地震勘探仪器讲解
地震勘察仪器原理与结构

地震勘察仪器原理与结构地震勘察仪器是一种用于探测和测量地震波以及地壳运动的工具。
它可以帮助地震学家和地质学家了解地震的产生机制、地壳的变动以及预测地震的可能性。
地震勘查仪器的原理和结构主要可以分为三个部分:传感器、信号处理和数据记录。
传感器是地震仪器的核心部件,它主要用于感测地震波的运动。
地震波是由地壳运动引起的地球表面的振动,可以分为纵波和横波两种,传感器需要能够准确地感知这些振动并将其转化为电信号。
一种常用的传感器是加速度传感器,它通过测量物体的加速度来感测地震波的振动情况。
加速度传感器通常由质量块、弹簧和电感器构成,质量块受到地震波的作用后产生振动,振动的大小和方向通过感应到的电流信号传输到信号处理器。
信号处理是地震仪器的第二个关键步骤,它用于将传感器收集到的信号转化为可以分析和研究的数据。
地震波的振动信号通常是微弱的,同时还受到环境噪声的干扰,因此需要对信号进行过滤和放大,以提高信号的质量和可靠性。
信号处理器通常由低噪声放大器、滤波器和模数转换器等组成。
低噪声放大器用于放大微小的信号,滤波器用于滤除噪声干扰,模数转换器将模拟信号转化为数字信号,以便于保存和处理。
数据记录是地震仪器的最后一个部分,它用于记录和保存信号处理后的数据。
数据记录器通常由数字存储设备和计算机系统组成。
数字存储设备可以将经过信号处理的数据保存为数字文件,以便后续的分析和研究。
计算机系统可以用于控制仪器的工作流程,同时还可以进行数据的实时处理和分析。
通过对保存的数据进行分析,地震学家和地质学家可以研究地下地壳的结构和性质,进一步了解地震的发生机理和可能性。
除了以上的主要部分,地震勘查仪器还可以包括其他一些辅助部件,如温度和湿度传感器,用于记录环境的温度和湿度变化,以及定位系统,用于记录地震发生的位置和时间等信息。
总结起来,地震勘查仪器的原理和结构主要包括传感器、信号处理和数据记录三个部分。
传感器用于感测地震波的振动,信号处理器将振动信号转化为可分析的数据,数据记录器用于保存和记录处理后的数据。
地震勘探仪器-地震

随着物联网和云计算技术的发展,地震勘探仪器将实现实时数据传输和处理,提高数据利 用效率和响应速度。同时,通过网络技术实现地震数据的共享和协同分析,提高地震研究 的协作性和开放性。
THANKS
感谢观看
地震勘探仪器-地震
• 地震勘探仪器概述 • 地震勘探仪器的工作原理 • 地震勘探仪器的分类与应用 • 地震勘探仪器的发展趋势与挑战 • 结论
01
地震勘探仪器概述
地震勘探仪器的定义与特点
• 定义:地震勘探仪器是一种用于探测地下地质构造和矿产资源的地球物 理仪器。它通过测量地球表面或近地表的地震波,分析地震波在地下的 传播规律和特征,推断地下岩层的性质、结构和构造,为地质勘探、矿 产资源开发、工程地质等领域提供重要的数据支持。
等方法。
中期发展
随着电子技术和计算机技术的不 断发展,地震勘探仪器逐渐实现 了数字化和自动化,提高了测量
精度和效率。
现代发展
现代地震勘探仪器采用了更先进 的技术和算法,如数字信号处理、 人工智能等,进一步提高了测量 精度和自动化程度,同时也拓展
了应用领域。
02
地震勘探仪器的工作原理
地震波的产生与传播
基础研究
地震勘探仪器可以揭示地球内部的结 构和演化,为地球科学基础研究提供 重要数据。
灾害防治
地震勘探仪器可以探测地下岩层的性质和 构造,为地质灾害防治提供数据支持,如 滑坡、泥石流等灾害的预测和防治。
地震勘探仪器的发展历程
早期发展
地震勘探仪器最早可以追溯到20 世纪初,当时的地震勘探技术比 较简单,主要采用敲击和听诊器
04
地震勘探仪器的发展趋势与挑战
高分辨率地震勘探技术的发展
总结词
地震监测仪器的使用方法

地震监测仪器的使用方法地震是一种自然灾害,给人们的生命和财产带来了巨大的威胁。
因此,地震监测仪器的使用方法变得至关重要。
本文将介绍几种常见的地震监测仪器,并探讨如何正确使用它们。
一、地震仪地震仪是一种用于测量地震波的仪器。
它可以记录地震的震级、震源位置和震源深度等重要信息。
地震仪的使用方法相对简单,只需将其放置在平稳的地面上即可。
然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。
当地震发生时,地震仪会自动开始记录并生成地震波形图。
用户可以通过分析这些波形图来了解地震的特征。
二、地震速度仪地震速度仪是一种用于测量地震波传播速度的仪器。
它通过发送一系列震动信号并记录其传播时间来计算地震波的速度。
使用地震速度仪的方法较为复杂。
首先,需要将仪器放置在地震波传播路径上,并确保其与地面接触良好。
然后,通过仪器上的控制面板设置相关参数,如震动信号的频率和强度等。
接下来,启动仪器并等待一段时间,以便它收集足够的数据。
最后,通过分析数据来计算地震波的速度。
三、地震倾斜仪地震倾斜仪是一种用于测量地震引起的地面倾斜的仪器。
它可以帮助人们了解地震对土地结构的影响。
使用地震倾斜仪的方法相对简单。
首先,将仪器放置在需要监测的地面上,并确保其水平。
然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。
当地震发生时,地震倾斜仪会自动开始记录并生成倾斜角度的变化曲线。
通过分析这些曲线,人们可以了解地震引起的地面倾斜情况。
四、地震声仪地震声仪是一种用于测量地震产生的声音的仪器。
它可以记录地震引起的地面振动所产生的声音信号。
使用地震声仪的方法相对简单。
首先,将仪器放置在需要监测的地面上,并确保其与地面接触良好。
然后,通过仪器上的控制面板设置相关参数,如采样频率和记录时间等。
当地震发生时,地震声仪会自动开始记录并生成声音波形图。
通过分析这些波形图,人们可以了解地震的声音特征。
总结起来,地震监测仪器的使用方法可以分为放置、设置参数、记录数据和分析结果几个步骤。
地质勘探中的仪器设备

地质勘探中的仪器设备地质勘探是指通过不同的方法,了解地球内部结构和地下资源分布的一种科学研究。
在地质勘探的过程中,仪器设备起到了至关重要的作用。
本文将就地质勘探中的仪器设备进行介绍。
一、地震勘探仪器地震勘探是一种通过测量地球中的地震波传播和反射来获取地下结构信息的方法。
地震仪器在地震震源和检波器之间进行的数据传输起到至关重要的作用。
常见的地震勘探仪器有地震震源、地震检波器和地震记录器等。
1. 地震震源地震震源是产生人工地震波的设备,通常是由爆炸物或震源车辆组成。
地震震源的形式多样,如压电源、炸药震源和振动源等。
通过产生地震波,地震震源可以帮助勘探者测量地下岩石的速度、密度和其他物理特性。
2. 地震检波器地震检波器是用于接收地震波传播过程中的反射或折射信号的仪器。
常见的地震检波器包括地震观测井、地震阵列和地震测深仪等。
地震检波器可以将地震信号转化为电信号,为勘探者提供参考依据。
3. 地震记录器地震记录器用于记录地震信号,并将其转化为地震图像或数字数据。
地震记录器可以通过多种方式储存数据,如磁带式地震记录器、数字地震记录器和地震数据采集系统等。
地震记录器的使用可以帮助勘探者分析地下结构和探测地下资源。
二、重力测量仪器重力测量是一种利用重力场的变化来推测地下岩石质量的方法。
通过重力测量仪器,勘探者可以测量地下岩石的密度和分布情况。
重力测量仪器主要包括重力计和全球导航卫星系统(GNSS)等。
重力计可以通过测量地面上的重力加速度变化来获得地下岩石的质量信息。
GNSS可以通过测量地表的重力场变化,推断地下岩石的密度分布情况。
三、电磁测量仪器电磁测量是一种通过测量地下岩石的电导率和介电常数来推测地下结构的方法。
电磁测量仪器主要包括电磁感应仪和电测深仪等。
电磁感应仪通过产生高频电磁场,测量地下岩石对电磁场的响应来推断地下构造。
电测深仪是一种用于探测地下电阻率的仪器,通过测量电流传输的速度和电流对电压的响应,可以推断地下岩石的电导率。
第四章浅层地震勘探仪器简介

① 方向特性:当振动方向与线圈轴线方 向一致时,产生最大输出电压,具有最 大的灵敏度。
图4.1 电动式检波器结构示意图
按检波器固有频率分:低频, < 10Hz ; 中 频 , 10 ~ 33Hz ; 高频,33~100Hz。
图示为100 Hz高频检波器的频 率特性曲线。曲线分三段。
第一段:线性段,f较低时, 输出随f的升高而增大;
放大倍数:输出信号振幅m1与输入信号振幅m2的比值。
M m1 m2
分贝(dB):用对数值表示放大倍数
M db 20 log10 M
100dB意思指:若有5μV的输入振幅,则可得到0.5V(即0.5×106μV)的输出。
2.动态范围 定义:测量信号振幅极大值与系统噪音水平的比值,用分贝
表示: [动态范围]=[ A ]dB a
3.数字地震仪的特点 (1)全数字化
全数字化:就是利用微机控制仪器来完成数据采集和信息处理。微机处 理是中心,而采集系统则属于外围设备。通过对计算机的操作就可实现对地 震仪的操作。这样可使地震仪的稳定性和可靠性大大提高。同时,仪器具有 操作简单、重量轻、体积小的优点。
(2)动态范围大
3.记录显示装置 一般用计算机记录和显示。 4.震源同步系统
一是激发地震波,二是与激发时间同步产生触发信号,使主机开始记时。 锤击:用两个弹簧片与导线连接作触发器; 炸药:爆炸使捆在炸药包上的导线炸断,产生触发信号。
第二节 数字叠加式浅震仪介绍
按叠加方式分:模拟叠加增强式,数字叠加增强式
一、几个基本概念 1.分贝
图 (a)、(b)、(c)、(d)、(e)分别对连续信号进行25、100、125、200、250Hz采样, 则输出频率分别为25、100、125、50、0Hz。显然,后两个采样不足,出现假频。
地震仪的简单介绍

地震仪的简单介绍
地震仪是一种非常重要的地震监测仪器,被广泛应用于地震科学研究、地震工程和地震灾害预防等领域。
它的原理是基于惯性原理,利用悬挂重物的惯性来感应地面的振动,并转化为电信号记录下来。
由于地震仪具有高灵敏度、高精度和高稳定性的特点,因此它可以记录到微小的地震活动,并准确地测定地震的震源位置、震级和震源深度等信息。
同时,地震仪还可以用来研究地球的内部构造和地壳运动规律,为地震预测和预防提供科学依据。
根据不同的应用需求,地震仪的种类也多种多样。
短周期地震仪主要用于监测微震活动和远震P 波初至,长周期地震仪则被用于观测地震面波、研究地壳内部构造和确定地震参数等。
宽频带和超宽频带地震仪则能够提供更为全面和详细的地壳运动信息,为全球范围内的地震科学研究提供重要数据支持。
总之,地震仪是现代地震学和地震工程学的重要工具,为人类防范地震灾害和深入了解地球科学提供了重要的技术支持。
地震仪器设备简介

仪器中心
目录
一、仪器主机 二、采集站、电源站、交叉站部分 三、电缆及辅助部分 四、检波器部分
地球物理勘探设备 地震数据采集设备 地震仪器
采集设备
辅助设备 机械(震源)设备
中央记录系统 仪器
野外设备 (传输和采集)
爆炸机系统的编/译码器、震源 的扫描发生器/电子箱体
仪器车
大线、电台/检波器、采集站、 交差站
采集站的基本原理
• 前放
(放大模拟地震信号,提高抗干扰能力)、
前放增益:地震信号强度很弱,检波器输出的电信号一般为微伏级至
毫伏级左右,若这一信号直接送至A/D 转换,其结果将带来以下几个 问题: 由于信号幅度小、A/D转换精度低。 由于信号整体幅度较小,势必使A/D转换器的高位均为0,不能充分利用 24位A/D 转换器(实用20 位)资源。 也将损失相当部分的小信号,降低了信号的动态范围 采用线性提升整个信号幅度的方法,使A/D 转换器输入信号的最大幅度略 小于满标称幅度范围(目前仪器A/D转换器的参考电压一般为2.5V4.5V)。最大限度地提高信号的转换精度和最大限度地保证所记录信号 的动态范围。 注意:一方面由于地震信号很微弱,在送到A/D转换以前,必须进行放大, 以满足仪器的最小输入,从仪器本身的噪声中提取出来;另一方面, 一些干扰波的幅度很大,当上面附加有有效信号时,如果放大的倍数 太大,则会超出A/D的最大值导致溢出。因此选择前放增益需要考虑 当时的施工情况。 另外为防止野外可能出现的雷击破坏情况,在前置放大器前端信号入口 处加入电压抑制放电管、共模滤波器等电路以保护采集电路。
地震数据采集流程 地震数据的采集过程从时序上看是一个开环链路数据 接力传输流程 ,即从炮点能量激发开始仪器便进入采集状 态 ,此时地震波经检波器输入到采集站 ,地震数据就经由每 一个相关环节源源不断地传到主机并记录磁带直到完成整 个记录长度 ,其基本流程关系如图1 所示。
地质勘探中的地质勘探仪器

地质勘探中的地质勘探仪器地质勘探是指通过对地壳、地球内部及地球表面的各种物质和现象进行系统观测、测量和分析,以获取地质信息的一门科学技术。
地质勘探仪器作为地质勘探的工具,发挥着关键作用。
本文将介绍几种常见的地质勘探仪器。
一、地震仪地震仪是地质勘探中最常用的仪器之一。
地震勘探利用地震波的传播特性研究地球内部结构,探测油气矿藏、岩层构造等信息。
地震仪通过测量地震波的传播速度、振幅等参数,推断地下的地质情况。
二、地磁仪地磁仪用于测量地球磁场的变化,通过观测磁场强度和方向的变化,探测地下的矿产资源、构造特征等信息。
地磁仪常用于寻找地下金属矿床、勘探石油和天然气储层等。
三、重力仪重力仪测量地球表面某一点上物体受到的引力大小,通过观测引力变化来探测地下的密度变化。
重力勘探常用于寻找矿床、发现地下脉络和断层。
四、电磁仪电磁仪是利用地球的自然电磁信号或外加电磁信号,通过观测电磁场的变化来探测地下的物质分布和性质。
电磁勘探广泛应用于矿产资源勘查、地下水勘察等领域。
五、雷达仪雷达仪利用超声波或电磁波在地下的反射和传播特性,勘探地下介质的物理属性和构造特征。
雷达仪在城市规划、土壤调查、地下管道探测等方面具有重要作用。
六、地电仪地电仪是测量地下电磁场的仪器,通过测量地下电阻率的分布,推断地下结构特征和地下含水层分布情况。
地电勘探广泛应用于勘探地下水、找寻矿藏、勘查地震活动断层等。
地质勘探仪器的发展为地质勘探提供了强有力的支持,使得勘探工作变得更加高效、准确。
随着技术的进步,地质勘探仪器也在不断创新和改进。
总结:以上介绍的是地质勘探中常用的一些地质勘探仪器,包括地震仪、地磁仪、重力仪、电磁仪、雷达仪和地电仪。
这些仪器通过测量和观测地球的物理场和信号,来推断地下的地质情况,为矿产资源勘查、地下水勘察等工作提供了重要的支持。
随着科技的不断进步,地质勘探仪器的发展也在不断创新和完善,将进一步提高地质勘探的准确性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年7月
地球物理勘探数字化
• 自数字计算机问世以来的半个多世纪中, 人们越发地强调用数字精确地量化各种 物理量,用数字来传递一切信息,因此 各行各业纷纷发展数字化技术,从而带 动了微电子和计算机技术的飞速发展。 地球物理勘探从六十年代提出数字化, 先行官便是数字地震仪。
无线遥测地震仪采集技术
• 除了有线遥测地震仪,最初的无线遥测地 震仪采集技术则体现在美国公司的OPSEIS 5586 和TELESEIS以及法国地球科学院的 MYRISEIS,这几种仪器中,无线遥测以在 空中传播的电磁波作为数据传输介质,采 集道容量已不受限制,人们也常称这种地 震仪为万道地震仪,但数据传输率还是有 限的,每放一炮,数传时间较长,牺牲了 野外生产效率,采用多频窄带并行传输数 据,但仪器庞杂,可靠性受到一定影响。
数据传输采纳网络结构
• 法国 SERCEL 的 408UL 的数据传输也采纳 了网络结构,将采集系统的各个部分均视 为网络结点。形成“地震区域网络”,灵 活可靠地实现地震数据的传输交换,而这 一切都有幸于计算机网络通讯技术的飞速 发展以及 TCP/IP、IPX 等先进重要通讯协 议对信息高速公路的贡献
遥测地震仪快速发展
• 二十世纪后八年的遥测地震仪的发展, 更加现代化,更加快速,更加全球化, 日本、德国、俄罗斯和我国也都各自 造出了技术水平较高的 24 位遥测地 震仪,无线遥测仪器则有 OPSEISEAGLE 和 BOX,而 BOX 仪器 的新技 术应用和制造工艺更是表现得极为优 秀。
数字地震仪三次更新换代
瞬时浮点放大器的弊端
• 随后人们开始认识到瞬时浮点放大器 的弊端,既是对在低频大信号上叠加 的高频小信号起平滑作用而不利于高 频信号的采集。恰好在这个时候微电 子器件中 Δ—Σ 过采样模数转换器 问世,从而使此问题迎刃而解。Δ— Σ 模数转换器的理论在七十年代就已 提出.
• 这种模数转换技术可以使用易于制造的
• 美国I/O 公司的 SYSTEMⅡ,SYSTEM 2000,IMAGE,法国 SERCEL 公司的 SN388,408UL 等优质品牌的遥测数 字地震仪迅速占领了市场,基本上 满足了地球物理勘探的需求。值得 一提的是加拿大 GEO-X 公司推出了 具有网络数传结构的 ARAM-24 仪器, 随后又更新推出 ARAM-ARIES 型号。
• 毕竟,地震数据采集系统与地震勘探方 法的发展的需求还是距离很大,地球物 理学家也一直抱怨仪器动态范围不够。 在高分辨率勘探地质任务面前更– 模数转换器
• 于是仪器研制人员又被迫回到数字化 的核心部件 – 模数转换器来考虑问题。 当时适合地震信号数字化成的传统模 数转换通常采用逐次比较设计方案, 连续变化的模拟信号按采样频率离散 为一系列保持平定的子样,对这些子 样用类似天平称重的方法,通过加减 一系列标准的电压码来测量子样。当 比较码值的总和电压与子样电压相等 时便实现了量化。
微电子工业和计算机工业最新技术
• 二十世纪六十年代初到九十年代初的三十 年中,地震勘探数字化取得了惊人的进展, 微电子工业和计算机工业中飞速发展的高 新技术作出了突出贡献,令人叹为观止的 新型仪器层出不穷。从起初的 24 道发展 到了千道以上,数字计算机控制、数据传 输和数据实时分析处理都体现出了当时的 最新技术。
地球物理学家要求提高采集道数
当地球物理学家迫切要求提高采集道数以适应三维 勘探需要时,多年来应运而生的就是千道,万道, 甚至是十万道仪器开发问市。同时,增加道容量 的需求,提高信噪比和瞬时动态范围以及进一步 彻底数字化的设计思想,便使数字地震仪从集中 式采集系统结构转向了分布式节点型采集系统结 构。
• 这种传统模数转换所用的线路包括电压 码生成、子样保持、以及比较等均为模 拟线路,而模拟线路的精度要靠复杂严 格的制造工艺来有限度地保证,而且受 时效和温度变化的影响很大,例如产生 标准电压码所用衰减电路的精密电阻, 选用材料苛刻,且需极为复杂严格的工 艺制造。因此传统的十六位模数转化器 最优线性度只能达到万分之一,畸变最 好指标也不过是万分之五,动态范围大 约 80dB 左右。
• 这四十年大体分为三个阶段,三次 更新换代:
• 1962 — 1980,集中式 48 道 120 道数字地震仪;
• 1980—1992,16位遥测地震仪; • 1992—2007,24位遥测地震仪。
• 由于油气能源的需求,以及地震勘探工 作日益加剧的高成本、高风险、高难度, 人们不断寻求高保真地采集地震数据以 解决地质任务的装备与方法。更新换代 的步伐越来越快。一直努力寻求彻底数 字化,不断地革除复杂的模拟部件,代 之以先进的、高精度的数字化装置。在 不到八年的时间里,便完成了 Δ—Σ 24位遥测数字地震仪的更新换代。
宽容限模拟元件,但需要快速和非常复
杂的数字信号处理。仅仅由于应用了与
微处理机芯片同步发展的微电子超大规 模计算芯片才使 Δ—Σ 模数转换器得 以投入使用。动态达 120dB 的Δ—Σ 模数转换器使仪器研制者彻底停用了瞬
时浮点放大器这一模拟部件,也去除了
繁琐的各种模拟滤波器
瞬时动态范围的新概念
• 瞬时动态范围的新概念:即在同一 采样间隔内能够记录到的不同频率 的最大信号与最小信号之比。1992 年I/O 公司率先造出了采用 Δ— Σ 模数转换器进行数字化的系统 Ⅱ仪器。在随后的八年中,地震数 据采集系统又经历了一次更新换代
地震信号传感器
• 关键是地震信号传感器这一环节在半个世 纪以来确实一直徘徊不前,未能摆脱动圈 式机电转换的机理。比如地震队成千上万 使用的 GS-20DX 检波器是三十年前研制的 产品,七十年代初,当数字地震仪推广使 用时,为了与数字地震仪相配套,人们曾 把 GS-20DX 检波器称为“数字检波器”, 顾名思义完全牵强附会,只不过是这种检 波器性能指标比以往检波器要高,频带要 宽,质量控制严格,可以配合数字仪使用。 但确实是一种不折不扣的机电模拟产品。
新技术数传
• .然而随之而来的各种新推出的遥测地震仪, 由于不断引入电子工业中的有线数据传输 和无线数据传输(电台)等新技术却大有 作为。人们对扁平道馈采集线设备、双扭线、同轴电 缆、光导纤维等各种有线传输介质都在遥 测数字地震仪中作了尝试,并为提高数传 速率增加单线道容量,保证可靠稳定性等 方面作了大量努力。