π=24π2.①以边长为6π的边为轴时,4π为圆柱底面圆周长, 所以2πr =4π,即r =2.所以S 底=4π.所以S 全=24π2+8π.②以4π所在边为轴时,6π为圆柱底面圆周长, 所以2πr =6π,即r =3. 所以S 底=9π.所以S 全=24π2+18π.答案:24π2+8π或24π2+18π5.如下图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 m ,高是7 m ,制造这个塔顶需要多少铁板?分析:转化为求这个四棱锥的侧面积.利用过四棱锥不相邻的两侧棱作截面,依此来求侧面等腰三角形的面积.解:如下图所示,连结AC 和BD 交于O , 连结SO ,则有SO⊥OA,所以在△SOA 中,SO =7 (m), OA =22×2=2(m), 则有SA =7+2=3(m), 则△SAB 的面积是 12×2×22=22(m 2). 所以四棱锥的侧面积是4×22=8 2 (m 2).答:制造这个塔顶需要8 2 (m 2)铁板.6.如下图所示,在直四棱柱ABCD—A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.分析:(1)转化为证明B1D1∥BD;(2)转化为证明AC⊥面BB1D;(3)转化为证明DC1的中点与M点的连线垂直平面DCC1D1.(1)证明:由直四棱柱,得BB1∥DD1,且BB1=DD1,∴四边形BB1D1D是平行四边形,∴B1D1∥BD,而BD⊂平面A1BD,B1D1平面A1BD,∴B1D1∥面A1BD.(2)证明:∵BB1⊥面ABCD,AC⊂面 ABCD,∴BB1⊥AC,又∵BD⊥AC,且BD∩BB1=B,∴AC⊥面BB1D.而MD⊂面BB1D,∴MD⊥AC.(3)解:当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D.取DC的中点N,D1C1的中点N1,连结NN1交DC1于O,连结OM,如下图所示.∵N是DC中点,BD=BC,∴BN⊥DC;又∵DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,∴BN⊥面DCC1D1.又可证得,O是NN1的中点,∴BM∥ON,且BM=ON,即四边形BMON 是平行四边形,∴BN∥OM,∴OM⊥平面CC 1D 1D ,∵OM 面DMC 1,∴平面DMC 1⊥平面CC 1D 1D.拓展提升问题:如下图,在长方体ABCD —A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3,分别过BC 、A 1D 1的两个平行截面将长方体分成三部分,其体积分别记为V 1=VAEA 1—DFD 1,V 2=VEBE 1A 1—FCF 1D 1,V 3=VB 1E 1B —C 1F 1C.若V 1∶V 2∶V 3=1∶4∶1,试求截面A 1EFD 1的面积.探究:利用体积关系得到面积的关系解决此类问题,且灵活应用“转化”这一重要数学思想.截面A 1EFD 1为一个矩形,求其面积只要求出A 1E 的长度.注意到被两平行平面分割而成的三部分都是棱柱,其体积比也就是在侧面A 1B 被分割成的三个图形的面积比,于是容易得到各线段长度比进而得到线段AE 的长度,再利用勾股定理容易得到A 1E 的长度.解:因为V 1∶V 2∶V 3=1∶4∶1,又棱柱AEA 1—DFD 1,EBE 1A 1—FCF 1D 1,B 1E 1B —C 1F 1C 的高相等,所以S△A 1AE∶S A 1EBE 1∶S△BB 1E 1=1∶4∶1.所以S△A 1AE =16×3×6=3, 即12×3×AE=3. 所以AE =2.在Rt△A 1AE 中,A 1E =9+4=13,所以截面A 1EFD 1的面积为A 1E×A 1D 1=A 1E×AD=413.答:截面A 1EFD 1的面积为413.课堂小结本节课复习了:1.第一章知识及其结构图;2.三视图和体积、面积的有关问题;3.平行与垂直的判定.作业复习参考题A 7,8,9题.设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对课本内容适当拓展,例如关于由三视图还原实物图,课本中没有专题学习,本节课对此进行了归纳和总结.备课资料领悟数学之妙几何学悖论悖论是逻辑学的名词,指自相矛盾的命题,如果承认这个命题,就可推出它的否定,反之如果承认这个命题的否定,却又可以推出这个命题.悖论在表面上看来是不可能的或者是自相矛盾的,然而你经过推理,却发现它们依然是真的,悖论不同于诡辩,它只是不自觉地导致了彼此矛盾的结果,在推导结果的过程中,遵循着一系列无懈可击的推理思想前进,结果却令人大吃一惊,忽然发现自己已陷入矛盾之中,这就不能不引起人们对悖论的兴趣,不仅一般人,而且包括大数学家们.下面举一些几何学方面的悖论的例子:(1)(2)1.不知去向的立方体在上图(1)中画了堆在一起的一些立方体,有人数有六个,有人则数有七个,怎么会数出的数相差一个呢?难道7=6吗?我们可以用两种不同的方法去看.一种方法是用面A,B,C来组成小立方体,这样,可以数出有6个小立方体.还可用面A′,B′,C′来组成小立方体,这样,可以数出7个小立方体.由于采用哪种方法去看都同样有理,因此,6个或7个小立方体都是正确的.2.彭罗斯台阶如上图(2)是一个称为“彭罗斯台阶”的形体,它是由数学家罗杰尔·彭罗斯发明的,人们可以沿着台阶不断向上攀登,而一次又一次地回到自己原来的位置,这不就是说“向上等于向下”吗?当然不可能!只是由于我们的眼睛受图画的迷惑而认为这种台阶是存在的.。

相关文档
最新文档