第十四讲找规律(一)数与形

合集下载

数与形教学ppt课件

数与形教学ppt课件
学生在学习过程中可能会遇到一些困难,如数学基础不扎实、编程能力不足等,需 要加强相关基础知识和技能的学习。
对未来的展望和期待
随着科技的发展和应用的深入, 数与形的应用前景非常广阔,未 来需要更多的高素质人才来推动
相关领域的发展。
学生可以通过深入学习和实践探 索,不断提高自己的综合素质和 能力水平,为未来的职业发展做
教学目标
通过本课程的学习,学生应能理解数与形的概念、性质和基 本运算方法,掌握数与形之间的相互转换,为后续学习打下 坚实的基础。
教学目的
01
02
03
知识目标
使学生掌握数与形的基本 概念、性质和运算方法。
能力目标
培养学生运用数与形的基 本原理解决实际问题的能 力。
情感态度与价值观
培养学生对数学的兴趣和 爱好,树立正确的学习态 度,提高数学素养。
03
介绍如何利用数学方法对数据进行处理、分析和挖掘,以及在
商业、医疗等领域中的应用。
拓展实际案例
金融领域中的数学应用
分析金融领域中数学的应用,如风险评估、投资组合优化等问题 。
医学领域中的数学应用
介绍医学领域中数学的应用,如医学图像处理、疾病预测等问题。
工程领域中的数学应用
分析工程领域中数学的应用,如建筑设计、机械设计等问题。
3
数形结合解决问题
例如,用图形方法解决代数问题,或者用代数方 法解决图形问题。
04
数与形的结合应用
结合实例分析
数学模型与实际问题的结合
通过具体的数学模型,如概率、统计、线性代数等,来描述和解决实际问题。
数值模拟与实际结果的对比
利用数值模拟的结果,与实际实验数据进行比较,以验证数学模型的准确性和有 效性。

数与形知识点总结

数与形知识点总结

数与形知识点总结1. 图形的性质图形的性质是数与形中的基础知识点,主要包括了线段、角、三角形、四边形、多边形等图形的定义和性质。

其中,线段是指两点之间的线段,可以用坐标系统表示;角是由两条射线共同端点组成的图形,可以通过角度来度量;三角形是由三条边和三个角组成的图形,其内角和为180度;四边形是由四条边和四个角组成的图形,可以分为平行四边形、矩形、菱形等不同类型;多边形是由多条边和多个角组成的图形,可以分为正多边形和不规则多边形等。

2. 坐标系坐标系是数与形中的重要概念,用于描述平面上的点的位置。

主要包括了直角坐标系和极坐标系两种。

直角坐标系是用两条相互垂直的坐标轴构成的,分别为x轴和y轴,点的位置可以用坐标(x,y)来表示;极坐标系是以一个定点O为极点,以一个定向的射线为极轴,通过极径和极角来分别表示点的位置。

3. 变换变换是数与形中的重要概念,用于描述图形的移动、旋转、镜像等操作。

主要包括了平移、旋转、对称和放缩等变换。

平移是图形沿着某个方向平行移动到另一个位置;旋转是图形绕某个点旋转一定角度;对称是图形关于某条直线、点或面对称;放缩是图形按照一定比例进行扩大或缩小。

4. 向量向量是数与形中的重要概念,用于描述物体的位移、速度、力等物理量。

主要包括了向量的表示、运算和性质。

向量的表示可以用有向线段、坐标、分解等方法来描述;向量的运算包括了加法、数乘、点乘、叉乘等操作;向量的性质包括了共线、平行、垂直、共面等特性。

5. 几何证明几何证明是数与形中的重要内容,用于证明几何中的定理和性质。

主要包括了等腰三角形、全等三角形、相似三角形、勾股定理、圆的性质等几何定理的证明。

几何证明需要运用到角的性质、三角形的性质、平行线的性质等知识点。

6. 多边形多边形是数与形中的重要内容,涉及了多边形的面积、周长、内角和、外角和等性质。

主要包括了正多边形的面积、周长的计算方法,不规则多边形的面积的计算方法,多边形内角和、外角和的性质等。

高斯小学奥数二年级(上)第14讲 数规则图形

高斯小学奥数二年级(上)第14讲 数规则图形

第十四讲数规则图形前续知识点:二年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲只需换风格就行,与其它的风格相符.在数图形的时候,要认真仔细,必须要做到有次序、有条理,保证不重不漏,这样才能数得又快又准.【提示】找规律哦.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题1列算式:练习1【提示】从上到下,按行来数.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题2 列算式:练习2【提示】这是空心的哦,数的时候一共要注意正方形角的地方.数一数,下图共有几个点?并且列出算式.列算式:数一数,下图共有几个点?并且列出算式.例题3列算式:练习3【提示】在数图形时,要做到数和形结合,适当分类,找出规律,做到不重不漏.上题中的四种图形,都可以用同一种方法数,你知道是什么方法吗?仔细想想看,能发现什么规律呢?数一数,回答问题,并列出算式.例题4 共有几条线段? 列算式:共有几个角? 列算式:共有几个三角形? 列算式:共有几个长方形? 列算式:【提示】分层来数哦!请你帮小猪数一数,下图中共有几个三角形?例题6数一数,下图中共有几个三角形,并且列出算式?例题5列算式:练习4 数一数.下图中共有几条横着的线段?列算式:下图中共有几个三角形? 列算式:【提示】分层来数哦!课堂内外小知识——猫和蜘蛛是“几何专家”在寒冷的冬天,猫睡觉时总要把身体抱成一个球形,因为球形使身体的表面积最小.这样,身体露在冷空气中的表面积最小,因而散发的热量也最少.蜘蛛结的“八卦”网,既复杂又非常美丽,这种八角形的几何图案,即使人们用直尺和圆规也难画得如蜘蛛网那样匀称.作业1.数一数,下图共有几个点?并且列出算式.列算式:2.数一数,下图共有几个点?并且列出算式.列算式:3.小狗用棋子摆成一个三角形,请你数一数,小狗一共用了几个棋子?并且列出算式.列算式:4.观察下图,数一数.共有几条横着的线段?列算式:共有几个三角形?列算式:5.数一数,下图共有几个三角形?并且列出算式.列算式:第十四讲 数规则图形1. 例题1答案:25详解:通过观察发现,每一行是5个棋子,一共5行,那么可以列出如下算式:5525⨯=(个);5555525++++=(个);12345432125++++++++=(个).(方法不唯一)2. 例题2答案:45 详解:观察图形,从上到下看,都是1,2,3,4,5,6,7,8,9.所以共有12345678945++++++++=(个).计算时,可以用凑十法.(方法不唯一)3. 例题3答案:20详解:方法一:每条边上有6个棋子,那么4条边,所以就是4624⨯=个,但是这时候把角的地方算了2次,那么就应该是24420-=个.方法二:每条边上有6个棋子,因为角的地方比较特殊,所以先不看,那么每条边上只看4个棋子,4条边,所以就是4416⨯=(个),再加上开始没算的4个,16420+=(个). 方法三:用分组法,如下图所以:列算式为4520⨯=(个).4. 例题4答案:(1)15;(2)10;(3)10;(4)6 详解:(1)如下图所示:把每个点标上字母.我们知道,两点间的直线部分是一条线段;从A 点出发的线段有AB 、AC 、AD 、AE 、AF 共有5条线段;同理,从B 出发的线段有: BC 、BD 、BE 、BF 共有4条线段;从C 出发的线段有: CD 、CE 、CF 共有3条线段;从D 出发的线段有: DE 、DF 共有2条线段;从E 出发的线段有:EF 共有1条线段. 列算式:5432115++++=(条);(2)如下图所示:把每个点标上字母.(1)从AF 出发的长方形有:AFGB 、AFHC 、AFID 、AFJE 共有4个长方形;同理,从BG 出发的长方形有:BGHC 、BGID 、BGJE 共有3个长方形;从CH 出发的长方形有:CHID 、CHJE 共有2个长方形;从DI 出发的长方形有:DIJE 共有1个长方形.列算式:432110+++=(个).(3)如下图所示:把点和线标上字母.我们知道,从一个点起,用尺子向不同方向画两条射线,就得到一个角,角有一个顶点、两条边. 以OA 为边的角有:∠AOB 、∠AOC 、∠AOD 、∠AOE ,共4个角;以OB 为边的角有:∠BOC 、∠BOD 、∠BOE ,共3个角;以OC 为边的角有:∠COD 、∠COE ,共2个角;以OD 为边的角有:∠DOE ,共1个角.列算式:432110+++=(个).(4)如下图所示:把每个点标上字母.从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.总数列算式:3216++=(个).5. 例题5答案:12详解:如下图所示:把每个点标上字母.这是一个比较复杂的图形,可以把它分成上下两层,先数上层有:从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.上层总数为:3216++=(个).(4) OA B C D (3) O AB CD E A B C D E FG H I J (2)再数整体有:从OE 出发的三角形有:EOF 、EOG 、EOH 共有3个三角形;同理,从OF 出发的三角形有:FOG 、FOH 共有2个三角形;从OG 出发的三角形有:GOH 共有1个三角形.整体总数为:3216++=(个).所以共有6612+=(个)三角形.6. 例题6答案:15详解:如下图所示:把每个点标上字母.把它分成上层、下层和整体三部分,先数上层有:从OA 出发的三角形有:AOB 、AOC 、AOD 共有3个三角形;同理,从OB 出发的三角形有:BOC 、BOD 共有2个三角形;从OC 出发的三角形有:COD 共有1个三角形.上层总数为: 3216++=(个).再看下层:有ABE 、ACF 、ADG ,共有3个三角形.最后看整体:从OA 出发的三角形有:AOE 、AOF 、AOG 共有3个三角形;从OE 出发的三角形有:EOF 、EOG 共有2个三角形;从OF 出发的三角形有:FOG 共有1个三角形.整体总数为:3216++=(个). 所以共有66315++=(个)三角形.7. 练习1答案:16简答:仔细观察发现,将这个图形旋转后,这个图像就是一个正方形,每一行是4个,一共4行,那么列算式:4416⨯=(个)或123432116++++++=(个)。

小学数与形结合的规律

小学数与形结合的规律

小学数与形结合的规律
小学数学是一门结合算术、图形以及各种概念与原理的学科,数学是一门科学,运用它来理解自然世界,它是日常生活中不可缺少的一部分,小学数学之所以深得孩子们的喜爱,不仅仅是因为它可以引导孩子们与认知交流,同时它也引导孩子们不断探索解决问题的技巧。

要学好小学数学,首先需要掌握数的基本概念,如数量、大小等,掌握这些概念之后,就可以学习数的运算,认识数的属性,如乘法的属性和除法的属性等。

孩子们还需要加强数字与图形的关联性,理解常见图形在不同场合下的变化以及使用,让孩子们能够看图猜空间,想形解算,提高解决问题的能力。

要学好小学数学,同时还要建立良好的数学思维,让孩子们了解问题的本质,用数学的方法来求解问题,引导孩子们思考,培养他们的创新精神。

总之,小学数学不但要掌握数的相关知识,还需要通过结合形状与数学的规律去解决问题,这样才能更好地提高孩子们的数学素养。

(晨鸟)初一数学秋季讲义第14讲图形中的观察、归纳与猜想

(晨鸟)初一数学秋季讲义第14讲图形中的观察、归纳与猜想

1壮壮饿了…满分晋级阶梯漫画释义14图形中的观察、归纳与猜想图形的认识9级平行线构造与等积变换图形的认识8级图形中的观察、归纳与猜想图形的认识7级平行线的性质及判定寒假班第三讲秋季班第十四讲秋季班第十三讲2从一个简单的、基本的图形开始,按照一定的规律,变化成复杂、有趣而美丽的图形,并探寻图形的边长、周长、面积的变化规律,这类图形变化的问题是近年中考、竞赛的一个热点问题.【引例】用火柴棍像如图这样搭三角形:你能找出规律猜想出下列两个问题吗?我们可以发现搭1个图形需要3根火柴,搭2个图形需要5根火柴,……①搭7个三角形需要根火柴.②搭n 个三角形需要根火柴.【解析】法一:通过数量关系找规律,如图,第1、2、3、4……个图形中火柴的个数依次是3、5、7、9……所以第7个三角形需要15根火柴,第n 个三角形需要21n 根火柴;法二:第一个图形中有3根火柴,第2个图形中有321个根火柴,第3个图形中有322根火柴,第4个图形中有323根火柴,………第n 个图形中有32(1)21n n 根火柴.【点评】解决图形规律问题思路众多,此处不一一列举.知识互联网思路导航例题精讲题型一:探究图形规律3【例1】⑴按下图方式摆放餐桌和椅子:如果按照图的方式继续排列餐桌,请完成下表:桌子张数 1 2 3 10n可坐人数61014⑵观察下列图案:第1个图案第2个图案第3个图案它们是按照一定规律排列的,依照此规律,第5个图案中共有个三角形,第n (1n ≥,且n 为整数)个图案中三角形的个数为(用含有n 的式子表示).(昌平区一模)⑶图1是一个三角形,分别连接这个三角形三边的中点得到图2,再分别连接图2中间小三角形三边的中点,得到图3.图3图2图1①图2有个三角形;图3有个三角形;②按上面的方法继续下去,第n 个图形中有多少个三角形?⑷已知:如图, 互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有个平行四边形,……,第n 个图形中一共有平行四边形的个数为个.【解析】⑴42,42n;⑵22,42n;⑶①5,9.②43n .典题精练4⑷19,21nn 【备选】如图是由大小相同的小立方体木块叠加而成的几何体,图1中有1个立方体,图2中有4个立方体,图3中有9个立方体,……,按这样的规律叠放下去,第8个图中小立方体个数是.【解析】2864.【例2】⑴观察下列图形(每幅图中最小的三角形都是一样的),请写出第n 个图中最小的三角形的个数有个.⑵如图摆放在地上的正方体的大小均相等,现在把露在外面的表面涂成红色,从上向下数,每层正方体被涂成红色的面数分别为:第一层:侧面个数上面个数1415;第二层:侧面个数上面个数24311;第三层:侧面个数上面个数34517;第四层:侧面个数上面个数44723;…………根据上述的计算方法,总结规律,并完成下列问题:①求第6层有多少个面被涂成了红色?②求第n 层有多少个面被涂成了红色?(用含n 的式子表示)③若第m 层有89个面被涂成红色,请你判断这是第几层?并说明理由.【解析】⑴14n ;⑵①第6层:侧面个数上面个数6411241135,故第6层有35个面被涂成了红色.②第n 层:被涂成了红色的面的个数为:4(21)(61)nn n .③依题意可得:6189m ,∴690m ∴15m ,故这是第15层.【例3】如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去:图1图2 图3第一层第二层第三层第1个图第2个图第3个图第4个图5⑴填表:⑵如果剪了100次,共剪出多少个小正方形?⑶如果剪n 次,共剪出多少个小正方形?⑷观察图形,你还能得出什么规律?【解析】⑴如表.剪的次数12345正方形个数47101316⑵如果剪了100次,共剪出11003301个小正方形;⑶如果剪n 次,共剪出13n 个小正方形;⑷观察图形,还能得出的规律是:剪n 次,最小正方形的边长为原来的12n.【例4】⑴假设有足够多的黑白围棋子,按照一定的规律排成一行,如图:……那么请问第2007个棋子是黑的还是白的?答:.⑵在数学活动课上,小红同学准备用两种不同颜色的布拼接一个正方形杯垫,杯垫的图案设计如图所示,最后应选择下图中的哪一个才能使其与上图拼接后符合图案的设计模式?().DC BA⑶在数学活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是,跳动第2012次到达的顶点是.⑷如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(32n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳3121步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳3224步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为;第2012次电子跳蚤能跳到的圆圈内所标的数字为.【解析】⑴黑的;⑵A ;⑶B ;C ;⑷10;6.剪的次数12345正方形个数47A DCB1112109876543216有效的数学学习不是单纯地依赖模仿与记忆,动手实践、自主探索是学习数学的重要方法.解实验操作题的关键是:在实验与操作获得直观形象经验的基础上,能发现规律,将其转化为一个数学问题.图形的翻折与剪拼是实验与操作题中经常遇到的问题,学生应熟练掌握.【例5】选择填空.⑴如图,等边ABC △的边长为1cm ,D 、E 分别是AB 、AC 上的点,将ADE △沿直线DE 折叠,点A 落在点A 处,且点A 在ABC △外部,则阴影部分图形的周长为cm .⑵甲乙两人各用一张正方形的纸片ABCD 折出一个45的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则145;乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则45MAN对于两人的做法,下列判断正确的是().NM1PABCDACD(B)DCBAA .甲乙都对B .甲对乙错C .甲错乙对D .甲乙都错⑶把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1S 2(填“>”、“<”或“=”).【解析】⑴3;⑵A ;⑶S 1 = S 2.【例6】⑴如图所示,把一个正方形纸片三次对折后沿虚线剪下,则展平后所得的图形是().思路导航典题精练题型二:实验与操作图1ACBCBA 图2AB C DEA ′7C ′B ′EDCBA沿虚线剪开右下方折右折上折A .B .C .D .(西城区期末)⑵如下图①,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()①②③A .B .C .D .⑶将一正方形纸片按图中①、②的方式依次对折后,再沿③中的虚线裁剪,最后将④中的纸片打开铺平,所得图案应该是下面图案中的()④①②③①②③④A .B .C .D .(人大附中期末)【解析】⑴ C ;⑵ C ;⑶ B .【点评】既可以亲自剪裁,又可以按照折纸的先后顺序逐步倒推.8【例7】⑴如图,将一长方形纸片按图折叠,AE 、DE 为折痕,20C EB °,则AED 度数为.⑵当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:①以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;②将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF交AD 于F .则AFE =.【解析】⑴80°;⑵67.5°.训练1. 对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自然数72的分裂数中最大的数是,自然数n 2的分裂数中最大的数是.(通州区一模)【解析】13,2n -1.训练2. 如下图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了块石子.【解析】24nn .训练3. 如图,把一张长方形纸片对折,折痕为AB ,以AB 的中点O 为顶点把平角AOB 三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是().BAOABABOOABCD131 3 5思维拓展训练(选讲)91+8=?1+8+16=?⑶1+8+16+24=?……(1)(2)(3)A .正三角形B .正方形C .正五边形D .正六边形【解析】D.【点评】既可以亲自剪裁,又可以按照折纸的先后顺序逐步倒推.训练4. 图⑴是一个水平摆放的小正方体木块,图⑵、⑶是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是.【解析】91.题型一探索图形规律巩固练习【练习1】用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第3个图形中有黑色瓷砖块,第n 个图形中需要黑色瓷砖块(用含有n 的整式表示).图3图2图1【解析】10,31n .【练习2】观察下列图形及图形所对应的算式,根据你发现的规律计算1816248n …+(n 是正整数)的结果为()A .2(21)nB .2(21)n C .2(2)nD .2n复习巩固10【解析】A .【练习3】图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:①按照要求填表:n 1234…s136…②写出当10n时,s.【解析】①123410;②123.题型二实验与操作巩固练习【练习4】如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【解析】D .【练习5】如图,一个42的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个53的矩形用不同的方式分割后,小正方形的个数可以是.?□□□□□□□□或□□□□或【解析】4或7或9或12或15.图1 图2 图3AB C D第十三种品格:公平一根手指成就一座大桥1883年,富有创造精神的工程师约翰·罗布林雄心勃勃地意欲建造一座横跨曼哈顿和布鲁克林的大桥。

小学数学二年级第十四讲综合练习

小学数学二年级第十四讲综合练习

小学数学二年级第十四讲:综合练习
姓名:班别:成绩:
1、找规律填空:
15, 5, 12, 5, 9, 5,(),()
48, 52, 46, 50, 44,(),( )
2、☆○△各代表几?()应填几?
☆+☆=16
☆=()
○+○+○+○+○=20
○ = ( )
☆+○+△=18
△=( )
○×△=( )
3、
图中三角形有()个。

4、林林今年8岁,爸爸比他大26岁,三年前,林林比爸爸小()岁。

5、小平家住6楼,他从一楼走到二楼用1分钟,那么她从一楼走到6楼用()分钟。

6、学校进行广播操比赛,与小明站在一列的共有30人,小明前面有15人,小明后面有()人。

7、圆形花坛放了8盆花,每盆花之间相隔2米,花坛一周长()米。

8、王老师把同学们的画排成一行展览,从左边起第8张是方方的画,从方方的画开始再往右数还有8张一共展出了()张画。

9、鸡兔同笼,共7个头,20条腿。

有()只鸡,()只兔。

10、一根绳子对折,再对折,从中间剪一剪刀,绳子分成()段。

第14讲 找规律绘画

第14讲 找规律绘画

【第十四讲】找规律,画一画
学前导航:
我们经常看到这样一类题,给你几个图形,让你按照规律填入图形,这就需要根据与图形之间的关系进行合理的分析推算,找出规律。

此时我们可以从图形的形状、位置、大小、方向等方面观察、比较。

例1:
请你根据前两行图片的样子,想一想,小鸡应该是什么样子的,在正确的图片下面画√。

(1)(2)(3)(4)
练习:
1.仔细观察,找出规律,问号处应该选择什么?
(1)(2)(3)(4)
2.仔细观察,找出规律,问号处应该选择什么?
(1)(2)(3)(4)例2:
找规律,补全空白。

练习:
1.找规律,补全空白。

2.找规律,补全空白。

找出规律,画出盒子里隐藏的珠子。

练习:
1.找出规律,思考云朵里有几个,几个。

云朵里有()个,()个
2.接着画下去。

例4:
想一想,画一画。

1.想一想,画一画。

2.仔细观察,找出规律,问号处应该选择什么?
作业:
1. 想一想,画一画。

2. 想一想,画一画。

(1) (2) (3) (4)
3.接着画下去。

4.找规律,补全空白。

小学三年级趣味数学(思维训练)课程第十四讲 找规律法

小学三年级趣味数学(思维训练)课程第十四讲 找规律法

第十四讲找规律法观察、搜集已知事实,从中发现具有规律性的线索,用以探索未知事件的奥秘,是人类智力活动的主要内容.数学上有很多材料可用以来模拟这种活动,培养学生这方面的能力.例1观察数列的前面几项,找出规律,写出该数列的第10项来?12345,23451,34512,45123,…解:为了寻找规律,再多写出几项出来,并给以编号:仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项,…也就是说该数列各项的出现具有周期性,它们是循环出现的,5项一个循环。

10÷5=2.可见第10项与第5项一样(项数都能被5整除),即第10项是51234.随堂练习:观察数列的前面几项,找出规律,写出该数列的第10项来?1234,2341,3412,4123,…例2把写上1到100这100个号码的牌子,像下面那样依次分发给四个人,你知道第73号牌子会落到谁的手里?解:仔细观察,你会发现:分给小明的牌子号码是1,5,9,13,…,号码除以4余1;分给小英的牌子号码是2,6,10,14,…,号码除以4余2;分给小方的牌子号码是3,7,11,…,号码除以4余3;分给小军的牌子号码是4,8,12,…,号码除以4余0(整除).因此,试用73除以4看看余几?73÷4=18…余 1可见73号牌会落到小明的手里.这就是运用了如下的规律:用这种规律预测第几号牌子发给谁,是很容易的,请同学们自己再试一试.随堂练习:如果自然数如下图所示排成四列,问43在哪个字母下面?拓展训练1、先计算下面的前几个算式,找出规律,再继续往下写出一些算式:①1×9+2= ②9×9+7=12×9+3= 98×9+6=123×9+4= 987×9+5=1234×9+5= 9876×9+4=…………2、先计算下面的奇妙算式,找出规律,再继续写出一些算式:19+9×9=118+98×9=1117+987×9=11116+9876×9=111115+98765×9=…3、有一列数是2、9、8、2、…,从第三个数起,每一个数都是它前面的两个数相乘积的个位数字(比如第三个数8就是2×9=18的个位数字).问这一列数的第100个数是几?4、如果全体数按下表进行排列,那么数41应在哪个字母下面?5、如果自然数如下图所示排成四列,问58在哪个字母下面?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初精英班数学上册第十四讲 2014 12 26 88671755
1
第十四讲数与形(一)
解题思路(1)通过观察归纳验证找规律甚至有时通过
有11个平行四边形,……则第⑥个图形中平行四边形
的个数为( )
个这样的图形中共有 个等腰梯形.第1个
第 2
第3个第 4
2
10观察每一个图中黑色正六边形的排列规律,则第10
依照此规律,
13每个图案都由若干个棋子摆成.依照此规律,图案中棋子的总个数可用含n 的代数式表示为
15用黑白两种正六边形地面瓷砖按如图所示规律拼成 若干图案,则第n 个图案中有白色地面瓷砖块。

第(n ﹣1)个图形多( )枚棋子.
第10个图形共有 _________ 个★.
… … 第1幅 第2幅 第3幅 第n 幅
图5
3。

相关文档
最新文档