八年级数学试卷答案
八年级数学试卷答案及答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 3/4答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。
2. 下列图形中,对称轴为直线y=x的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B解析:等边三角形的对称轴为直线y=x。
3. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2答案:B、C、D解析:根据平方差公式和完全平方公式,选项B、C、D都是正确的。
4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x^2D. y = √x答案:B解析:反比例函数的形式为y = k/x,其中k为常数。
选项B符合这个形式。
5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 0C. 2x - 3 = 0D. 2x + 3 = 7x答案:A解析:选项A的方程为一次方程,有唯一解。
选项B、C、D的方程都至少有两个解。
二、填空题(每题5分,共25分)6. 已知a + b = 5,ab = 6,则a^2 + b^2 = __________。
答案:37解析:根据平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 26 = 37。
7. 已知y = kx + b,其中k和b为常数,且k < 0,b > 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限答案:D解析:当k < 0时,函数图象斜率为负,因此图象在第二、四象限。
8. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 2和3答案:C解析:这是一个二次方程,可以通过因式分解或者求根公式求解。
八年级数学权威试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001…2. 已知a、b是实数,且a + b = 0,则下列选项中正确的是()A. a = 0,b ≠ 0B. b = 0,a ≠ 0C. a = b = 0D. a、b可以任意取值3. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 14. 如果|a| = 5,那么a的值是()A. ±5B. 5C. -5D. ±105. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 3B. y = √xC. y = x^2 - 4x + 4D. y = 1/x6. 已知一次函数y = kx + b的图象经过点(1,2),则下列选项中正确的是()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 17. 如果a、b是方程x^2 - 4x + 3 = 0的两个实数根,则下列选项中正确的是()A. a + b = 2B. ab = 3C. a + b = 4D. ab = 48. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°9. 在梯形ABCD中,AD // BC,AB = CD,若ABCD的面积是S,则三角形ABD的面积是()A. S/2B. S/3C. 2S/3D. S10. 已知等边三角形ABC的边长为a,则其内切圆半径r是()A. a/3B. a/2C. √3/2aD. √3/3a二、填空题(每题5分,共25分)11. 如果a = -3,b = 2,那么a^2 - 2ab + b^2的值是______。
12. 若实数x满足不等式2x - 1 > 0,则x的取值范围是______。
八年级数学(下)期末试卷含答案

ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
八年级数学大题试卷及答案

一、填空题(每空2分,共20分)1. 已知等腰三角形ABC中,AB=AC,∠BAC=40°,则∠B=________°。
2. 若等比数列{an}中,a1=3,q=2,则第n项an=________。
3. 在平面直角坐标系中,点A(2,3),点B(-1,4),则线段AB的中点坐标为________。
4. 一个正方形的周长为20cm,则它的面积是________cm²。
5. 若x²-5x+6=0,则x²-5x=________。
6. 在△ABC中,若∠A=45°,∠B=60°,则sinC=________。
7. 下列函数中,y=2x+1是________函数。
A. 常数函数B. 线性函数C. 多项式函数D. 指数函数8. 若一个数的平方等于16,则这个数是________。
9. 下列图形中,具有轴对称性的是________。
A. 正方形B. 等腰三角形C. 长方形D. 梯形10. 下列运算正确的是________。
A. (-3)²=9B. (-3)³=-27C. (-3)⁴=81D. (-3)⁵=-243二、选择题(每题3分,共30分)11. 若x²+4x+4=0,则x的值为________。
A. 2B. -2C. 0D. 无法确定12. 在△ABC中,若∠A=90°,∠B=30°,则△ABC是________。
A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形13. 下列函数中,y=√x是________函数。
A. 常数函数B. 线性函数C. 多项式函数D. 指数函数14. 若等差数列{an}中,a1=5,d=3,则第n项an=________。
A. 3n+2B. 3n+5C. 3n-2D. 3n-515. 下列数列中,不是等比数列的是________。
A. 2, 4, 8, 16, ...B. 1, 3, 9, 27, ...C. 1, 2, 4, 8, ...D. 1, 1, 2, 3, ...16. 下列运算正确的是________。
时代杯数学八年级试卷答案

一、选择题(每题3分,共30分)1. 下列数中,有理数是:()A. √-1B. √4C. πD. 0.1010010001…答案:B解析:有理数是可以表示为两个整数之比的数,其中分母不为零。
√4=2,是一个整数,因此是有理数。
2. 下列代数式中,正确的是:()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)(a-b) = a² - b²D. (a+b)(a-b) = a² + 2ab + b²答案:A、B、C解析:这些是基本的代数恒等式。
A和B是平方差公式,C是差平方公式。
3. 已知一元二次方程x²-5x+6=0,其两个根之和为:()A. 5B. 6C. 7D. 8答案:A解析:根据韦达定理,一元二次方程ax²+bx+c=0的根之和等于-b/a。
所以,这里根之和为5。
4. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为:()A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3)答案:B解析:点P关于x轴对称,即y坐标变号,x坐标不变,所以对称点坐标为(2,-3)。
5. 一个等腰三角形的底边长为6cm,腰长为8cm,其面积为:()A. 24cm²B. 30cm²C. 32cm²D. 36cm²答案:B解析:等腰三角形的面积公式为(底边长×高)/2。
首先,使用勾股定理计算高:h = √(腰长² - (底边长/2)²) = √(8² - (6/2)²) = √(64 - 9) = √55。
然后,计算面积:(6×√55)/2 = 3√55。
四舍五入后,面积约为30cm²。
二、填空题(每题5分,共20分)6. 2的平方根加上3的立方根等于()。
八年级上册数学 全册全套试卷测试卷(含答案解析)

2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
【详解】
设这个三角形的第三边为x.
根据三角形的三边关系定理,得:9-4<x<9+4,
解得5<x<13.
故选A.
【点睛】
本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.
11.若一个凸多边形的内角和为720°,则这个多边形的边数为
A.4B.5C.6D.7
【答案】C
八年级上册数学 全册全套试卷测试卷(含答案解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC= ∠ACD− ∠ABC= ∠A=21°.
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.
3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.
【答案】160.
【解析】
【详解】
解:根据三角形的三边关系可得:8-3<a<8+3,
八年级数学大练试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -3B. 0C. 1/2D. 52. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a - 2 > b - 2D. a + 2 < b + 23. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形4. 若x^2 - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 1或2D. 3或45. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,-3)D. (2,-3)6. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^37. 若等腰三角形的底边长为8cm,腰长为10cm,则其面积为()A. 32cm^2B. 40cm^2C. 48cm^2D. 56cm^28. 下列各式中,正确的是()A. sin^2θ + cos^2θ = 1B. tanθ = sinθ/cosθC. cotθ = cosθ/sinθD. secθ = 1/cosθ9. 下列图形中,面积最大的是()A. 正方形B. 等边三角形C. 长方形D. 平行四边形10. 若a,b,c是等差数列,且a + b + c = 15,则a^2 + b^2 + c^2的值为()A. 45B. 50C. 55D. 60二、填空题(每题3分,共30分)11. 若m - n = 5,mn = 6,则m^2 - n^2的值为______。
12. 下列函数中,是偶函数的是______。
13. 在直角三角形ABC中,∠A = 90°,∠B = 30°,则BC的长度为______。
14. 若等腰三角形底边长为6cm,腰长为8cm,则其周长为______。
2023-2024学年四川省自贡市八年级(上)期末数学试卷+答案解析
2023-2024学年四川省自贡市八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知某新型流感病毒的直径约为米,将用科学记数法表示为( )A. B. C. D.2.下列几何图形中,是轴对称图形的是( )A. B. C. D.3.能与长为20cm,30cm的两根木条首尾顺次相接钉成一个三角形的木条长度是( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列计算正确的是( )A. B. C. D.5.如图,在中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,连接若,,则为( )A.B.C.D.6.下列等式从左到右的变形,是因式分解的是( )A. B.C. D.7.如图,的和的外角角平分线交于点D,若,,则的度数是( )A.B.C.D.8.如图,在和中,,,,,连接AC,BD交于点H,连接OH,下列结论:①;②;③OH平分;④HO平分;⑤直线BD平分线段其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共6小题,每小题3分,共18分。
9.若分式有意义,则x的取值范围是______.10.约分:______.11.如图,在中,AD是高,角平分线AE,BF相交于点O,,,则的度数是______.12.已知,则______.13.一个多边形的内角和是它的外角和的3倍,则从这个多边形的一个顶点出发共有______条对角线.14.如图,已知锐角的面积为42,,,点C是AB边上一动点,点E,F是OA,OB边上异于端点的两个动点,当的周长最小时,点O到线段EF的距离是______.三、解答题:本题共10小题,共58分。
解答应写出文字说明,证明过程或演算步骤。
15.本小题5分计算:16.本小题5分解方程:17.本小题5分如图,在中,,D为BC的中点,,,垂足分别为E、F,求证:18.本小题5分计算:19.本小题5分如图,在中,,,要把图纸上的这块三角形土地均分给甲、乙、丙三家农户,并使这三家农户所得土地的大小、形状都相同,请在图上画出分割图要求;尺规作图,要写出作法,并保留作图痕迹20.本小题6分自贡彩灯文化历史悠久,盐、龙、灯被称为自贡的“大三绝”.师徒二人制作某种彩灯,师父每天比徒弟多做5个,师父做80个所用的时间与徒弟做60个所用的时间相等.求师父每天做彩灯多少个?春节前夕,有600个该种彩灯需要制作.若师父工价是每天300元,徒弟每天250元,总预算费用不超过9200元,则最多可安排徒弟做多少天?21.本小题6分如图,在中,点A,B,C的坐标分别为,,画出关于y轴对称的图形,并写出点D,E,F的坐标;求以A,C,F,D为顶点的四边形的面积.22.本小题6分如图,在中,,AD是BC边上的中线,交AB于点求证:23.本小题7分如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:,,,因此4,12,20都是“神秘数”.请说明36是否为“神秘数”;证明:“神秘数”一定是4的倍数;是“神秘数”吗?请说明理由.24.本小题8分如图1所示,在中,,点D是线段CA延长线上一点,且点F是线段AB 上一点,连接DF,以DF为斜边作等腰,连接EA,且若,垂足为G,求证:如图2,若点F是线段BA延长线上一点,其他条件不变,请写出线段AE,AF,BC之间的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:故选:用科学记数法表示较小的数,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂.本题主要考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】D【解析】解:A,B,C选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:根据轴对称图形的定义进行逐一判断即可.本题主要考查了轴对称图形,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3.【答案】B【解析】解:设要选取的木条长度是x cm,,,要选取的木条长度是30cm,故选:三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,设要选取的木条长度是x cm,由此得到,即可得到答案.本题考查三角形三边关系,关键是掌握三角形三边关系定理.4.【答案】A【解析】解:,此选项计算正确,故此选项符合题意;B.,此选项计算错误,故此选项不符合题意;C.,此选项计算错误,故此选项不符合题意;D.,此选项计算错误,故此选项不符合题意;故选:A.根据幂的乘方法则进行计算,然后判断即可;B.根据同底数幂相乘法则进行计算,然后判断即可;C.根据负整数指数幂的性质进行计算,然后判断即可;D.根据同底数幂相除法则进行计算,然后判断即可.本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂的乘除法则、幂的乘方法则和负整数指数幂的性质.5.【答案】C【解析】解:,,,是AC的垂直平分线,,,故选:首先利用等腰三角形的性质求得的度数,然后利用三角形的外角的性质求得答案即可.本题考查了等腰三角形的性质及垂直平分线的性质,解题的关键是了解线段的垂直平分线上的点到线段两端点的距离相等.6.【答案】D【解析】解:是整式乘法运算,则A不符合题意;是单项式的变形,则B不符合题意;的右边不是积的形式,则C不符合题意;符合因式分解的定义,则D符合题意;故选:将一个多项式化为几个整式的积的形式即为因式分解,据此逐项判断即可.本题考查因式分解的识别,熟练掌握其定义是解题的关键.7.【答案】C【解析】解:如图,延长CA至E,使,连接BD,ED,ED交BA的延长线于点N,,,,平分,,,,在和中,,≌,,设,,,,的和的外角角平分线交于点D,平分,,,,,,,,,即,故选:延长CA至E,使,连接BD,ED,由“SAS”可证≌,可得,设,由等腰三角形的性质可得,根据角平分线定义求出,,根据平角定义求出,再根据三角形外角的性质可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.8.【答案】B【解析】解:,,,,,即,在和中,,≌,,,故①正确,符合题意;由三角形的外角性质得:,,故②正确,符合题意;作于G,于M,如图所示,则,在和中,,≌,,平分,故④正确,符合题意;假设OH平分,则,,平分,,在和中,,≌,,与矛盾,故③错误,不符合题意;根据题意,无法求证直线BD平分线段OC,故⑤错误,不符合题意;正确的个数有3个;故选:由SAS证明≌得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于G,于M,如图所示:则,由AAS证明≌,得出,由角平分线的判定方法得出HO平分,④正确;假设OH平分,则,由HO平分,,利用ASA推出≌,得,而,故③错误;根据题意,无法求证直线BD平分线段OC,故⑤错误,即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.9.【答案】【解析】解:分式有意义,,故答案是:根据分式有意义的条件计算即可.本题主要考查了分式有意义的条件,准确计算是解题的关键.10.【答案】【解析】解:原式故答案为:先把分子因式分解,然后把分子分母都约去m即可.本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.11.【答案】【解析】解:角平分线AE,BF相交于点O,,,,是高,,,,,,故答案为:由角平分线的定义可得,,由高线可得,从而可求得,再由三角形的内角和可得,即可求的度数,从而可求的度数.本题主要考查三角形的内角和定理,解答的关键是结合图形分析清楚各角的关系.12.【答案】【解析】解:,,,,,,,,,,故答案为:先利用多项式乘多项式法则计算已知条件中等式的左边,然后根据右边得到,,再灵活利用完全平方公式求出即可.本题主要考查了多项式乘多项式,解题关键是熟练掌握完全平方公式和灵活运用完全平方公式解决问题.13.【答案】5【解析】解:设这个多边形有n条边,由题意得:,解得,从这个多边形的一个顶点出发的对角线的条数是,故答案为:首先设这个多边形有n条边,由题意得方程,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出条对角线可得答案.此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.14.【答案】【解析】解:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,垂直平分CG,OB垂直平分CH,,,,,,,,,作于点I,则,,,,,连接GE、HF,则,,,,,作于点D,的面积为42,,,解得,,当点C与点D重合时,,此时OC的值最小,当时,的值最小,的周长最小,,,点O到线段EF的距离是,故答案为:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,则,所以,,则,求得,作于点I,则,,求得,所以,连接GE、HF,则,,所以,则,作于点D,由的面积为42,,求得,则当点C与点D重合时,,此时OC的值最小,当时,的周长最小,由,求得,于是得到问题的答案.此题重点考查轴对称的性质、等腰三角形的性质、直角三角形中角所对的直角边等于斜边的一半、两点之间线段最短、垂线段最短、根据面积等式求线段的长度等知识与方法,正确地作出辅助线是解题的关键.15.【答案】解:【解析】根据完全平方公式、单项式乘多项式的法则计算即可.本题考查了完全平方公式、单项式乘多项式,熟练掌握公式和运算法则是解题的关键.16.【答案】解:原方程去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验:将代入得,故原分式方程的解为【解析】利用解分式方程的步骤解方程即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.17.【答案】证明:,,又,,,点D为BC中点,,在和中,≌,【解析】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出根据等腰三角形的性质得出,根据全等三角形的判定和性质得出即可;18.【答案】解:【解析】先算乘方,再算乘除,即可得出结果.本题考查了分式的乘方、乘除法,熟练掌握分式的混合运算法则是解题的关键.19.【答案】解:作法:作AB边的垂直平分线,分别交BC、AB于点E、F,连接、、即为分出的三块地.【解析】作AB边的垂直平分线EF,连接本题考查了应用与设计作图,三角形内角和定理.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【答案】解:设师父每天做彩灯x个,则徒弟每天做彩灯个,由题意得:,解得,经检验,是原方程的解,且符合题意,答:师父每天做彩灯20个;设可安排徒弟做b天,则安排师父做天,即天,由题意得:,解得:,答:最多可安排徒弟做8天.【解析】设师父每天做彩灯x个,则徒弟每天做彩灯个,关键师父做80个所用的时间与徒弟做60个所用的时间相等.列出分式方程,解方程即可;设可安排徒弟做b天,则安排师父做天,即天,根据总预算费用不超过9200元,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找出数量关系,正确列出一元一次不等式.21.【答案】解:如图所示,即为所求,由图知,、、;由图知,,以A,C,F,D为顶点的四边形的面积为【解析】分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得出答案;根据梯形的面积公式求解即可.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.22.【答案】证明:,,,在中,,,是BC上的中线,是的角平分线,,,,,,,即【解析】首先利用和,推导出,,进而得到,进一步推导出,,进而得证.本题主要考查了平行线的性质,解答本题的关键是熟练掌握平行线的性质以及等腰三角形“三线合一”的性质,23.【答案】解:假设36是神秘数,则能表示为两个连续偶数的平方差,设较小的偶数为x,则较大的偶数为解得:是“神秘数”.设较小的偶数为2k,则较大的偶数为为正整数,为正整数.“神秘数”一定是4的倍数.不是“神秘数”.理由:假设2000是“神秘数”,由得解得:不是整数,假设不成立.不是“神秘数”.【解析】假设36是神秘数,看36是否能表示为两个连续偶数的平方差即可判断是否为“神秘数”;可设较小的偶数为2k,则较大的偶数为,看较大偶数与较小偶数的平方差是否是4的倍数即可;把2000代入得到的式子中,看是否符合实际意义.本题考查新定义的应用.理解新定义的意义是解决本题的关键.注意应用已得到的结论.24.【答案】证明:如图1,,,,,,,在和中,,≌,,是以DF为斜边的等腰直角三角形,,,,在和AFE中,,≌,,,,解:,理由:如图2,作交AE的延长线于点H,则,,在和中,,≌,,,,在和AFE中,,≌,,,【解析】由,,得,而,,则,,即可根据“AAS”证明≌,得,再证明≌,得,则;作交AE的延长线于点H,可证明≌,得,再证明≌,得,则此题重点考查等腰直角三角形的性质、同角的余角相等、全等三角形的判定与性质等知识,正确地作出辅助线是解题的关键.。
八年级(上学期)期末数学试卷(含答案解析)
八年级(上学期)期末数学试卷(含答案解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各数为边长,能构成直角三角形的是()A. 1,2,2B. 1,,2C. 4,5,6D. 1,1,2.在如图所示的直角坐标系中,M,N的坐标分别为()A. M(2,-1),N(2,1)B. M(2,-1),N(1,2)C. M(-1,2),N(1,2)D. M(-1,2),N(2,1)3.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A. 甲.B. 乙C. 丙D. 丁4.若a<<b,且a与b为连续整数,则a与b的值分别为()A. 1;2B. 2;3C. 3;4D. 4;55.如图,直线a∥b,下列各角中与∠1相等的是()A. ∠2B. ∠3C. ∠4D. ∠56.估计3的运算结果应在()A. 14到15之间B. 15到16之间C. 16到17之间D. 17到18之间7.下列函数中经过第一象限的是()A. y=-2xB. y=-2x-1C.D. y=x2+28.下列命题错误的个数有()①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个9.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 12110.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题共5小题,共15.0分)11.当a= ______ 时,代数式+1取值最小.12.将直线y=3x向上平移3个单位,得到直线______.13.如图,直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为______.14.点A(-2a,a-1)在x轴上,则A点的坐标是______,A点关于y轴的对称点的坐标是______.15.图(1)中的梯形符合条件时,可以经过旋转和翻折形成图案(2).三、解答题(本大题共7小题,共55.0分)16..17.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ______ ,b= ______ ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为______ ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.18.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?19.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?20.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出对称点A1、B1、C1的坐标;(3)在y轴上找一点Q,使QA+QB最小.21.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y22.如图:一次函数y=-x+3的图象与坐标轴交于A、B两点,点P是函数y=-x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.答案和解析1.【答案】B【解析】解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.此题考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.2.【答案】D【解析】解:点M在第二象限,那么横坐标小于0,是-1,纵坐标大于0,是2,即M点的坐标为(-1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.先判断象限内点的坐标的符号特点,进而找相应坐标.本题主要考查了平面直角坐标系中各个象限内点的符号,注意先找横坐标,再找纵坐标.3.【答案】A【解析】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】B【解析】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故选:B.根据4<7<9,结合a<<b,且a与b为连续整数,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<<3.5.【答案】C【解析】解:∵a∥b,∴∠2=∠3,又∵∠2+∠1=180°,∠3+∠4=180°,∴∠1=∠4,故选:C.依据平行线的性质,即可得到∠2=∠3,再根据∠2+∠1=180°,∠3+∠4=180°,即可得到∠1=∠4.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【答案】C【解析】解:3=12+3,∵,∴,∴,即3的运算结果应在16到17之间.故选:C.先进行二次根式的运算,然后再进行估算.本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系、正(反)比例函数的性质以及二次函数的性质,逐一分析四个选项中函数图象经过的象限是解题的关键.A、由k=-2,可得出正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、由k=-2、b=-1,可得出一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、由k=-2,可得出反比例函数y=-的图象在第二、四象限,C不符合题意;D、由a=1、b=0、c=2,可得出二次函数y=x2+2的图象经过第一、二象限,D符合题意.此题得解.【解答】解:A、∵k=-2,∴正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、∵k=-2,b=-1,∴一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、∵k=-2,∴反比例函数y=-的图象在第二、四象限,C不符合题意;D、∵a=1,b=0,c=2,∴二次函数y=x2+2的图象经过第一、二象限,D符合题意.故选:D.8.【答案】B【解析】解:①实数与数轴上的点一一对应,正确,不符合题意;②无限不循环小数就是无理数,故原命题错误,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,符合题意.错误的有2个,故选:B.利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解实数的性质、无理数的定义、三角形的外角的性质及平行线的性质,难度不大.9.【答案】C【解析】【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.本题考查了勾股定理的应用,作出辅助线构造出正方形是解题的关键.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,OL=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.10.【答案】B【解析】解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】-【解析】解:∵代数式+1取值最小时,则取到最小,∴2a+1=0,解得:a=-.故答案为:-.根据二次根式的性质代数式+1取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】【解析】解:∵直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为,故答案为:.利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.【答案】(-2,0)(2,0)【解析】解:∵点A(-2a,a-1)在x轴上,∴a-1=0,解得:a=1,∴A(-2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(-2,0)、(2,0).根据x轴上的坐标特点:纵坐标为0可得a-1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了坐标轴上点的坐标特点,以及关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.【答案】底角为60°且上底与两腰相等的等腰梯形【解析】试题分析:利用等腰梯形的性质求解.从图得到,梯形的上底与两腰相等,上底角为360°÷3=120°,∴下底角=60°,∴梯形符合底角为60°且上底与两腰相等的等腰梯形条件时,可以经过旋转和翻折形成图案(2).16.【答案】解:原式=-2+2-2-2(-1)×1=-2+2-2-2+2-2.【解析】分别进行负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等运算,然后合并.本题考查了二次根式的混合运算,涉及了负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等知识掌握运算法则是解答本题关键.17.【答案】解:(1)36;9;(2)90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【解析】【分析】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)用样本估计总体,利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180-18-45-72-36=9(人).故答案是36;9;(2)书画社团”所对应的扇形圆心角度数是360°×=90°.故答案为90°;(3)见答案.18.【答案】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.【解析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.本题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可得,A1(-1,2)B1(-3,1)C1(2,-1);(3)如图,Q点就是所求的点.【解析】(1)根据轴对称的性质,作出△ABC关于y轴的对称△A1B1C1;(2)根据△A1B1C1各顶点的位置,写出其坐标即可;(3)连接A1B,交y轴于点Q,则QA+QB最小.本题主要考查了轴对称的性质以及轴对称变换的运用,解决问题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵∠A=40°,∠B=70°,∴∠ACB=180°-40°-70°=70°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×70°=35°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°-90°-70°=20°,∴∠DCE=∠BCE-∠BCD=35°-20°=15°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°-90°-15°=75°;(2)(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y=x2•x3•(-8y3)+4x2y2•(-x3)•y=-8x5y3-4x5y3=-12x5y3.【解析】(1)由DF⊥CE可知,要求∠CDF的度数,只需求出∠FCD,只需求出∠BCE和∠BCD即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.22.【答案】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得∴当x0=2时,△OPM的面积有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴∴,将代入代入中,得∴P1(,);②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).【解析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
八年级(上学期)期末数学试卷(含答案)
八年级(上学期)期末数学试卷(含答案)(时间90分钟,满分120分)一、选择题(本大题共16小题,共42.0分)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2.分式在实数范围内有意义,则实数x的取值范围是()A. x>4B. x>-4C. x≠4D. x≠-43.小明作△ABC中AC边上的高线,下列三角板的摆放位置正确的是()A. B.C. D.4.下列各组线段中,能组成三角形的是()A. a=2,b=3,c=8B. a=7,b=6,c=13C. a=4,b=5,c=6D. a=2,b=1,c=15.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形6.下列运算正确的是()A. a2+a2=a4B. a3•a3=a9C. (ab)2=a2b2D. (a2)3=a57.下列说法正确的有()①平分弦的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.A. 1个B. 2个C. 3个D. 4个8.如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x的值是()A. 30°B. 45°C. 50°D. 85°9.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BAC;④∠PEC=∠PEB,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A. 1个B. 2个C. 3个D. 4个11.等腰三角形的一腰长为6cm,底边长为6cm,则其底角为()A. 120°B. 90°C. 60°D. 30°12.若关于x的分式方程=无解,则m的值为()A. 2B. -2C. 3D. -313.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A. ASAB. SSSC. SASD. AAS14.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. =B. =C. =D. =15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论正确的个数有()①EF=BE+CF;②设OD=m,AE+AF=n,则S△AEF=mn;③∠BOC=90°+∠A;④点O到∠BAC两边的距离相等;A. 1个B. 2个C. 3个D. 4个16.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A. 2B. 3C. 4D. 6二、填空题(本大题共4小题,共12.0分)17.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示______ m.18.等腰三角形一个角为50°,则此等腰三角形顶角为______.19.△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为______ ,△ABC的面积为______ .20.已知103=1000,113=1331,123=1728,133=2197,143=2744,153=3375,…,203=8000,213=9261,223=10648,233=12167,243=13824,253=15625,…,则______3=110592.三、解答题(本大题共6小题,共66.0分)21.计算:(1)(-1)2020+π0-2-2;(2)x5•x3-(x2)4+x8÷x.22.(1)计算:;(2)先化简,再求值:,其中3x2+3x-2=0.23.如图1所示,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN.(2)当MN=2BN时,求α的度数.(3)如图2,过P点作PQ⊥AB交AC于Q,连接BQ,判断△ABQ的形状并证明.24.作图并回答问题:(1)如图,在平面直角坐标系中,将坐标分别是(0,3),(1,0),(2,2),(3,0),(4,3)的五个点用线段依次连接起来得到图案①,请画出图案①;(2)若将上述各点的坐标进行如下变化:横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来得到图案②,请画出图案②;(3)图案②与图案①的位置关系是______;(4)如果某图案与图案①关于x轴对称,则由图案①得到该图案,图案①的上述五个点的坐标进行的变化是:______.25.学习“分式方程应用”时,老师出示例题:为防控“新型冠状病毒”,某药店分别用400元、600元购进两批单价相同的消毒液,第二批消毒液的数量比第一批多20瓶,请问药店第一批消毒液购进了多少瓶?唐唐和瑶瑶根据自己的理解分别列出了如图所示的两个方程.根据以上信息,解答下列问题:(1)唐唐同学所列方程中的x表示______,瑶瑶同学所列方程中的y表示______;(2)两个方程中任选一个,写出它的等量关系;(3)利用(2)中你所选择的方程,解答老师的例题.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF 与射线CA相交于点Q.(1)如图1,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图2,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当.BP=a,CQ=时,P,Q两点间的距离(用含a的代数式表示).答案和解析1.【答案】C【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:分式在实数范围内有意义,故x+4≠0,解得:x≠-4.故选:D.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握相关性质是解题关键.3.【答案】D【解析】解:作△ABC中AC边上的高线,即过B点作AC的垂线,垂线段为AC边上的高.故选:D.根据三角形高的定义进行判断.本题考查了三角形的高:三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.4.【答案】C【解析】解:A、2+3<8,不能构成三角形,故此选项不合题意;B、6+7=13,不能构成三角形,故此选项不合题意;C、5+4>6,能构成三角形,故此选项符合题意;D、1+1=2,不能构成三角形,故此选项不合题意.故选:C.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.【答案】C【解析】【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°,此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求多边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.6.【答案】C【解析】解:A.a2+a2=2a2,故本选项不合题意;B.a3•a3=a6,故本选项不合题意;C.(ab)2=a2b2,故本选项符合题意;D.(a2)3=a6,故本选项不合题意.故选:C.选项A根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.本题考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,掌握幂的运算法则是解答本题的关键.7.【答案】B【解析】解:①平分弦的直径垂直于弦,错误,应该是平分弦(此弦非直径)的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.正确.③一条弧所对的圆周角等于它所对的圆心角的一半.正确.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,错误,弦所对的圆周角有两个,这两个角也可能互补.故正确的有②③.故选:B.根据垂径定理,三角形的外角的定义,圆周角定理一一判断即可.本题考查垂径定理,圆周角定理,三角形的外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:∵图中的两个三角形是全等三角形,∴第二个三角形中x是边长为3对应的角的度数,∵180°-85°-45°=50°,∴第一个三角形中边长为3对应的角的度数是50°,∴x=50°,故选:C.根据全等三角形的性质和三角形内角和,可以求得x的值.本题考查全等三角形的性质\三角形内角和,解答本题的关键是明确题意,利用全等三角形的性质解答.9.【答案】D【解析】解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BAC(三线合一),∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,∠PEC=∠PEB,∴四个都正确,故选:D.根据等腰三角形的性质和全等三角形的判定与性质对各个选项进行分析,从而不难得到正确的结论.此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.10.【答案】A【解析】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=AD,∵BE=AD,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE的垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误;∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH=ABD,∴BH平分∠ABE,故④正确;故选:A.此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.11.【答案】D【解析】解:如图,作AD⊥BC于D点.则BD=DC=3.∵AC=6,∴cos∠C==,∴∠C=30°.故选D.三角函数的定义和特殊角的三角函数值求解.此题的关键是作底边上的高,构造直角三角形,运用三角函数的定义问题就迎刃而解.这是解决等腰三角形问题时常作的辅助线.12.【答案】A【解析】解:将方程两边都乘以最简公分母(x-3),得:x-5=-m,∵当x=3时,原分式方程无解,∴-2=-m,即m=2;故选:A.将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.13.【答案】B【解析】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】C【解析】【分析】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.【解答】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.15.【答案】C【解析】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A;故③正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故②错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,∴点O到∠BAC两边的距离相等,故④正确.故选:C.由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得∠BOC=90°+A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF 正确;由角平分线的性质得出点O到△ABC各边的距离相等,正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,错误.此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.16.【答案】C【解析】解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC-BM=6-5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.由△BMN≌△ACO可知BM=AC,过A作AD⊥BC,可求得CD、BC的长,从而可求得CM的长,可求得M 点的坐标,代入可求得k.本题主要考查反比例函数的综合应用,涉及反比例函数解析式、全等三角形的性质、等腰三角形的性质、勾股定理等知识点.在本题中求得M点的坐标是解题的关键,注意反比例函数中k=xy的灵活应用.本题所考查知识比较基础,难度不大.17.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000835=8.35×10-9,故答案为8.35×10-9.18.【答案】50°或80°【解析】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°-50°×2=80°故答案为50°或80°.已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.19.【答案】12cm;8cm2【解析】【分析】此题主要考查了轴对称图形的性质,得出两图形全等是解题关键.利用关于直线对称图形的性质得出△ABC 和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.20.【答案】48【解析】解:∵103=1000,203=8000,303=27000,403=64000,503=125000,∴403<110592<503,∵110592=483,∴483=110592,故答案为:48.根据题目中的数据,可以发现数字的变化规律,从而可以确定110592处于哪两个整拾数之间,然后即可得到哪个数的立方是110592,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出所求的数字.21.【答案】解:(1)原式=1+1-=;(2)原式=x8-x8+x7=x7.【解析】(1)根据有理数的乘方的定义,任何非0数的0次幂定义1以及负整数指数幂的定义计算即可;(2)根据同底数幂的乘除法法则以及幂的乘方运算法则化简即可.本题主要考查了实数的运算以及整式的混合运算,熟记相关定义与运算法则是解答本题的关键.22.【答案】解(1)原式=--1+3-+2×=-+=;(2)原式=•-=-===由3x2+3x-2=0.得x2+x=.∴原式==.【解析】本题考查了实数运算与分式的化简求值,熟练掌握实数运算公式与分式混合运算法则是解题的关键.(1)先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2)先化简,然后将3x2+3x-2=0变形为x2+x=,代入求值即可.23.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)△ABQ是等腰三角形,理由如下:由(1)知:△APM≌△BPN,∴AP=PB,∵PQ⊥AB,∴PQ是线段AB的垂直平分线,∴QB=QA,∴△ABQ是等腰三角形.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)由全等三角形的性质可得AP=BP,由线段垂直平分线的性质可得BQ=AQ,可得结论.本题是三角形综合题,考查全等三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,灵活运用这些性质解决问题是解题的关键.24.【答案】(1)如下图①即为所求;(2)如下图②即为所求;(3)关于y轴对称(4)横坐标保持不变,纵坐标分别乘以-1【解析】解:(1)见答案;(2)见答案;(3)图案②与图案①的位置关系是关于y轴对称.故答案为:关于y轴对称;(4)∵两图案关于x轴对称,∴横坐标保持不变,纵坐标分别乘以-1.故答案为:横坐标保持不变,纵坐标分别乘以-1.【分析】(1)在坐标系内描出各点,再顺次连接即可;(2)将(1)中各点的横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来即可;(3)根据两个图案中各点坐标的关系可得出结论;(4)根据关于x轴对称的点的坐标特点即可得出结论.本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.25.【答案】第一批消毒液购进的数量消毒液的单价【解析】解:(1)x表示:第一批消毒液购进的数量,y表示:消毒液的单价,故答案为:第一批消毒液购进的数量;消毒液的单价;(2)选唐唐所列方程,等量关系:药店购进两批消毒液的单价相同;选瑶瑶所列方程,等量关系:第二批消毒液的数量比第一批多20瓶;(3)①选唐唐所列的方程,解:设第一批消毒液购进x瓶,由题意得,,去分母,得2(x+20)=3x,解得x=40,经检验x=40是原分式方程的解;答:药店第一批消毒液购进40瓶;②选瑶瑶所列方程.去分母,得600-400=20y.解得y=10,经检验y=10是原分式方程的解.所以,答:药店第一批消毒液购进40瓶.(1)根据题意即可得到结论;(2)根据药店购进两批消毒液的单价相同解答即可;(3)①解:设第一批消毒液购进x瓶,由题意得到方程为,②选瑶瑶所列方程.解方程即可得到结论.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】解:(1)∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°.∵AP=AQ,BP=CQ.∵E是BC的中点,BE=CE.在△BPE和△CQE中,∵BP=CQ,∠B=∠C,BE=CE,∴△BPE≌△CQE.(2)∵∠BEF=∠C+∠CQE,∠BEF=∠DEF+∠BEP,且∠DEF=∠C=45°,∴∠BEP=∠CQE.在△BPE和△CEO中,∵∠BEP=∠CQE,∠B=∠C,∴△BPE∽△CEQ.∴.又BE=CE,∴BE2=BP·CO.当BP=α,CQ=a时,BE2=a·.∴BE=,BC=.∵△ABC是等腰直角三角形,∴AB=AC=3 a.∴AP=AB-BP=2 a,AQ=CQ-AC=.∴P,Q两点间的距离PQ=.【解析】本题考查图形变换能力,需要学生在变换过程中抓住不变的因素,此题用到了全等三角形的证明,相似三角形的应用,勾股定理以及三角函数的相关知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷
1、B
2、D
3、A
黄金比约为0.618
宽=20×0.618=12.36
4、D
5、B
6、D
7、D
8、C
9、B
10、A
11、3400_km
12、a(b-1)
13、a<0
14、60°
15、x>1
16、25
17、x<4
18、2x-8 原式=-14
19、
(2)A′点坐标为(-3,-3).B′点坐标为(0,6).C′点坐标为(3,0).面积是
20、35.6m
21、
(1)解:设今年三月份M品牌电脑的每台售价是x元.
依题意可得:100000 x+1000 =80000 x ,
解得x=4000,
经检验x=4000是原方程的解.
答:今年三月份M品牌电脑的每台售价是4000元.
(2)解:设购进甲种电脑x台,48000<=3500x+3000(x-15)<=50000
解得6<=x<=10因为的正整数解为6,7,8,9,10, 所以共有5种进货方案
(3)解:设总获利为y元,y=(4000-3500)x+(3800-3000-a)(15-x)=(a-300)x+12000-15a 当a=300时, (2)中所有方案获利相同.
22、(1)证明:∵梯形ABCD,AB∥CD,
∴∠CDF=∠FGB,∠DCF=∠GBF,
∴△CDF∽△BGF.
(2)解:由(1)△CDF∽△BGF,
又F是BC的中点,BF=FC,
∴△CDF≌△BGF,
∴DF=GF,CD=BG,
∵AB∥DC∥EF,F为BC中点,
∴E为AD中点,
∴EF是△DAG的中位线,
∴2EF=AG=AB+BG.
∴BG=2EF-AB=2×4-6=2,
∴CD=BG=2cm.
23、解::
(1)
∵S△ACD S△ABC =AD AB ,S△BCD S△ACD =BD AD ,
又∵D是AB的黄金分割点,
∴AD AB =BD AD ,
S△ACD S△ABC =S△BCD S△ACD ,
∴CD是△ABC的黄金分割线;
(2)过D作BC边上的高DD‘交BC于D'。
过E作BC边上的高EE’交BC于E'。
因为DF‖CE,所以BF:BC=BD:BE,因为DD'‖EE',所以BD:BE=DD‘:EE’,因为S△BCD=1/2×EE'×BC S△BEF=1/2×DD'×BF所以S△BCD:S△BEF=1:1=1 即S△BCD=S△BEF根据(1)及图形的黄金分割线定义,EF也是黄金分割线。
(3)点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.。