6函数的极值与导数讲义
函数的导数与函数的极值

函数的导数与函数的极值函数的导数是微积分中非常重要的概念,它可以帮助我们研究函数的性质以及函数在某一点的变化趋势。
而函数的极值则是指函数在某一点或某一区间内达到的最大值或最小值。
本文将探讨函数的导数与函数的极值之间的关系,并给出相关的例子来帮助读者理解。
一、函数的导数函数的导数是指函数在某一点的变化率,反映了函数在该点附近的趋势。
导数的定义可以简单地理解为函数曲线在某一点上的切线斜率。
给定一个函数 f(x),若该函数在某一点 x 处的导数存在,记为 f'(x)或 dy/dx。
导数的计算方法有很多,其中最基础的是使用极限的定义:f'(x) = lim (h → 0) [f(x+h) - f(x)] / h此外,还存在一些特殊函数的导数公式,如常数函数、幂函数、指数函数、对数函数等。
通过计算函数的导数,我们可以得到函数在每个点的变化率。
二、函数的极值函数的极值包括极大值和极小值,也称为局部最大值和局部最小值。
在函数的图像上,极大值对应着函数曲线上的峰点,而极小值对应着函数曲线上的谷底。
若一个函数在某点 x 处的导数 f'(x) = 0,那么这个点就是函数的驻点。
而函数的极值往往出现在驻点处,同时需要满足附加的条件。
根据导数与函数的变化率之间的关系,我们可以得出函数极值的判定条件:1. 在极大值点,函数的导数由正变负;2. 在极小值点,函数的导数由负变正。
简而言之,函数在极值点附近的导数由正变负或由负变正。
三、函数导数与极值的关系通过求导数,我们可以找到函数的驻点,进而判断函数的极值。
首先,我们需要将导数为零的驻点与函数的极值进行关联。
1. 当驻点 x0 处的导数 f'(x0) = 0 时,可能存在以下情况:a) 若 f''(x0) > 0,那么 x0 是函数的局部极小值点;b) 若 f''(x0) < 0,那么 x0 是函数的局部极大值点;c) 若 f''(x0) = 0,那么 x0 处可能是函数的极值点,但需要进一步分析。
导数与函数的极值解析与归纳

导数与函数的极值解析与归纳导数和函数的极值是微积分中的重要概念,对于函数的研究和应用都有着重要的意义。
在这篇文章中,我们将探讨导数与函数的极值,并对其进行解析与归纳。
一、导数的定义与性质导数可以看作是函数变化率的极限,它的定义可以用以下公式表示:\[f'(x) = \lim_{h \to 0}\frac{f(x + h) - f(x)}{h}\]其中,\(f'(x)\) 表示函数 \(f(x)\) 在点 \(x\) 处的导数。
导数具有以下性质:1. 导数存在性:当函数在某点可导时,该点的导数存在;2. 导数与函数图像:导数的值可以用来描述函数图像在某点的切线斜率;3. 导数与函数极值:导数为零的点可能是函数的极值点。
二、函数的极值与导数函数的极值可以分为最大值与最小值,即函数在某个区间内取得的最大值和最小值。
在寻找函数的极值时,我们可以利用导数的性质。
1. 极值的必要条件若函数在某点 \(x_0\) 处取得极值,则导数在该点的值为零或不存在。
2. 求导数与解析表达式要求得函数的导数,我们可以先找到函数的解析表达式,然后对其求导。
例如,对于多项式函数:\[f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0\]我们可以通过幂函数的求导法则得到:\[f'(x) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_1\]3. 导数与极值的关系当函数在某点的导数为零时,该点可能是函数的一个极值点。
根据导数的定义,我们可以得到极值点的关键条件为:\[f'(x) = 0\]我们称满足该条件的点为驻点。
4. 极值点的判断在驻点中,根据导数的一阶导数或二阶导数的正负确定极值类型:(1)一阶导数判定法:若驻点处的导数符号改变,即从正变负或从负变正,则该点为函数的极值点;(2)二阶导数判定法:当驻点处的二阶导数大于零时,该点为函数的极小值;当二阶导数小于零时,该点为函数的极大值。
函数的极值与导数 课件

[典例] 已知 f(x)=ax3+bx2+cx(a≠0)在 x=±1 处取得 极值,且 f(1)=-1.
(1)试求常数 a,b,c 的值; (2)试判断 x=±1 是函数的极大值点还是极小值点, 并说明理由.
[解] (1)f′(x)=3ax2+2bx+c(a≠0), ∵x=±1 是函数的极值点. ∴x=±1 是方程 3ax2+2bx+c=0 的两根.
函数的极值与导数
1.函数极值的概念
(1)函数的极大值 一般地,设函数 y=f(x)在点 x0 及附近有定义,如果对 x0 附近的所有的点,都有 f(x)<f(x0) ,就说 f(x0)是函数 y=f(x)的 一个极大值,记作 y 极大值=f(x0),x0 是极大值点. (2)函数的极小值
一般地,设函数 y=f(x)在点 x0 及附近有定义,如果对 x0 附近的所有的点,都有 f(x)>f(x0),就说 f(x0)是函数 y=f(x)的一 个极小值,记作 y 极小值=f(x0),x0 是极小值点.极大值与极小值 统称为 极值 .
已知函数极值点或极值求参数的两个要领 (1)列式:根据极值点处导数为 0 和极值这两个条件列 方程组,利用待定系数法求解. (2)验证:因为某点处的导数值等于 0 不是此点为极值 点的充要条件,所以利用待定系数法求解后必须验证根的 合理性.
[典例] 已知函数 f(x)=x3-3ax-1(a≠0).若函数 f(x) 在 x=-1 处取得极值,直线 y=m 与 y=f(x)的图象有三个 不同的交点,求 m 的取值范围.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0) 0 (0,2) 2 (2,+∞)
f′(x)
-
0+ 此当 x=0 时,f(x)有极小值,并且极小值为 f(0)=0; 当 x=2 时,f(x)有极大值,并且极大值为 f(2)=4e-2=e42.
函数的极值与导数 课件

分析:求f'(x)→建立关于a,b的方程组→求解a,b→将a,b代入原函
数验证极值情况→根的取舍
解:因为f(x)在x=-1时有极值0,
'(-1) = 0,
且 f'(x)=3x +6ax+b,所以
(-1) = 0,
(7)如果函数f(x)在[a,b]上有极值,那么它的极值点的分布是有规
律的.相邻两个极大值点之间必有一个极小值点,同样,相邻两个极
小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且
有有限个极值点时,函数f(x)在[a,b]上的极大值点、极小值点是交
替出现的.
2.如何求f(x)的极值?
f'(x)
+
0
f(x)
↗
↘
1
e
故当 x=e 时函数取得极大值,且极大值为 f(e)= , 函数无极小值.
反思求函数的极值应注意以下几点:
(1)在讨论可导函数f(x)在定义域内的极值时,若方程f'(x)=0的实
根较多时,应注意使用表格,使极值点一目了然.
(2)讨论函数的性质要遵循定义域优先的原则.
已知极值求参数
所以当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数.
所以f(x)在x=-1时取得极小值,
因此a=2,b=9.
极值的综合运用
【例3】 求函数f(x)=x3-3x2-a(a∈R)的极值,并讨论a为何值时函数
f(x)恰有一个零点.
《导数和极值》课件

反函数的导数
若$f'(x) neq 0$,则反 函数在相应点的导数为
$frac{1}{f'(x)}$。
高阶导数
二阶导数
二阶导数表示函数图像的弯曲程度, 即函数在某点的切线斜率的斜率。
三阶导数
高阶导数的计算方法
通过连续求导,直到得到所需的高阶 导数。高阶导数的计算在研究函数的 极值、拐点、曲率等方面具有重要意 义。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函数图像上某一点处切线 的斜率。
详细描述
导数的几何意义是切线的斜率。在函数图像上,任意一点的 切线斜率即为该点的导数值。导数越大,表示函数在该点附 近上升或下降得越快;导数越小,表示函数在该点附近变化 得越慢。
导数的物理意义
总结词
导数的物理意义是速度和加速度,可以用于描述物理量随时间的变化率。
05 导数和极值的应用
导数在几何中的应用
切线斜率
导数在几何中常用于求曲 线的切线斜率,从而研究 曲线的形状和变化趋势。
函数单调性
通过导数可以判断函数的 单调性,对于研究函数的 极值和最值问题具有重要 意义。
极值判定
导数在几何中还可以用于 判定函数的极值点,从而 确定函数的最值。
导数在物理中的应用
详细描述
导数在物理中有重要的应用,它可以描述物理量随时间的变化率。例如,速度是 位移对时间的导数,加速度是速度对时间的导数。通过导数,可以分析物理现象 的变化规律和动态特性。
02 导数的计算
导数的基本公式
01
02
03
04
ቤተ መጻሕፍቲ ባይዱ
一次函数导数
对于函数$f(x) = ax + b$, 其导数为$f'(x) = a$。
《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
《函数的极值》 讲义

《函数的极值》讲义在数学的广袤天地中,函数是一个极其重要的概念,而函数的极值问题则是其中一个关键且富有魅力的部分。
一、函数极值的定义首先,咱们得搞清楚啥是函数的极值。
简单来说,对于一个给定的函数,如果在某个点的附近,函数值比这个点的函数值都大(或者都小),那这个点对应的函数值就是函数的一个极值。
极大值就是在这点附近函数值最大,极小值就是在这点附近函数值最小。
比如说,有个函数 f(x),在 x = a 这点,它左边的函数值都比 f(a) 小,右边的函数值也都比 f(a) 小,那 f(a) 就是一个极小值。
要是左边右边的函数值都比 f(a) 大,那 f(a) 就是极大值。
二、如何判断函数的极值那怎么知道一个函数在某个点是不是有极值呢?这就得靠导数啦。
如果函数在某点的导数为 0,并且在这点的左侧导数为正,右侧导数为负,那这点就是极大值点;反过来,如果左侧导数为负,右侧导数为正,那这点就是极小值点。
为啥是这样呢?咱们可以这么想,导数为正的时候,函数是上升的;导数为负的时候,函数是下降的。
所以从上升到下降的转折点就是极大值点,从下降到上升的转折点就是极小值点。
举个例子,函数 f(x) = x²,它的导数是 f'(x) = 2x。
当 x = 0 时,导数为 0。
在 x < 0 时,导数为负,函数下降;在 x > 0 时,导数为正,函数上升。
所以 x = 0 就是极小值点,极小值是 f(0) = 0。
但是要注意哦,导数为 0 的点不一定都是极值点。
比如说函数 f(x)= x³,它的导数 f'(x) = 3x²,当 x = 0 时,导数为 0,但是在 x = 0的两侧,导数的符号是一样的,都是正的,所以 x = 0 不是极值点。
三、函数极值的求法知道了怎么判断极值,那咱们来看看怎么求函数的极值。
第一步,先求出函数的导数。
第二步,令导数等于 0,解出这些方程的根。
第三步,根据上面说的判断方法,判断这些根是不是极值点。
函数的导数与极值问题知识点总结

函数的导数与极值问题知识点总结函数的导数与极值问题是数学中的重要概念,涉及到数学分析的基本思想和方法。
在本文中,我们将对函数的导数与极值问题进行总结和讨论。
一、导数的定义与性质在微积分中,导数是描述函数变化率的重要工具。
导数的定义如下:对于函数y = f(x),如果极限$$\lim_{{\Delta x \to 0}} \frac{{\Delta y}}{{\Delta x}}$$存在,则称该极限为函数f(x)在点x处的导数,记作f'(x),即$$f'(x) = \lim_{{\Delta x \to 0}} \frac{{\Delta y}}{{\Delta x}}$$。
函数的导数具有以下基本性质:1. 导数存在的条件是函数在该点可导;2. 导数反映了函数在每一点的斜率,可以用来描述函数的变化趋势;3. 导数可以通过求导法则来求取,包括常数倍法则、和差法则、乘积法则、商法则等。
二、函数导数的计算方法1. 基本函数的导数计算:- 常数函数的导数为零;- 幂函数的导数可通过幂函数求导法则来求取;- 指数函数的导数等于指数函数本身与自然对数的乘积;- 对数函数的导数为其自变量的倒数;- 三角函数的导数可根据三角函数的导数公式求取。
2. 复合函数的导数计算:- 复合函数的导数可通过链式法则来求取,即将复合函数视为两个函数的复合,然后分别求导并相乘。
三、极值问题的判断与求解函数的极值问题是导数与函数的关系密切相关的。
通过分析函数的导数的性质,我们可以判断函数的极值类型,并进一步求解极值点。
1. 极值的判断:- 首先,对于导数存在的点,导数为零或不存在的点称为临界点;- 其次,导数的正负性可以反映函数的增减性,若导数在某一临界点附近由负变正,则该临界点为函数的极小值点;若导数在某一临界点附近由正变负,则该临界点为函数的极大值点;- 此外,导数的零点和极值点还可能存在于函数的开区间内的非临界点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的极值与导数讲义
:点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.
(2)极大值点与极大值:点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y
x 0)=0时:
(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是.
f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是.
一点附近的大小情况.
(2)由函数极值的定义知道,函数在一个区间的端点处一定不可能取得极值,即端点一定不是函数的极值点. (3)极大值不一定比极小值大,极小值也不一定比极大(1)可导函数的极值点一定是导数为0的点,但导数为0的点不一定是函数的极值点.
如y =x 3,y ′(0)=0,x =0不是极值点.
问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什
么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律?
思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值点.
【例1】求下列函数的极值.
(1)f (x )=3x +3ln x ; (2)f (x )=2x
x 2+1
-2.
【例2】已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值.
【变式】已知函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a 、b 、c 的值.
【例3】 (12分)设a 为实数,函数f (x
)
=-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.
练习1求函数f(x)=x3-3x2-9x+5的极值.
练习2 求函数y=x4-4x3+5的极值.
练习3已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值. 练习4 设x=1与x=2是函数f(x)=a ln x+bx2+x的两个极
值点.(1)试确定常数a和b的值;(2)判断x=1,x=2是
函数f(x)的极大值点还是极小值点,并说明理由.
练习5设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a
的取值范围.
练习6若函数f(x)=2x3-6x+k在R上只有一个零点,求常
数k的取值范围.。