高中数学概率教案
高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。
高中数学随机事件及其概率 教案

随机事件及其概率二、教学重点: 事件的分类与概率的统计定义.三、教学难点:概率统计定义的理解.四、教学方法:合作探究,启发式,发现法五、教学手段:多媒体课件六、教学过程:一)问题情境:1.在足球比赛前,主裁判以抛硬币的方式确定比赛场地,这公平吗?2.我们去购买福利彩票时,早去晚去对中奖的可能性有没有影响呢?3.在座的100多人中至少有两个人生日相同的概率又有多大呢?由此引出课题(板书课题)。
二)学生活动思考、讨论以上问题,学生活动贯穿于课堂教学中。
三)数学理论1.事件的含义幻灯片展示现象(1)~(4)图片:(1)木柴燃烧,产生热量;(2)明天,地球仍会转动;(3)实心铁块丢入水中,铁块浮起;(4)在标准大气压00C以下,雪融化。
引出概念:确定性现象——在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象。
幻灯片展示现象(5)、(6)图片:(5)转动转盘后,指针指向黄色区域(6)两人各买1张彩票,均中奖引出概念:随机现象——在一定条件下,某种现象可能发生也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象。
对于某个现象,如果能让其条件实现一次,就是进行了一次试验。
而试验的每一种可能的结果,都是一个事件。
2.事件的分类给出先前展示的六个现象对应的各个事件,判断它们发生的可能性。
由这些事件发生的可能性情况,引导学生归纳出必然事件、不可能事件和随机事件的定义。
必然事件:在一定条件下必然要发生的事件叫必然事件。
不可能事件:在一定条件下不可能发生的事件叫不可能事件。
随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。
由上述几个事件:(1)木柴燃烧,产生热量;(2)实心铁块丢入水中,铁块浮起;(3)两人各买1张彩票,均中奖,说明事件的条件和结果。
请学生讨论,举日常生活中这三种事件各一例。
3.事件的表示:我们用A、B、C等大写字母表示随机事件,简称事件。
注:对于必然事件和不可能事件也可以这样表示。
高中数学概率课时分配教案

高中数学概率课时分配教案第一课时:概率的基本概念
1. 介绍概率的概念和定义
2. 讨论随机事件、样本空间和事件的关系
3. 解释概率的常见表示方法
第二课时:概率的计算方法
1. 简单事件和复合事件的概念
2. 计算概率的基本规则和公式
3. 通过例题演示如何计算概率
第三课时:排列与组合的概率
1. 讲解排列和组合的定义和性质
2. 讨论排列和组合在概率问题中的应用
3. 练习排列和组合的计算方法
第四课时:条件概率与事件的独立性
1. 讲解条件概率的概念和计算方法
2. 探讨事件的独立性和相互关系
3. 解答相关例题,加深学生对条件概率和独立性的理解
第五课时:贝叶斯定理
1. 简要介绍贝叶斯定理的概念和应用场景
2. 讲解贝叶斯定理的推导和计算方法
3. 通过实例演示贝叶斯定理在实际问题中的应用
第六课时:概率分布和期望
1. 讨论离散概率分布和连续概率分布的概念
2. 介绍期望的定义和计算方法
3. 通过案例分析概率分布和期望的应用
第七课时:大数定律和中心极限定理
1. 简要介绍大数定律和中心极限定理的概念
2. 讨论这两个定律在概率论中的重要性和应用
3. 通过实例演示大数定律和中心极限定理的效果和实际意义
通过以上的课时安排,学生将能够全面了解和掌握概率的基本概念、计算方法和相关定理,提高他们的数学素养和解题能力。
高中数学教案 条件概率

条件概率的定义与性质 条件概率与边缘概率的联系与区别 条件概率在日常生活中的应用实例 条件概率的数学表达方式及计算方法
搜集与条件概率相关的实际应 用案例并尝试用所学知识解决 其中问题
预习下一章节了解条件概率的 应用场景
完成课后习题巩固所学知识
总结条件概率在实际问题中的 应用方法和技巧
实例2:一个盒 子中有3个黑球 和2个白球先从 盒中摸出1个黑 球再从盒中摸出 1个白球求第二 次摸出白球的概
率。
实例3:一个盒 子中有5个红球 和3个蓝球先从 盒中摸出1个红 球再从盒中摸出 1个蓝一个盒 子中有3个白球 和2个黑球先从 盒中摸出1个黑 球再从盒中摸出 1个白球求第二 次摸出白球的概
条件概率的取值范围:0 ≤ P(|B) ≤ 1
条件概率的意义:描述在已 知事件B发生的条件下事件
发生的可能性大小。
天气预报:根据历史数据预测未来天气情况 医学诊断:根据症状和检查结果判断疾病的可能性 金融投资:根据市场走势和风险因素制定投资策略 社交媒体推荐:根据用户兴趣和行为推送相关内容
条件概率的概念 和计算方法
回顾概率的基 本概念:事件、 样本空间、概
率等
复习概率的计 算方法:古典 概型、几何概
型等
引出条件概率 的概念:在已 知某些事件发 生的条件下另 一个事件发生
的概率
强调条件概率 与全概率公式、 贝叶斯公式的
联系和区别
定义:条件概率 是指在某一事件 发生的条件下另 一事件B发生的 概率记作P(B|)。
率。
条件概率的定义: 在某个条件下某 一事件发生的概 率。
条件概率的特点: 与独立事件不同 条件概率会受到 其他事件的影响。
条件概率的计算 方法:使用条件 概率的公式 P(|B) = P(B)/P(B) 进行 计算。
人教版高中数学《概率》全部教案

人教版高中数学《概率》全部教案第一课:概率基本概念与初步计算方法
1. 教学目标:
- 了解概率的基本概念和意义;
- 能够熟练使用试验、样本空间、事件等概率术语;
- 掌握概率计算的基本方法。
2. 教学内容:
- 概率的基本概念和定义;
- 试验、样本空间、事件的概念与关系;
- 概率计算的基本方法:频率法和古典概型法。
3. 教学步骤:
1. 导入:通过一个例子引出概率的概念和意义。
2. 讲解概率的基本概念和定义,并与实际生活中的例子相结合说明。
3. 介绍试验、样本空间和事件的概念,并通过具体问题进行实际操作。
4. 讲解概率计算的基本方法,包括频率法和古典概型法,并通过练巩固学生的掌握程度。
5. 小结:总结本课的重点内容,确保学生对概率的基本概念和初步计算方法有清晰的认识。
4. 教学资源:
- 人教版高中数学教材《概率》第一单元教材;
- PowerPoint演示文稿;
- 课堂练题。
5. 教学评价:
- 通过课堂练题检查学生对概率基本概念和初步计算方法的掌握情况;
- 针对学生的理解程度,及时给予正面反馈和指导。
10.1.4-概率的基本性质-教案-2022-2023学年高中数学人教A版(2019)必修第二册

10.1.4概率的基本性质一、教学目标 1. 理解概率的基本性质2. 掌握利用互斥事件和对立事件的概率公式解决与古典概型有关的问题二、教学重点概率的运算法则及性质教学难点概率性质的应用三、教学过程1、复习回顾情境引入问题1:古典概型的特征、古典概型的概率?答:一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个(2)等可能性:每个样本点发生的可能性相等称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω)一般而言,给出了一个数学对象的定义,就可以从定义出发研究这个数学对象的性质。
例如,在给出指数函数的定义后,我们从定义出发研究了指数函数的定义域、值域、单调性、特殊点的函数值等性质,这些性质在解决问题时可以发挥很大的作用。
类似地,在给出了概率的定义后,我们来研究概率的基本性质问题2:你认为可以从哪些角度研究概率的性质?引导学生思考讨论,由此引出本节学习内容2、探索新知由概率的定义可知:任何事件的概率都是非负的,在每次试验中,必然事件一定发生,不可能事件一定不会发生1)性质1:对任意的事件A,都有P(A) ≥ 0性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0探究1:设事件A与事件B互斥,和事件A∪B的概率与事件A、B的概率之间具有怎样的关系?答:我们用10.1.2节例6来探究,一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球. R=“两次都摸到红球”,G=“两次都摸到绿球”,事件R与事件G互斥,R∪G=“两次摸到球颜色相同,因为n(R)=2,n(G)=2,n(R∪G)=2+2=4,所以P(R)+P(G)=22 1212124+==P(R∪G)2)性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B)性质3推论:如果事件A 1、A 2、…、A m 两两互斥,那么事件A 1∪A 2∪…∪A m 发生的概率等于这m 个事件分别发生的概率之和,即P (A 1∪A 2∪…∪Am)=P (A 1)+P (A 2)+…+P (A m )探究2:设事件A 和事件B 互为对立事件,它们的概率有什么关系?答:因为事件A 和事件B 互为对立事件,所以和事件A ∪B 为必然事件,即P (A ∪B)=1.由性质3得1=P (A ∪B)=P (A)+P (B)3)性质4:如果事件A 与事件B 互为对立事件,那么P (B)=1-P (A),P (A)=1-P (B) 性质5(概率的单调性) :如果A ⊆B ,那么P (A)≤P (B) 性质5推论:对于任意事件A ,0≤P (A)≤1探究3:在10.1.2节例6的摸球试验中,“两个球中有红球”12R R =,那么()12P R R 和()()12P R P R +相等吗?如果不相等,请你说明原因,并思考如何计算()12P R R答:1212()12,()()6,()10n n R n R n R R Ω====()()()1212610,1212P R P R P R R ∴===()()()1212P R R P R P R ∴≠+()(){}121,2,2,1R R φ=≠即事件12,R R 不是互斥的,容易得到()()()()121212P R R P R P R P R R =+-4)性质6:设A 、B 是一个随机试验中的两个事件,我们有()()()()P A B P A P B P A B =+-显然,性质3是性质6的特殊情况【例1】从不包含大小王牌的52张扑克牌中随机抽取一张,设事件A=“抽到红心”,事件B=“抽到方片”,P(A)=P(B)=14,那么 (1)C=“抽到红花色”,求P(C) (2)D=“抽到黑花色”,求P(D)解:(1)因为C=A ∪B ,A 与B 是互斥事件,根据互斥事件的概率加法公式 得P(C)=P(A)+P(B)=111442+= (2)因为C 与D 互斥,又因为C ∪D 是必然事件,所以C 与D 互为对立事件因此P(D)=1-P(C)= 11122-= 方法规律:运用互斥事件的概率加法公式解题的一般步骤 (1)确定各事件彼此互斥(2)求各事件分别发生的概率,再求其和注意:(1)是公式使用的前提条件,不符合这点,是不能运用互斥事件的概率加法公式的【例2】为了推广一 种饮料,某饮料生产企业开展了有奖促销活动:将6罐这种饮料装一箱,每箱中都放置2罐能够中奖的饮料,若从一箱中随机抽出2罐,能中奖的概率为多少?解:设事件A =“中奖”,事件A 1=“第一罐中奖”,事件A 2=“第二罐中奖”,那么事件12A A =“两罐都中奖”12A A =“第一罐中奖,第二罐不中奖”,12 A A =“第一罐不中奖,第二罐中奖”,且121212A A A A A A A =⋃⋃ 因为12A A ,12A A ,12A A 两两互斥 所以根据互斥事件的概率加法公式,可得121212((())))(P A P A A P A A P A A =++ 我们借助树状图如图所示来求相应事件的样本点数可以得到,样本空间包含的样本点个数为()6530n Ω=⨯=,且每个样本点都是等可能的. 因为12()2n A A =,128()n A A =,128()n A A =,所以288183()303030305P A =++== 【例3】一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球,从中随机取出1球,求(1)取出1球是红球或黑球的概率 (2)取出1球是红球或黑球或白球的概率解:记事件A 1={任取1球为红球};A 2={任取1球为黑球};A 3={任取1球为白球} A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112根据题意,事件A 1,A 2,A 3,A 4彼此互斥 方法一 由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112方法二(1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4所以取出1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112方法规律:求复杂事件的概率通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少……”或“至多……”型事件的概率四、课堂练习P242 练习1、口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( D)A.0.42B.0.28C.0.3D.0.72、4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( D )A. 18B.38C.58D.783、某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示.现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率(2)该队员最多属于两支球队的概率解:分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A,B,C.由题图知3支球队共有球员20名则P(A)=520,P(B)=320,P(C)=420(1) 令“抽取一名队员,该队员只属于一支球队”为事件D 则D=A+B+C,∵事件A,B,C两两互斥∴P(D)=P(A+B+C)=P(A)+P(B)+P(C)=520+320+420=35(2) 令“抽取一名队员,该队员最多属于两支球队”为事件E 则E为“抽取一名队员,该队员属于3支球队”∴P(E)=1-P(E)=1-220=910五、课堂小结概率的性质及其应用六、课后作业习题10.1 9、10。
高中数学 第3章 概率 §2 2.3 互斥事件数学教案

2.3 互斥事件1.互斥事件的定义在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.2.事件A与B至少有一个发生给定事件A,B,我们规定A+B为一个事件,事件A+B发生是指事件A和事件B至少有一个发生.根据上述定义推广可得:事件A1+A2+…+A n表示在一次随机试验中,事件A1,事件A2,…,事件A n中至少有一个发生.3.互斥事件的概率加法公式一般地,如果事件A,B互斥,那么事件A+B发生(即A,B中至少有一个发生)的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).这个公式称为互斥事件的概率加法公式.如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中至少有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A_n)=P(A1)+P(A2)+…+P(A n).二、对立事件及其概率的求法公式1.定义在每一次试验中,如果两个事件A与B不能同时发生,并且一定有一个发生,那么事件A与B称作是对立事件,事件A的对立事件记为A.2.性质P(A)+P(A)=1,即P(A)=1-P(A).思考:(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?(2)判断两个事件是对立事件的条件是什么?[提示](1)因为1为奇数,所以A⊆B.(2)①看两个事件是不是互斥事件;②看两个事件是否必有一个发生.若满足这两个条件,则是对立事件;否则不是.1.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B 的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.不互斥、不对立C[必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.]2.从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论哪个是正确的() A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥C[由题意可知,事件A,B,C两两不可能同时发生,因此两两互斥.]3.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③C[从1~9中任取两个数,有以下三种情况.(1)两个均为奇数,(2)两个均为偶数,(3)一个奇数和一个偶数,故③为对立事件.]4.从几个数中任取实数x,若x∈(-∞,-1]的概率是0.3,x是负数的概率是0.5,则x∈(-1,0)的概率是________.0.2[设“x∈(-∞,-1]”为事件A,“x是负数”为事件B,“x∈(-1,0)”为事件C,由题意知,A,C为互斥事件,B=A+C,∴P(B)=P(A)+P(C),P(C)=P(B)-P(A)=0.5-0.3=0.2.]互斥事件与对立事件的判断每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少1名男生与全是男生;(3)至少1名男生与全是女生.[解]从3名男生和2名女生中任选2名同学有3类结果:两男或两女或一男一女.(1)因为恰有1名男生与恰有2名男生不可能同时发生,所以它们是互斥事件但不是对立事件;(2)当恰有2名男生时,至少1名男生与全是男生同时发生,所以它们不是互斥事件.(3)因为至少1名男生与全是女生不可能同时发生,所以它们是互斥事件,由于它们必有一个发生,所以它们是对立事件.1.判断两个事件是否为互斥事件,主要看它们能否同时发生.若能同时发生,则这两个事件不是互斥事件;若不能同时发生,则这两个事件是互斥事件.2.判断两个事件是否为对立事件,主要看是否同时满足两个条件:一是不能同时发生;二是必有一个发生.这两个条件同时成立,那么这两个事件是对立事件,只要有一个条件不成立,那么这两个事件就不是对立事件.[跟进训练]1.(1)抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与B B.B与CC.A与D D.B与D(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则下列结论正确的序号为________.①A与B是互斥而非对立事件;②A与B是对立事件;③B与C是互斥而非对立事件;④B与C是对立事件.(3)从装有2个红球和2个白球(球除颜色外其他均相同)的口袋中任取2个球,观察红球个数和白球个数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.①至少有1个白球,都是白球;②至少有1个白球,至少有一个红球;③至少有1个白球,都是红球.[解](1)C(2)④[(1)A与D互斥,但不对立.(2)一个均匀正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,所得到的基本事件有6种:得到的点数为1点、得到的点数为2点、得到的点数为3点、得到的点数为4点、得到的点数为5点、得到的点数为6点.事件A包含的结果有得到的点数为1点、得到的点数为3点、得到的点数为5点,事件B包含的结果有得到的点数为1点、得到的点数为2点、得到的点数为3点,事件C包含的结果有得到的点数为4点、得到的点数为5点、得到的点数为6点,所以B与C是对立事件.故填④.](3)解:①不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或两个白球”和“都是白球”可以同时发生,所以不是互斥事件.②不是互斥事件.因为“至少有1个白球”即“1个白球1个红球或2个白球”,“至少有1个红球”即“1个红球1个白球或2个红球”,两个事件可以同时发生,故不是互斥事件.③是互斥事件也是对立事件.因为“至少有1个白球”和“都是红球”不可能同时发生,且必有一个发生,所以是互斥事件也是对立事件.互斥事件的概率 得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512. (1)求得到黑球、得到黄球及得到绿球的概率;(2)求得到的小球既不是黑球也不是绿球的概率.[思路探究] 从12球中任取一球,取到红球、黑球、白球互斥,所以可用互斥事件概率的加法公式求解.[解] (1)从袋中任取一球,记事件A 为“得到红球”,B 为“得到黑球”,C 为“得到黄球”,D 为“得到绿球”,则事件A ,B ,C ,D 两两互斥.由已知P (A )=13, P (B +C )=P (B )+P (C )=512, P (C +D )=P (C )+P (D )=512, ∴P (B +C +D )=1-P (A )=1-13=23. ∵B 与C +D ,B +C 与D 也互斥,∴P (B )=P (B +C +D )-P (C +D )=23-512=14, P (D )=P (B +C +D )-P (B +C )=23-512=14, P (C )=1-P (A +B +D )=1-(P (A )+P (B )+P (D ))=1-⎝⎛⎭⎫13+14+14 =1-56=16. 故得到黑球、得到黄球、得到绿球的概率分别是14,16,14. (2)∵得到的球既不是黑球也不是绿球,∴得到的球是红球或黄球,即事件A +C ,∴P (A +C )=P (A )+P (C )=13+16=12, 故得到的小球既不是黑球也不是绿球的概率为12. 1.解决本题的关键是明确取到不同颜色的球不可能同时发生,即互斥.由此可知用概率加法公式求解.2.若随机试验中,涉及多个事件,应先分析判断这几个事件是否互斥(或对立),若是,可利用互斥事件概率的加法公式求解.当某一事件包含几个互斥的事件时,求该事件发生的概率也用上述规律.[跟进训练]2.(1)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为( )A .0.42B .0.38C .0.2D .0.8(2)向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.2,炸中第二个军火库的概率为0.12,炸中第三个军火库的概率为0.28,三个军火库中,只要炸中一个另两个也会发生爆炸,求军火库发生爆炸的概率.[解] (1)C [记分别摸一个球为红球、白球和黑球为事件A ,B ,C ,则A ,B ,C 为互斥事件,且A +B +C 为必然事件,由题意知P (A )+P (B )=0.58,P (A )+P (C )=0.62,P (A )+P (B )+P (C )=1,解得P (A )=0.2.](2)设A ,B ,C 分别表示炸中第一、第二及第三个军火库这三个事件,事件D 表示军火库爆炸,已知P (A )=0.2,P (B )=0.12,P (C )=0.28.又因为只投掷了一枚炸弹,故不可能炸中两个及以上军火库,所以A ,B ,C 是互斥事件,且D =A +B +C ,所以P (D )=P (A +B +C )=P (A )+P (B )+P (C )=0.2+0.12+0.28=0.6,即军火库发生爆炸的概率为0.6.对立事件的概率与求法 1.若令A =“小明考试及格”,A =“小明考试不及格”,则事件A 与事件A 能不能同时发生,或者都不发生?为什么?提示:不可能同时发生,由于事件A 与A 是互斥事件,所以不可能同时发生,事件A 与A 也不可能都不发生,因为一次考试中,小明的成绩要么及格,要么不及格,二者必居其一,故A 与A 必有一个发生.2.将一枚质地均匀的骰子随机抛掷一次,观察骰子向上一面的点数.设U =“出现点数的全体”,A =“出现的点数是偶数”,B =“出现的点数是奇数”,则A ,U 是互斥事件吗?A ,B 是互斥事件吗?B ,U 是互斥事件吗?”提示:A ,U 不是互斥事件,A ,B 是互斥事件,B ,U 不是互斥事件.【例3】 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.[思路探究] 先设出有关的互斥事件,然后把所求事件的概率转化为求某些互斥事件和的概率,另外也可考虑用古典概型以及对立事件来解决.[解] 法一:利用等可能事件求概率.(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9(种)不同取法,任取1球有12种取法.所以任取1球得红球或黑球的概率为P 1=912=34. (2)从12个球中任取一球得红球有5种取法,得黑球有4种取法,得白球有2种取法.从而得红球或黑球或白球的概率为P 2=5+4+212=1112. 法二:利用互斥事件求概率.记事件A 1={任取1球为红球};A 2={任取1球为黑球};A 3={任取1球为白球};A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法三利用对立事件求概率的方法.(1)由法二知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4.所以取得1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.求复杂事件的概率通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少…”或“至多…”型事件的概率.[跟进训练]3.据统计,某储蓄所一个窗口等候的人数及相应概率如下表:(2)求至少2人排队等候的概率.[解]记在窗口等候的人数为0,1,2分别为事件A,B,C,则A,B,C两两互斥.(1)至多2人排队等候的概率是P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)至少2人排队等候的反面是“等候人数为0或1”,而等候人数为0或1的概率为P (A +B )=P (A )+P (B )=0.1+0.16=0.26,故至少2人排队等候的概率为1-0.26=0.74.1.互斥事件和对立事件既有区别又有联系.互斥未必对立;对立一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P (A +B )=P (A )+P (B ).3.求复杂事件的概率通常有两种方法:(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.1.思考辨析(1)已知事件A 与事件B ,则P (A +B )=P (A )+P (B ).( ) (2)若三个事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( )(3)事件A 与事件B 互斥,则事件A 与B 互为对立事件.( ) (4)事件A 与事件B 若满足P (A )+P (B )=1,则A ,B 是对立事件.( )[解析] (1)×,A 与B 互斥时,P (A +B )=P (A )+P (B ).(2)×,P (A )+P (B )+P (C )的值不确定.(3)×,A 与B 不一定对立.(4)×,例如a ,b ,c ,d 四个球,选中每个球的概率相同,事件A 为选中a ,b 两个球,则P (A )=12;事件B 为选中b ,c 两个球,则P (B )=12,则P (A )+P (B )=1,但A ,B 不是对立事件.[答案] (1)× (2)× (3)× (4)×2.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,若“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为________.0.05 [“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与抽到“一等品或二等品”是对立事件,故其概率为1-0.95=0.05.]3.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为________. 1928[由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为37+14=1928.] 4.在数学考试中,小明的成绩在90分以上(含90分)的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07.(1)求小明在数学考试中,取得80分以上(含80分)成绩的概率;(2)求小明考试及格的概率(60分才及格).[解] 分别记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件B ,C ,D ,E ,这四个事件彼此互斥.(1)小明的成绩在80分以上的概率是P (B +C )=P (B )+P (C )=0.18+0.51=0.69.(2)小明考试及格的概率是P (B +C +D +E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.。
高中数学概率统计教案

高中数学概率统计教案一、教学目标1. 知识与技能:(1)理解概率的基本概念,掌握概率的计算方法;(2)了解统计学的基本知识,掌握数据的收集、整理、描述和分析方法;(3)学会运用概率统计方法解决实际问题。
2. 过程与方法:(1)通过实例感受概率统计在生活中的应用,培养学生的应用意识;(2)通过合作交流,培养学生解决问题的能力;(3)培养学生运用数学软件进行数据处理和分析的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、坚持真理的精神;(3)培养学生团结合作、积极进取的态度。
二、教学内容1. 概率的基本概念:随机事件、必然事件、不可能事件、概率的定义及其计算方法。
2. 统计学的基本知识:数据的收集、整理、描述和分析方法。
3. 概率统计方法在实际问题中的应用:通过实例讲解如何运用概率统计方法解决实际问题。
三、教学重点与难点1. 教学重点:概率的基本概念、统计学的基本知识、概率统计方法在实际问题中的应用。
2. 教学难点:概率的计算方法、数据的整理和分析方法。
四、教学过程1. 导入:通过生活中的实例引入概率统计的概念,激发学生的兴趣。
2. 自主学习:学生自主探究概率的基本概念,掌握概率的计算方法。
3. 合作交流:学生分组讨论,共同解决实际问题,培养学生的合作意识。
4. 软件操作:学生运用数学软件进行数据处理和分析,提高学生的实际操作能力。
5. 总结提升:教师引导学生总结概率统计的知识,培养学生的归纳总结能力。
五、课后作业1. 完成课后练习,巩固所学知识;2. 选择一个实际问题,运用概率统计方法进行解决,并撰写解答报告。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生的掌握程度。
3. 实际问题解决:评估学生在实际问题解决中的运用能力,鼓励创新和独立思考。
4. 软件操作:评估学生的数学软件操作能力,提高学生的实际操作水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)甲、乙两人独立地解同一个问题,甲解决这个问题的概率为 p1 ,乙解决这个问题的概率为 p2 , 那么两人都没能解决这个问题的概率是( ). 【参考答案:C】
A. 2 − p1 − p2
B.1 − p1 p2
C.1 − p1 − p2 + p1 p2
D.1 − (1 − p1)(1 − p2 )
正面向上,则 Eξ =
. 【参考答案: 3 】 4
9.离散型随机变量ξ 的方差 Dξ = (x1 − Eξ )2 ⋅ p1 + (x2 − Eξ )2 ⋅ p2 + + (xn − Eξ )2 ⋅ pn .
10.离散型随机变量ξ 的数学期望、方差公式
(1)设 a 、 b 为常数,则 E(aξ + b) = aEξ + b , D(aξ + b) = a2Dξ . (2)若 ξ 服从 0 −1 分布,则 Eξ = p , Dξ = p(1 − p) . (3)若 ξ ∼ B(n, p) ,则 Eξ = np , Dξ = np(1 − p) .
件
A
发生”(概率为
C k −1 n −1
p
k
−1
(1
−
p)n−k
p
).
7.超几何分布
- 126 -
Ͼᗻ࣪ᬭᄺ䕙ᇐᬭḜ
5
在含有 M
件次品的 N 件产品中,任取 n 件,其中恰有 ξ
件次品的概率为:P(ξ
=
k)
=
CMk
⋅
Cn−k N−M
CNn
,
称离散型随机变量 X 服从超几何分布.
练习
(1)设 10 件产品中有 4 件次品,6 件正品,求从中任取 5 件恰有 2 件次品的概率.【参考答案:C42C63 】 C150
练习
(1)某市足球一队与足球二队都参加全省足球冠军赛,一队夺冠的概率为 2 ,二队夺冠的概率为 1 ,
5
4
则该市得冠军的概率为
. 【参考答案: 13 】 20
- 124 -
个性化教学辅导教案
3
6.对立事件
事件 A 与它的对立事件 A 的概率和为 1,即 P( A) + P( A) = 1 ,在求解“至少”或“至多”类型的 概率问题时常用此关系. 练习 (1)下列各组事件中,对立事件是( ). 【参考答案:C】
4
13.2 随机变量及其分布
第十三章 概 率
1.离散型随机变量ξ 的分布列
若离散型随机变量 ξ 可能取的值为 X1 、X 2 、…、Xi 、…、X n ,相应的概率为 p1 、p2 、…、pi 、…、
pn ,即 P(ξ = Xi ) = pi ,则随机变量 ξ 的分布列为
ξ
X1
X2
…
Xi
…
Xn
P
p1
A.1 − pk
B. (1 − p)k pn−k
C.1 − (1 − p)k
D. Cnk (1 − p)k pn−k
5.二项分布的识别方法
(1)只有两个可能结果 A 和 A ,试验可 n 次独立重复,则 n 次试验 A 发生的次数 ξ 就服从二项分布. (2)凡是服从二项分布的随机变量一定只取有限个实数为其值,否则,随机变量不服从二项分布. (3)凡服从二项分布的随机变量在被看作观察 n 次试验中某事件发生的次数时,此事件在每次观察 中出现的概率相等,否则不服从二项分布.
6.解二项分布问题时的注意事项
(1)注意区分“恰有 k 次发生”(概率为 Cnk pk (1 − p)n−k )和“某指定的 k 次发生,其余次的试验则 不发生” (概率为 pk (1 − p)n−k ).
(2)注意区分“ A 恰好发生 k 次”(概率为 Cnk pk (1 − p)n−k )和“ A 恰好发生 k 次,且最后一次是事
Ͼᗻ࣪ᬭᄺ䕙ᇐᬭḜ
1
概率
学生:
任课教师:孔伟铭
第十三章 概 率........................................................................................................................................... 1 公式定理及常见规律............................................................................................................................. 1 13.1 概率................................................................................................................................................ 1 13.2 随机变量及其分布 ........................................................................................................................ 4
8.条件概率
( 1 ) 设 A 、 B 为 两 个 事 件 , 且 P(A) > 0 , 则 在 事 件 A 发 生 的 条 件 下 , 事 件 B 发 生 的 概 率
P ( B A) = P(AB) . 特别地,对于古典概型,由于组成事件 A 的各个基本事件发生的概率相等,因此
P( A)
其条件概率也可表示为 P ( B A) = n(AB) .
练习
(1)在等腰直角三角形 ABC 中,直角顶点为 C ,在△ABC 的内部任作一条射线 CM ,与线段 AB 交
于点 M ,求 使 AM < AC 的概率.
(2)在等腰直角三角形 ABC 中,在斜边 AB 上任取一点 M ,求 AM 小于 AC 的概率.
【解析】(1)由于在 ∠ACB 内作射线 CM ,等可能分布的是 CM 在 ∠ACB 内的任一位置(如左图),
n 次独立重复试验中某事件恰好发生 k 次的概率为 P(ξ = k) = Cnk pk (1 − p)n−k ,此时称随机变量 ξ 服从二项分布,记作 ξ ∼ B(n, p) . 练习
(1)在某一试验中事件 A 出现的概率为 p ,则在 n 次试验中 A 出现 k 次的概率为( 答案:D】
). 【参考
【参考答案:① 3 ;② 3 ;③ 1 】 552
(2)5 个乒乓球(3 个新球,2 个旧球),每次取 1 个,有.放.回.地取 2 次. 求:①第一次取得新球的 概率;②第二次取得新球的概率;③在第一次取得新球的条件下第二次取得新球的概率.
【参考答案:① 3 ;② 3 ;③ 3 】 555
- 125 -
(2) n 个独立事件同时发生的概率 P( A1 ⋅ A2 ⋅ ⋅ An ) = P( A1) ⋅ P( A2 ) ⋅ ⋅ P( An ) . 设 A 、 B 为两个事件,如果 P( AB) = P( A)P(B) ,则称事件 A 与事件 B 相互独立. 如果事件 A 与
事件 B 相互独立,则 A 与 B , A 与 B , A 与 B 也都相互独立. 练习
公式定理及常见规律
13.1 概率
1.随机事件的两个特征
(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个. (2)每一个试验的结果出现的可能性相同.
2.随机事件的概率
随机事件的概率的取值范围是 0 ≤ P( A) ≤ 1. 若事件 A 为必然事件,则 P( A) = 1;若事件 A 为不可能时间,则 P( A) = 0 .
①根据题设引入适当变量;
②利用所引进的变量,把题设中的有关条件转化成变量所满足的代数条件;
- 123 -
2
第十三章 概 率
③根据所得到的代数条件找出相应的几何区域.
(2)在坐标系中把几何图形画出来.
(3)把样本空间和所求概率的事件所在的几何图形的度量(就是如前所说的长度、面积或者体积)
求出来,然后代入公式即可.
8.离散型随机变量ξ 的均值(数学期望)
若离散型随机变量 ξ 的分布列为
ξ
X1
X2
…
Xi
…
Xn
P
p1
p2
…
pi
…
pn
则 ξ 的数学期望为: Eξ = x1 p1 + x2 p2 + + xn pn . 练习
(1)同时抛掷两枚相同的均匀硬币,随机变量 ξ = 1 表示结果中有正面向上, ξ = 0 表示结果中没有
①直接求解法,即将所求事件的概率分解为一些彼此互斥的事件的概率的和,然后利用互斥事
件的求和公式计算;
②间接求法,即先求出此事件的对立事件的概率,再用公式 P( A) = 1 − P( A) 求解,特别是求解
“至少”或“至多”类型的概率问题. 注:当 A 、B 不互斥(即相容)时,事件 A + B 的概率计算公式为 P( A + B) = P( A) + P(B) − P( AB) .
A.从 50 件产品中(其中有两件是废品),抽出 2 件产品,其中恰有一件是废品与两件是废品 B.从 1、2、3、4 这四个数字中任取 3 个组成三位数,这个三位数大于 234 与这个三位数小于 324 C.抛掷一粒骰子,出现奇数点与出现偶数点 D.抛掷两枚硬币,都是正面与都是反面
7.独立事件
A 发生与否对 B 发生的概率没有影响,这样的两个事件叫做相互独立事件. A ⋅ B 或 A ∩ B ,表示“ A 与 B 同时发生”,叫做 A 与 B 的积. (1)独立事件 A 、 B 同时发生的概率 P( A ⋅ B) = P( A) ⋅ P(B) .