高中数学必修二-知识点、考点及典型例题解析

合集下载

必修二数学知识点整理

必修二数学知识点整理

必修二数学知识点整理一、立体几何初步。

(一)空间几何体。

1. 结构特征。

- 棱柱。

- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

- 棱柱的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。

- 棱锥。

- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。

- 棱锥的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。

- 棱台。

- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。

- 圆柱。

- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

- 圆柱的轴、底面、侧面、母线等概念。

- 圆锥。

- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。

- 圆锥的轴、底面、侧面、母线等概念。

- 圆台。

- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 圆台的上底面、下底面、侧面、母线等概念。

- 球。

- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

- 球心、半径、直径等概念。

2. 三视图和直观图。

- 三视图。

- 正视图(主视图)、侧视图(左视图)、俯视图的概念。

- 画三视图的规则:长对正、高平齐、宽相等。

- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。

- 直观图。

- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。

画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。

- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。

- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。

高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):21【基础】直线的倾斜角与斜率

高中数学必修二知识讲解,巩固练习(复习补习,期末复习资料):21【基础】直线的倾斜角与斜率

直线的倾斜角与斜率【学习目标】1.了解直线倾斜角的概念,掌握直线倾斜角的范围;2.理解直线斜率的概念,理解各倾斜角是90时的直线没有斜率;3.已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);4.掌握经过两点111(,)P x y 和222(,)P x y 的直线的斜率公式:2121y y k x x -=-(12x x ≠);5.熟练掌握两条直线平行与垂直的充要条件. 【要点梳理】要点一、直线的倾斜角平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,则α叫做直线的倾斜角.规定:当直线和x 轴平行或重合时,直线倾斜角为0,所以,倾斜角的范围是0180α≤<. 要点诠释:1.要清楚定义中含有的三个条件 ①直线向上方向; ②x 轴正向; ③小于180的角.2.从运动变化观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.3.倾斜角α的范围是0180α≤<.当0α=时,直线与x 轴平行或与x 轴重合.4.直线的倾斜角描述了直线的倾斜程度,每一条直线都有唯一的倾斜角和它对应.5.已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.要点二、直线的斜率 1.定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即tan k α=. 要点诠释:(1)当直线l 与x 轴平行或重合时,=0°,k=tan0°=0; (2)直线l 与x 轴垂直时,=90°,k 不存在.由此可知,一条直线l 的倾斜角一定存在,但是斜率k 不一定存在. 2.直线的倾斜角α与斜率k 之间的关系由斜率的定义可知,当α在(090),范围内时,直线的斜率大于零;当α在(90180),范围内时,直线的斜率小于零;当0α=︒时,直线的斜率为零;当90α=︒时,直线的斜率不存在.直线的斜率与直线的倾斜角(90除外)为一一对应关系,且在)090⎡⎣,和(90180),范围内分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此若需在)090⎡⎣,或(90180),范围内比较倾斜角的大小只需比较ααα斜率的大小即可,反之亦然.要点三、斜率公式已知点111(,)P x y 、222(,)P x y ,且12P P 与x 轴不垂直,过两点111(,)P x y 、222(,)P x y 的直线的斜率公式2121y y k x x -=-.要点诠释:1.对于上面的斜率公式要注意下面五点:(1) 当x 1=x 2时,公式右边无意义,直线的斜率不存在,倾斜角=90°,直线与x 轴垂直;(2)k 与P 1、P 2的顺序无关,即y 1,y 2和x 1,x 2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y 1=y 2时,斜率k=0,直线的倾斜角=0°,直线与x 轴平行或重合; (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到. 2.斜率公式的用途:由公式可解决下列类型的问题:(1)由1P 、2P 点的坐标求k 的值;(2)已知k 及1122,,,x y x y 中的三个量可求第四个量; (3)已知k 及1P 、2P 的横坐标(或纵坐标)可求12||PP ; (4)证明三点共线.要点四、两直线平行的条件设两条不重合的直线21,l l 的斜率分别为21,k k .若21//l l ,则1l 与2l 的倾斜角1α与2α相等.由21αα=,可得,即.因此,若21//l l ,则21k k =. 反之,若21k k =,则21//l l . 要点诠释:1.公式2121//k k l l =⇔成立的前提条件是①两条直线的斜率存在分别为21k k ,;②21l l 与不重合;2.当两条直线的斜率都不存在且不重合时,21l l 与的倾斜角都是90︒,则21//l l . 要点五、两直线垂直的条件设两条直线21,l l 的斜率分别为21,k k .若21l l ⊥,则121-=⋅k k . 要点诠释:1.公式12121-=⋅⇔⊥k k l l 成立的前提条件是两条直线的斜率都存在;αα21tan tan αα=21k k =2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直. 【典型例题】类型一:直线的倾斜角与斜率例1.设直线l 与x 轴的交点为P ,且倾斜角为α,若将其绕点P 按逆时针方向旋转45°,得到直线l 的倾斜角为α+45°,则( )A .0°≤α<90°B .0°≤α<135°C .0°<α≤135°D .0°<α<135° 【答案】D【解析】 ∵α,α+45°均为倾斜角,∴0180045180αα︒≤<︒⎧⎨≤+︒<︒⎩,∴0°≤α<135°.又∵直线l 与x 轴相交,∴α≠0°.故选D .【总结升华】 (1)倾斜角的概念中含有三个条件:①直线向上的方向;②x 轴的正方向;③小于平角的正角.(2)倾斜角是一个几何概念,它直观地描述且表现了直线对于x 轴正方向的倾斜程度.(3)平面直角坐标系中每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.(4)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.例2.下列说法正确的是________.①若两直线的倾斜角相等,则两直线平行或重合;②若一直线的倾斜角为150°,则此直线关于y 轴的对称直线的倾斜角为30°; ③若α,2α,3α分别为三条直线的倾斜角,则α不大于60°; ④若倾斜角α=90°,则此直线与坐标轴垂直. 【答案】 ①②【解析】 若倾斜角相等,则两直线平行或重合,故①正确;若两直线关于y 轴对称,则其倾斜角互补,故②正确;当α=60°时,3α=180°,故③错误;若α=90°,则直线与x 轴垂直.故④错误.【总结升华】本题考查直线的倾斜角定义中的条件及倾斜角的取值范围.理解倾斜角的定义是解决此题的关键.举一反三:【变式1】 下图中各标注的直线的倾斜角是否正确?为什么?【答案】(1)不正确(2)不正确(3)不正确(4)不正确【解析】题图(1)中的角α的一边取的是x 轴的负方向,因此标注不正确; 题图(2)中的角α的一边取的是直线向下的方向,因此标注不正确;题图(3)中的角α的两边分别取的是x 轴的负方向和直线向下的方向,因此标注不正确,但是它的大小等于直线的倾斜角.题图(4)中的角α是x 轴正方向与直线向上方向所成的角,因此标注不正确.例3.如图所示,直线1l 的倾斜角130α=︒,直线1l 与2l 垂直,求1l ,2l 的斜率.【答案】1k =k 2=【解析】由图形可知,2190αα=+︒,则k 1,k 2可求. 直线1l的斜率11tan tan 30k α==︒=. ∵直线2l 的倾斜角2α=90°+30°=120°,∴直线2l 的斜率k 2=tan120°=tan(180°―60°)=―tan60°=【总结升华】(1)本例中,利用图形的形象直观挖掘出直线1l 与2l 的倾斜角之间的关系是解题的关键. (2)公式tan(180°-α)=-tan α是一个重要公式,它是求倾斜角为钝角时的直线斜率的关键,即把钝角的正切转化为锐角的正切.熟记30°,45°,60°角的正切值可快速求解.举一反三: 【变式1】(2016 山西曲沃县模拟)过两点A (3―m ―m 2,―2m ),B (m 2+2,3―m 2)的直线的倾斜角为135°,求m 的值.【答案】m =―2【解析】依题意可得:直线的斜率为―1 又直线过两点A (3―m ―m 2,―2m ),B (m 2+2,3―m 2)即:22223132m m m m m --+=----- 整理的2223121m m m m --=+-可求得m =―2或m =―1 经检验m =―1不合题意,故m =―2. 类型二:过两点的直线斜率公式的应用例3.经过下列两点的直线的斜率是否存在?如果存在,求其斜率. (1)(1,―1),(―3,2);(2)(1,―2),(5,―2);(3)(3,4),(―2,―5);(4)(3,0),(3,.【答案】(1)34-(2)0(3)95(4)不存在【解析】 当倾斜角α=90°时,斜率不存在;当α≠90°时,2121y y k x x -=-.(1)2(1)3314k --==---;(2)2(2)051k ---==-;(3)549235k --==--;(4)∵倾斜角α=90°,∴k 不存在.【总结升华】 应用斜率公式求斜率时,首先应注意这两点的横坐标是否相等,若相等,则这两点的连线必与x 轴垂直,即直线的倾斜角为90°,故其斜率不存在,也就不能运用斜率公式求斜率.事实上,此时若将两点坐标代入斜率公式,则其分母为零无意义,即斜率不存在;其次,在运用斜率公式时,分子的被减数与分母的被减数必须对应着同一点的纵坐标和横坐标.举一反三:【变式1】 直线l 过点A (1,2),B (m ,3),求l 的斜率.【答案】不存在或11m - 【解析】若m=1,此时l 的倾斜角为2π,显然直线斜率不存在,; 若m ≠1,则直线斜率存在,设此时斜率为k ,倾斜角为α,321tan 11k m m α-===--. 例4.已知A (a ,2),B (5,1),C (―4,2a )三点在同一条直线上,求a 的值. 【答案】2 或72【解析】 ∵A ,B ,C 三点共线,∴k AB =k BC ,∴2121545a a --=---,解得a=2或72a =. 故所求的a 的值为2或72.【总结升华】 由于直线上任意两点的斜率都相等,因此A ,B ,C 三点共线⇔A ,B ,C 中任意两点的斜率相等(如k AB =k AC ).斜率是反映直线相对于x 轴正方向的倾斜程度的,直线上任意两点所确定的方向不变,即在同一直线上任意不同的两点所确定的斜率相等.这正是利用斜率可证三点共线的原因.举一反三:【变式1】已知A (―3,―5),B (1,3),C (5,11)三点,试判断这三点是否在同一直线上. 【答案】在同一直线上【解析】由题意可知直线AB 的斜率35213AB k +==+,直线BC 的斜率113251BC k -==-.因为k AB =k BC ,即两条直线的斜率相同,并且它们过同一点B ,所以A ,B ,C 三点在同一直线上.例5.(2015春 三明月考)已知两点A (―3,4),B (3,2),过点C (2,―1)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.【思路点拨】根据题意,画出图形,结合图形,求出满足条件的直线l 斜率k 的取值范围. 【答案】k ≤-1或k ≥3.【解析】如图所示, ∵A (―3,4),B (3,2),C (2,―1),∴14123AC k --==-+, 12323BCk --==-; 要使过点C 的直线L 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥3.【总结升华】本题考查了已知两点的坐标求直线斜率的应用问题,也考查了数形结合的应用问题.举一反三:【变式1】 已知直线l 过点(2,1)A -且与线段BC 相交,设(1,0),(1,0)B C -,则直线l 的斜率k 的取值范围是 .【答案】113k -≤≤-【解析】画出图形,数形结合类型三:两条直线平行的条件例6.已知1l 经过A (―3,3),B (―8,6),2l 经过21,62M ⎛⎫-⎪⎝⎭,9,32N ⎛⎫- ⎪⎝⎭,求证:12//l l . 【解析】 直线1l 的斜率为16338(3)5k -==----,直线2l 的斜率为26(3)3219522k --==---,∵k 1=k 2,∴12//l l .【总结升华】判定两条不重合的直线是否平行的依据是:当这两条直线均不与x 轴垂直时,只需看它们的斜率是否相等即可,反过来,两条直线平行,则隐含着这两条直线的斜率相等(当这两条直线均不与x 轴垂直时).判定两条直线是否平行,只要研究两条直线的斜率是否相等即可,但是要注意斜率都不存在的情况,以及两条直线是否重合. 举一反三:【变式1】 判断下列各小题中的直线1l 与2l 是否平行.(1)1l 经过点A (―1,―2),B (2,1),2l 经过点M (3,4),N (―1,―1); (2)1l 的斜率为1,2l 经过点A (1,1),B (2,2);(3)1l 经过点A (0,1),B (1,0),2l 经过点M (―1,3),N (2,0) (4)1l 经过点A (―3,2),B (―3,10),2l 经过点M (5,―2),N (5,5). 【解析】 (1)11(2)12(1)k --==--,2145134k --==--,∵k 1≠k 2,∴1l 与2l 不平行.(2)k 1=1,221121k -==-, ∵k 1=k 2,∴1l ∥2l 或1l 与2l 重合. (3)101110k -==--,20312(1)k -==---, ∵k 1=k 2,∴1l ∥2l .(4)∵1l 与2l 都与x 轴垂直,∴1l ∥2l .【总结升华】 k 1=k 2⇔1l ∥2l 是针对斜率都存在的直线,对于斜率不存在或可能不存在的直线要注意利用图形求解.例7.已知ABCD 的三个顶点的坐标分别是A (0,1),B (1,0),C (4,3),求顶点D 的坐标. 【答案】 (3,4)【解析】 解法1:设D (m ,n ),线段AC 的中点为E (2,2),所以线段BD 的中点为E (2,2),则122022m n +⎧=⎪⎪⎨+⎪=⎪⎩,解得m=3,n=4,所以D (3,4). 解法2:设D (m ,n ),由题意得AB ∥DC ,AD ∥BC ,则有k AB =k DC ,k AD =k BC ,所以013104130041nmn m --⎧=⎪⎪--⎨--⎪=⎪--⎩,解得m=3,n=4,所以D (3,4).【总结升华】 解决此类问题的关键是充分利用几何图形的几何性质,并用解析几何中的相关知识解决.解决本题的关键是如何利用平行四边形的几何性质,其出发点是已知平行四边形的三个顶点如何作出第四个顶点,这两种作法对应着两种解法. 类型四:两条直线垂直的条件例8.判断下列各题中1l 与2l 是否垂直.(1)1l 经过点A (―1,―2),B (1,2),2l 经过点M (―2,―1),N (2,1); (2)1l 的斜率为―10,2l 经过点A (10,2),B (20,3);(3)1l 经过点A (3,4),B (3,10),2l 经过点M (-10,40),N (10,40).【解析】 求出斜率,利用1l ⊥2l ⇔k 1k 2=-1进行判断,注意数形结合及斜率不存在的特殊情况. (1)12(2)21(1)k --==--,21(1)12(2)2k --==--,k 1k 2=1, ∴1l 与2l 不垂直; (2)k 1=-10,2321201010k -==-,k 1k 2=-1,∴1l ⊥2l ;(3)1l 的倾斜角为90°,则1l ⊥x 轴;24040010(10)k -==--,则2l ∥x 轴,∴1l ⊥2l .【总结升华】 判断两条直线是否垂直的依据是:在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于―1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两条直线也垂直.例9.已知定点A (―1,3),B (4,2),以A ,B 为直径的端点,作圆与x 轴交于点C ,求交点C 的坐标.【答案】(1,0)或(2,0)【解析】 本题中有三个点A ,B ,C ,由于AB 为直径,C 为圆上的点,所以∠ACB=90°,因此,必有k AC ·k BC =―1.列出方程,求解即可.以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥CB .设C (x ,0),MJ 31AC k x -=+,24BC k x -=-.∴32114x x --⋅=-+-,去分母解得x=1或2. ∴C (1,0)或C (2,0).【总结升华】利用直线平行与垂直的条件解题,主要利用其斜率的关系,当然,在解题时要特别注意斜率不存在的情况,以及分类讨论的思想.本例中,利用∠ACB=90°,及两条直线垂直时斜率之间的关系,从而构造关于x 的方程,解之便求出其交点坐标,因此利用直线垂直与平行关系可构造相关方程,解之即可求出相关参数.本例中,当AC 或BC 的斜率不存在时,不满足AC ⊥BC ,这是很明显的事情(如图).故不需要对AC 或BC 斜率不存在的情形作讨论.举一反三: 【变式1】(2015春 海淀区期末)已知点A (a ,a )(a ≠0),B (1,0),O 为坐标原点.若点C 在直线OA 上,且BC 与OA 垂直,则点C 的坐标是( )A .11(,)22- B .(,)22a a - C .(,)22a a D .11(,)22【思路点拨】设C (x ,y ),利用点C 在直线OA 上,且BC 与OA 垂直得到关于x ,y 的方程组解之. 【答案】D【解析】设C (x ,y ),因为点C 在直线OA 上,且BC 与OA 垂直,所以11x y y x =⎧⎪⎨=-⎪-⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩;故选:D【巩固练习】1.以下两点确定的直线的斜率不存在的是( )A .(4,2)与(―4,1)B .(0,3)与(3,0)C .(3,―1)与(2,―1)D .(―2,2)与(―2,5) 2.过点P (-2,m ),Q (m ,4)的直线的斜率为1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4 3.如图,若图中直线的斜率分别为k 1, k 2, k 3,则( )321,,l llA.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 24.若直线1l ,2l 的倾斜角分别为1α,2α,且1l ⊥2l ,则( )A .1290αα-=︒B .1290αα+=︒C .12180αα+=︒D .1290αα-=︒ 5.直线122a y x =--与直线2y x =-+互相垂直,那么a 的值为( ) A .1 B .13- C .23- D .―26.(2015春 黄冈期末)已知直线1l :x +2ay ―1=0,与2l :(2a ―1)x ―ay -1=0平行,则a 的值是( )A .0或1B .1或14 C .0或14 D .147.已知点A (―1,3),B (3,1),点C 在x 轴上,且∠ACB=90°,则满足条件的点C 的个数为( )A .1B .2C .3D .4 8.已知函数2()log (1)f x x =+,且0a b c >>>,则()f a a ,()f b b ,()f c c 的大小关系为( ) A .()()()f a f b f c a b c >> B .()()()f a f b f c a b c <<C .()()()f b f a f c b ac>>D .()()()f a f c f b a c b<<9.已知点M (2m+3,m ),N (m -2,1),当m ∈________时,直线MN 的倾斜角为锐角;当m ∈________时,直线MN 的倾斜角为直角;当m ∈________时,直线MN 的倾斜角为钝角. 10.已知三点A (2,―3),B (4,3),(5,)2kC 在同一条直线上,则k=________. 11.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a 、b ∈R 且ab ≠0,则ab 的最小值为________. 12.(2016 湖南衡阳模拟)过A (m ,1)与B (―1,m )的直线与过点P (1,2),Q (―5,0)的直线垂直,则m =________. 13.(2016 浙江金华模拟)如果三条直线mx +y +3=0,x ―y ―2=0,2x ―y +2=0不能成为一个三角形三边所在的直线,求m 的值. 14.(2015春 淮安期中)直线mx +y +2=0与线段AB 有公共点,其中A (-2,3),B (3,2),求实数a 的取值范围.15.已知△ABC 的三个顶点坐标为A (2,4),B (1,―2),C (―2,3),求BC 边上的高AD 所在直线的斜率.【答案与解析】1.【答案】 D【解析】 选项D 中两点的横坐标相同,所以这两点确定的直线与x 轴垂直,因此直线的斜率不存在. 2.【答案】A【解析】 由斜率公式可求得m=1. 3.【答案】B 【解析】设直线的倾斜角分别为321,,ααα,则,根据正切函数的图像可得. 4.【答案】 D【解析】 方法一:特殊值法,令145α=︒,2135α=︒.方法二:如图,可得2390αα+=︒, ①13180αα+=︒, ②②-①,得1290αα-=︒.若1l 与2l 变换位置,则有2190αα-=︒. 5.【答案】D【解析】 ∵两直线垂直,∴()(1)12a -⨯-=-,∴a=―2.6.【分析】先检验当a =0时,是否满足两直线平行,当a ≠0时,两直线的斜率都存在,由21121a a a a ---=≠-,解得a 的值. 【答案】【解析】当a =0时,两直线的斜率都不存在,它们的方程分别是x =1,x =-1,显然两直线是平行的. 当a ≠0时,两直线的斜率都存在,故它们的斜率相等,由21121a a a a ---=≠-,解得:14a =. 综上,a =0或14,故选:C .【点评】本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验. 7.【答案】 B 【解析】 设C (x ,0),则有13131x x⋅=----,即3+(x ―3)·(x+1)=0.整理,得x 2―2x=0,∴x=0或x=2. 8.【答案】B321,,l l l παπαα<<<<<32120213k k k <<11【解析】该题从特殊值和常规方法都不容易找到解题的捷径,经仔细分析发现,其结构具务()()00f x f x x x -=-的特点,由此联想到利用斜率进行求解. 作出函数2()log (1)f x x =+的大致图象.由图可知,曲线上各点与原点连线的斜率随x 的增大而减小.因为0a b c >>>,所以()()()f a f b f c a b c<<.故选B. 9.【答案】(-∞,-5)∪(1,+∞) {}5- (―5,1)【解析】 112(23)5MN m m k m m m --==--+--,若直线MN 的倾斜角为锐角,则105MN m k m -=>--,有1050m m ->⎧⎨-->⎩或1050m m -<⎧⎨--<⎩.解得m <-5或m >1.其他同理可得. 10.【答案】12【解析】 由k AB =k AC 解方程可得.11.【分析】由题意知,两直线的斜率之积等于-1,得到a 、b 的关系,代入ab 的解析式变形后使用基本不等式,求得其最小值.【答案】2 【解析】由题意得22111a a b +-⨯=-,∴ 221a b a =+,∴222111a b a a+==+, ∴211|||(1)|||||2ab a a a a=⨯+=+≥,当且仅当a =1或a =-1时,取等号,故ab 的最小值为2, 故答案为2.【点评】本题考查两条直线垂直的性质,利用基本不等式求式子的最小值,注意检验最小值取得的条件是否具备.12.【答案】―2【解析】过点A (m ,1)与B (―1,m )的直线的斜率11m m ---,过点P (1,2),Q (―5,0)的直线的斜率为:201153-=+. 因为两条直线垂直,所以11113m m -⨯=---,解得m =―2. 故答案为:―2.13.【答案】―1或―2或34- 【解析】①mx +y +3=0与x ―y ―2=0平行时,m =―1,此时满足题意,所以m =―1;②mx +y +3=0与2x ―y +2=0平行时,m =―2,此时满足题意,所以m =―2;③联立x ―y ―2=-,2x ―y +2=0得20220x y x y --=⎧⎨-+=⎩,解得:46x y =-⎧⎨=-⎩,12即x ―y ―2=0与2x ―y +2=0的交点坐标为(―4,―6),根据题意所求直线过(―4,―6), 代入得,34m =-, 综上m 的值是―1或―2或34-. 14.【分析】由题意得直线y =―mx ―2过定点P (0,―2),作出图象求出边界直线的斜率,根据图象和条件求出实数m 的取值范围. 【答案】54(,)[,)23-∞-+∞ 【解析】由题意得,直线mx +y +2=0化为y =―mx ―2,则直线y =―mx ―2过定点P (0,―2),画出图象:∴直线P A 的斜率是325202+=---,直线PB 的斜率是224303+=-, ∵直线mx +y +2=0与线段AB 有公共点,∴直线mx +y +2=0在直线P A 和直线PB 之间,且直线PB 按逆时针转动,直线P A 按顺时针转动,则实数m 的取值范围是54(,)[,)23-∞-+∞, 15.【答案】35【解析】由题意可知BC 边所在直线的斜率为2351(2)3BC k --==---.因为AD ⊥BC ,所以135AD BC k k =-=,所以BC 边上的高AD 所在直线的斜率为35.。

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

【精品】高中数学 必修2_直线的一般式方程及综合 讲义 知识点讲解+巩固练习(含答案) _基础

【精品】高中数学 必修2_直线的一般式方程及综合 讲义 知识点讲解+巩固练习(含答案) _基础

直线的一般式方程及综合【学习目标】1.掌握直线的一般式方程;2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处;3.能利用直线的一般式方程解决有关问题.【要点梳理】要点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.要点诠释:1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程可变形为A Cy xB B=--,它表示过点0,CB⎛⎫-⎪⎝⎭,斜率为AB-的直线.当B=0,A≠0时,方程可变形为Ax+C=0,即CxA=-,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是1122x y-+=,还可以是4x―2y+2=0等.)要点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:要点诠释:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x 1≠x 2,y 1≠y 2),应用时若采用(y 2―y 1)(x ―x 1)―(x 2―x 1)(y ―y 1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.(1)从斜截式考虑已知直线111:b x k y l +=,222:b x k y l +=,12121212//()l l k k b b αα⇒=⇒=≠;12121211221tan cot 12l l k k k k παααα⊥⇒-=⇒=-⇒=-⇒=- 于是与直线y kx b =+平行的直线可以设为1y kx b =+;垂直的直线可以设为21y x b k=-+. (2)从一般式考虑:11112222:0,:0l A x B y C l A x B y C ++=++=1212120l l A A B B ⊥⇔+=121221//0l l A B A B ⇔-=且12210A C A C -≠或12210B C B C -≠,记忆式(111222A B C A B C =≠) 1l 与2l 重合,12210A B A B -=,12210A C A C -=,12210B C B C -=于是与直线0Ax By C ++=平行的直线可以设为0Ax By D ++=;垂直的直线可以设为0Bx Ay D -+=.【典型例题】类型一:直线的一般式方程例1.根据下列条件分别写出直线方程,并化成一般式:(1A (5,3);(2)过点B (―3,0),且垂直于x 轴;(3)斜率为4,在y 轴上的截距为―2;(4)在y 轴上的截距为3,且平行于x 轴;(5)经过C (―1,5),D (2,―1)两点;(6)在x ,y 轴上的截距分别是―3,―1.【答案】(130y -+-=(2)x+3=0(3)4x ―y ―2=0(4)4x ―y ―2=0(5)2x+y ―3=0(6)x+3y+3=0【解析】 (1)由点斜式方程得35)y x -=-30y -+-=.(2)x=―3,即x+3=0.(3)y=4x ―2,即4x ―y ―2=0.(4)y=3,即y ―3=0.(5)由两点式方程得5(1)152(1)y x ---=----,整理得2x+y ―3=0. (6)由截距式方程得131x y +=--,整理得x+3y+3=0. 【总结升华】本题主要是让学生体会直线方程的各种形式,以及各种形式向一般式的转化,对于直线方程的一般式,一般作如下约定:x 的系数为正,x ,y 的系数及常数项一般不出现分数,一般按含x 项、y 项、常数项顺序排列.求直线方程的题目,无特别要求时,结果写成直线方程的一般式.举一反三:【变式1】已知直线l 经过点A (―5,6)和点B (―4,8),求直线的一般式方程和截距式方程,并画图.【答案】2x -y+16=0 1816x y +=- 【解析】 所求直线的一般式方程为2x -y+16=0,截距式方程为1816x y +=-.图形如右图所示. 【高清课堂:直线的一般式 381507 例4】例2.ABC ∆的一个顶点为(1,4)A --,B ∠、C ∠ 的平分线在直线10y +=和10x y ++=上,求直线BC 的方程.【答案】230x y +-=【解析】由角平分线的性质知,角平分线上的任意一点到角两边的距离相等,所以可得A 点关于B ∠的平分线的对称点'A 在BC 上,B 点关于C ∠的平分线的对称点'B 也在BC 上.写出直线''A B 的方程,即为直线BC 的方程.例3.已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=,求满足下列条件的a 的值.(1)12//l l ;(2)12l l ⊥.【思路点拨】利用直线平行和垂直的条件去求解。

高中数学必修二最全完整笔记

高中数学必修二最全完整笔记

高中数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系第一章空间几何体1.1 空间几何体的结构一、空间几何体:占据着空间的一部分,只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫空间几何体。

1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。

(1)面:围成多面体的各个多边形叫做多面体的面。

(2)棱:相邻两个面的公共边叫做多面体的棱。

(3)顶点:棱与棱的公共顶点叫做多面体的顶点。

2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何,叫做旋转体。

(1棱3.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

(1)底面:两个互相平行的面叫做棱柱的底面(简称底)。

(2)侧面:其余各面叫做棱柱的侧面。

(3)侧棱:相邻侧面的公共边。

(4)顶点:侧面与底面的公共顶点。

(5)简单性质:1.侧棱都相等,侧面都是平行四边形。

2.两个底面与平行于底面的截面是全等的。

3.各不相邻的侧棱所形成的斜面是平行四边形。

(6)棱柱的分类:1.按底面边多少分:n棱柱(n≥3)2.按侧棱与底面的关系分:垂直:直棱柱、正棱柱(底面为正多边形) 三棱柱四棱柱不垂直:斜棱柱1.底面为直角三角形 1.直平行六面体2.底面为等边三角形 2.正四棱柱3.底面为等腰直角三角形 3.正方体(非棱柱)4.棱锥:有一个面是多边形,其余各面都是有一公共点的三角形。

(1)底面:多边形面。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二各章知识点总结完整版
第一章 空间几何体
知识点:
1、空间几何体的结构
⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长2222
c b a l ++=;正方体的对角线长
a l 3=
3、球的体积公式:3
3
4
 R V
π=,球的表面积公式:
24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:2
2
2
1
21h h S S =
5、空间几何体的表面积与体积
⑴圆柱侧面积;l
r S ⋅⋅=π2侧面
⑵圆锥侧面积:l r S ⋅⋅=π侧面
典型例题:
★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形
C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥
★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )
A 21
倍 B 4
2倍 C 2倍 D 2倍
★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( )
A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱
C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱
★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是
A .2
8cm π B 2
12cm π. C 2
16cm π. D .2
20cm π
二、填空题
★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.
第二章 点、直线、平面之间的位置关系 知识点:
1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它
们有且只有一条过该点的公共直线。

4、公理4:平行于同一条直线的两条直线平行.
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。

8、面面位置关系:平行、相交。

9、线面平行:
⑴判定:平面外一条直线与此平面内的一条直线平行,则
该直线与此平面平行(简称线线平行,则线面平
行)。

⑵性质:一条直线与一个平面平行,则过这条直线的任一
平面与此平面的交线与该直线平行(简称线面平
行,则线线平行)。

10、面面平行:
⑴判定:一个平面内的两条相交直线与另一个平面平行,
则这两个平面平行(简称线面平行,则面面平
行)。

⑵性质:如果两个平行平面同时和第三个平面相交,那么
它们的交线平行(简称面面平行,则线线平行)。

11、线面垂直:
⑴定义:如果一条直线垂直于一个平面内的任意一条直
线,那么就说这条直线和这个平面垂直。

⑵判定:一条直线与一个平面内的两条相交直线都垂直,
则该直线与此平面垂直(简称线线垂直,则线面
垂直)。

⑶性质:垂直于同一个平面的两条直线平行。

12、面面垂直:
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定:一个平面经过另一个平面的一条垂线,则这两个
平面垂直(简称线面垂直,则面面垂直)。

⑶性质:两个平面互相垂直,则一个平面内垂直于交线的
直线垂直于另一个平面。

(简称面面垂直,则线面垂直)。

典型例题:
★例1:一棱锥被平行于底面的平面所截,若截面面积与底面面
积之比是1:2,则此棱锥的高(自上而下)被分成两段长度之比为
A 、1:2
B 、1:4
C 、1:
)
12(+
D 、1:)12(
-
★ 例2:已知两个不同平面α、β及三条不同直线a 、b 、c ,βα⊥,
c =βαI ,β
⊥a ,b a ⊥,c 与b 不平行,则( )
A. β//b 且b 与α相交
B. α⊄b 且β//b
C. b 与α相交
D. α⊥b 且与β不相交
★★ 例3:有四个命题:①平行于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④垂直于同一平面的两个平面平行。

其中正确的是 ( )
A .①②
B .②③
C .③

D .①④
★★例4:在正方体1111D C B A ABCD -中,F E ,分别是1CC DC 和的中点.
求证:ADF E D 平面⊥1
例5:如图,在正方体ABCD -
A1B1C1D1中,E 、F 为棱AD 、AB 的中点.
(1)求证:EF ∥平面CB1D1; (2)求证:平面CAA1C1⊥平
面CB1D1
第三章 直线与方程 知识点:
1、倾斜角与斜率:1
212tan x x y y k --==α
2、直线方程: ⑴点斜式:()00
x x k y y -=-
⑵斜截式:b kx y += ⑶两点式:
121
121
y y y y x x x x --=
--
⑷截距式:1x y a
b
+=
⑸一般式:0=++C By Ax
3、对于直线:222111:,:b x k y l b x k y l +=+=有:
⑴⎩⎨
⎧≠=⇔2
12
121//b b k k l l ;
⑵1l 和2l 相交12k k ⇔≠;
A 1
⑶1l 和2l 重合⎩⎨
⎧==⇔2
12
1b b k k ; ⑷12121-=⇔⊥k k l l . 4、对于直线:
:,0:22221111=++=++C y B x A l C y B x A l 有:
⑴⎩⎨⎧≠=⇔1221122121//C B C B B
A B A l l ;
⑵1l 和2l 相交1221B A B A ≠⇔;
⑶1l 和2l 重合⎩⎨⎧==⇔122
11
221C B C B B A B A ;
⑷0212121=+⇔⊥B B A A l l . 5、两点间距离公式:()()21221221y y x x P P -+-=
6、点到直线距离公式:2
2
00B
A C
By Ax d +++=
7、两平行线间的距离公式:
1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2
2
21B
A C C d +-=
典型例题:
★例1:若过坐标原点的直线l 的斜率为3-,则在直线l 上的点
是( ) A )3,
1( B )1,3( C )1,3(- D
)3,1(-
★例2:直线02)32()1(:03)1(:21=-++-=--+y k x k l y k kx l 和
互相垂直,则k 的值是( )
A .-3
B .0
C . 0或-3
D . 0或1
第四章 圆与方程 知识点:
1、圆的方程:
⑴标准方程:()()22
2r b y a x =-+-,其中圆心为(,)a b ,半
径为r .
⑵一般方程:022=++++F Ey Dx y x .其中圆心为(,)2
2
D E --,
半径为r =2、直线与圆的位置关系
直线0=++C By Ax 与圆22
2)()(r b y a x =-+-的位置关系有
三种:
0<∆⇔⇔>相离r d ;
0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .
3、两圆位置关系:21O O d =
⑴外离:r R d +>; ⑵外切:r R d +=; ⑶相交:r R d r R +<<-; ⑷内切:r R d -=; ⑸内含:r R d -<. 4
、空间中两点间距离公式:
()()()21221221221z z y y x x P P -+-+-=
典型例题:
★例1:圆心在直线y=2x 上,且与x 轴相切与点(-1,0)的圆的标准方程是
_________________________.
★★ 例2:已知4:22=+y x C 圆, (1)过点)3,
1(-的圆的切线方程为________________.
(2)过点)0,3(的圆的切线方程为________________. (3)过点)1,2(-的圆的切线方程为________________. (4)斜率为-1的圆的切线方程为__________________. ★★例3:已知圆C 经过A(3,2)、B(1,6)两点,且圆心在直线y=2x 上。

(1)求圆C的方程;
(2)若直线L经过点P (-1,3)且与圆C相切, 求
直线L的方程。

相关文档
最新文档