八年级数学全等三角形培优专题:如何做几何证明题(含答案)

合集下载

八年级的数学几何证明题技巧含答案1.doc

八年级的数学几何证明题技巧含答案1.doc

八年级数学几何证明题技巧( 含答案 )11.几何证明是平面几何中的一个重要问题;它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化;如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果);从已知条件出发;通过有关定义、定理、公理的应用;逐步向前推进;直到问题解决;(2)分析法(执果索因)从命题的结论考虑;推敲使其成立需要具备的条件;然后再把所需的条件看成要证的结论继续推敲;如此逐步往上逆求;直到已知事实为止;(3)分析综合法:将分析与综合法合并使用;比较起来;分析法利于思考;综合法易于表达;因此;在实际思考问题时;可合并使用;灵活处理;以利于缩短题设与结论的距离;最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的;因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形;在构造基本图形时往往需要添加辅助线;以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质;其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例 1.已知:如图 1 所示;ABC 中;C90 ,AC BC,AD DB,AE CF。

求证:DE=DFAEDC F B图1分析:由ABC 是等腰直角三角形可知;A B 45 ;由D是AB中点;可考虑连结CD ;易得CD AD ;DCF45 。

从而不难发现DCF DAE证明:连结 CDAC BCA BACB 90 , AD DBCD BD AD,DCB B AAE CF ,A DCB , AD CDA D E CDFDE DF说明:在直角三角形中;作斜边上的中线是常用的辅助线;在等腰三角形中;作顶角的平分线或底边上的中线或高是常用的辅助线。

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)

人教版八年级数学上册三角形全等的证明培优综合训练(含答案)考点1 利用SSS求证三角形全等1.如图,点B,F,C,E在同一条直线上,点A,D在直线BC的异侧,AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)若∠BFD=150°,求∠ACB的度数.2.如图,C是AB的中点,AD=CE,CD=BE.求证:(1)△DCA≌△EBC;(2)AD//CE.3.已知:如图,已知线段AB、CD相交于点O、AD、CB的延长线交于点E、OA=OC、EA=EC,求证:∠A=∠C、考点2 利用SAS求证三角形全等4.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,AB=DE,BF=CE,AB‖DE,求证:△ABC≅△DEF.5.在△ABC中,AD为边BC上的中线,延长AD到点E,使DE=AD,连接BE.△ABC的面积与△ABE的面积相等吗?说明理由6.两组邻边分别相等的四边形我们称它为筝形,如图,在筝形ABCD中,AB=AD,BC =DC,AC,BD相交于点O.(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.考点3 利用AAS 或ASA 求证三角形全等7.已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .(1)证明:BDA AEC ≌;(2)3BD =,4CE =,求DE 的长.8.如图,已知AD 为ABC ∆的中线,延长AD ,分别过点B ,C 作BE AD ⊥,CF AD ⊥.求证:BED CFD ∆≅∆.9.如右图,已知,90AB AC BAC BE CE =∠=︒,⊥于点E ,延长BE CA 、相交于点F ,求证:ADC AFB ≌10.如图,已知E 、F 在AC 上,AD //CB ,且∠D=∠B ,AE=CF .求证:DF=BE .考点4 利用HL 求证三角形全等11.在ABC 中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)求证:ABE CBF ≌;(2)若30CAE ∠=︒,求ACF ∠度数.12.如图,已知AE =DE ,AB ⊥BC ,DC ⊥BC ,且AB =EC .求证:BC =AB +DC .13.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)证明:Rt△BCE≌Rt△DCF;(2)若AB=21,AD=9,求AE的长.14.如图:AD是ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD、求 .证:BE AC考点5 全等三角形综合15.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,(1)如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM、CN与AC之间的数量关系_______.(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,∠MAN+MPN=180°,若AC:PC=2:1,PC=4,求四边形ANPM的面积.16.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.答案1.解:(1)证明:BF EC =∵,BF FC EC FC ∴+=+,BC EF ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴;(2)150BFD ∠=︒,180BFD DFE ∠+∠=︒, 30DFE ∴∠=︒,由(1)知,ABC DEF ∆≅∆,ACB DFE ∴∠=∠,30ACB ∴∠=︒.2.(1)证明:点C 是AB 的中点,AC BC ∴=;在DCA ∆与EBC ∆中,AD CE CD BE AC BC =⎧⎪=⎨⎪=⎩,()DCA EBC SSS ∴∆≅∆,(2)证明:DCA EBC ∆≅∆,A BCE ∴∠=∠,//AD CE ∴.3.如图,连结OE在、OEA 和、OEC 中OA OC EA EC OE OE =⎧⎪=⎨⎪=⎩、、OEA、、OEC (SSS )、、A =、C (全等三角形的对应角相等)4.∵BF=CE ,∴BF+FC=CE+FC ,即BC=EF .∵AB ∥DE ,∴∠B=∠E .在△ABC 和△DEF 中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS )5.△ABC 与△ABE 的面积相等.理由:∵AD 为边BC 上的中线,∴BD=CD ,在△BDE 和△CAD 中,BD DC BDE CDA DE AD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CAD、SAS、,BDE ABD CAD ABD S S S S +=+,即△ABC 与△ABE 的面积相等.6.(1)证明:①在△ABC 和△ADC 中,AB=AD ,BC=DC ,AC=AC ,∴△ABC ≌△ADC (SSS ).②∵△ABC ≌△ADC ,∴∠BAO=∠DAO.∵AB=AD ,∠BAO=∠DAO ,OA=OA ,∴△ABO ≌△ADO (SAS ).∴OB=OD ,AC ⊥BD.(2)筝形ABCD 的面积=△ABC 的面积+△ACD 的面积=12×AC×BO+12×AC×DO=12×AC×(BO+DO)=12×AC×BD=12×6×4=12. 7.(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∵AB AC ⊥,∴90BAD CAE ∠+∠=︒,∴ABD CAE ∠=∠,在BDA 和AEC 中,90ADB CEA ABD CAEAB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()BDA AEC AAS ≅;(2)∵BDA AEC ≅△△,∴BD AE =,AD CE =,∴7DE DA AE BD CE =+=+=.8.证明:∵AD 是△ABC 的中线,∴ BD =CD ,∵ BE ⊥AD ,CF ⊥AD ,∴∠E =∠CFD =90°在Rt △BDE 和Rt △CDF 中,90BDE CDF E CFD BD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴ Rt △BDE ≌Rt △CDF (AA S )9.、、BAC=90°,、、BAF=180°-、BAC=90°,、、BAF=、CAD ,、F+、ABF=90°,∵CE ⊥BE ,、、CEF=90°,、、F+、ACD=90°,、、ABF=、ACD ,在、ADC 和、AFB 中,BAF CAD AC ABACD ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩, 、、ADC ≌、AFB (ASA ).10.解:证明:∵AE=CF ,∴AE -EF=CF -EF即AF=CE ,∵AD ∥CB ,∴∠A=∠C ,在△ADF 和△CBE 中,A C AF CE DB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△CBE (ASA ),∴DF=BE .11.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt △ABE 和Rt △CBF 中,AE CF AB BC=⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB=BC ,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB -∠CAE=45°-30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.12.∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,在Rt △AEB 和Rt △EDC 中,AB EC AE DE =⎧⎨=⎩, ∴Rt △AEB ≌Rt △EDC (HL ),∴DC=BE ,∵BC=BE+CE ,∴AB+DC=BC .13.(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠DFC=∠BEC=90°,在Rt △BCE 和Rt △DCF 中,CE CF BC CD =⎧⎨=⎩, ∴Rt △BCE ≌Rt △DCF (HL );(2)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠CFA=∠CEA=90°,在Rt △AFC 和Rt △AEC 中,CF CE AC AC =⎧⎨=⎩,∴Rt △AFC ≌Rt △AEC (HL ),∴AF=AE ,由(1)知Rt △BCE ≌Rt △DCF ,则BE=DF ,∵AB=21,AD=9,∴AB=AE+EB=AF+EB=AD+DF+ DF =AD+2DF=9+2DF=21, 解得,DF=6,∴AE=AF=AD+DF=9+6=15,即AE 的长是15.14.证明: ∵AD ⊥BC ,∴∠BDF =∠ADC =90°.又∵BF =AC ,FD =CD ,∴△RtADC ≌Rt △BDF (HL ).∴∠EBC =∠DAC .又∵∠DAC +∠ACD =90°,∴∠EBC +∠ACD =90°.∴BE ⊥AC .15.(1)证明:点P 为EAF ∠平分线上一点,PB AE ⊥于B ,PC AF ⊥于C , PB PC ∴=,在Rt PBM ∆和Rt PCN ∆中,PB PC PM PN =⎧⎨=⎩, Rt PBM Rt PCN ∴∆≅∆,BM CN ∴=;(2)AM CN AC +=,理由如下:在Rt PBA ∆和Rt PCA ∆中,PB PC AP AP =⎧⎨=⎩, Rt PBA Rt PCA ∴∆≅∆,AB AC ∴=,AM CN AM BM AB AC ∴+=+==,故答案为:AM CN AC +=;(3):2:1AC PC =,4PC =,8AC ∴=,PB AE ⊥,PC AF ⊥,90ABP ACP ∴∠=∠=︒,180MAN BPC ∴∠+∠=︒,又180MAN MPN ∠+∠=︒, MPB NPC ∴∠=∠,在PBM ∆和PCN ∆中,BPM CPN PB PCPBM PCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, PBM PCN ∴∆≅∆,∴四边形ANPM 的面积=四边形ABPC 的面积1842322=⨯⨯⨯=. 16.解:(1)结论:PM =PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB =OA =6,∠AOB =90°,∵P为AB的中点,∴OP=12AB=PB=P A,OP⊥AB,∠PON=∠P AM=45°,∴∠OP A=90°,在△PON和△P AM中,ON AMPON PAMOP AP=⎧⎪∠=∠⎨⎪=⎩,∴△PON≌△P AM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OP A=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图2中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△P AE和△P AG中,AEP GPAE PAGAP AP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△P AE≌△P AG(AAS),∴AE=AG,∴OD=AE.。

全等三角形证明题培优(38题)(方法)

全等三角形证明题培优(38题)(方法)

全等三角形证明题(经典38题)(方法)1.(方法:巧做辅助线)如图,在△ABC中,∠B=2∠C,AD⊥BC于D,求证:CD=BD+AB.2.(方法:巧做辅助线)如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。

3.(方法:巧做辅助线)如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.4.图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.5.(方法:巧做辅助线)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。

求证:(1)AE=BF;(2)AE⊥BF。

6.(方法:巧做辅助线)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连D E交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.7.(方法:火眼金睛找条件)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:(1)CD=2AM,(2)AM⊥CD.8.(方法:火眼金睛找条件)已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形9.(方法:火眼金睛找条件)如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E 作EF∥AD交AB于点G,交CA的延长线于点F.求证:BG=CF.FDE CBA(2)10.(方法:巧做辅助线)如图,AB=AE,∠ABC=∠AED,BC=ED,点F 是CD 的中点, 求证:AF ⊥CD.11.(方法:巧做辅助线)如图,在正方形ABCD 中,M 、N 分别是BC 、CD 上的点,∠MAN=45°. 求证:MB+ND=MN .12.(方法:巧做辅助线)已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .13.(方法:火眼金睛找条件)如图E 为正方形ABCD 边BC 的中点,F 为DC 的中点,BF 与AE 有何关系?请解释你的结论。

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)1. 几何证明是平面几何中的一个重要问题;它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化;如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果);从已知条件出发;通过有关定义、定理、公理的应用;逐步向前推进;直到问题解决; (2)分析法(执果索因)从命题的结论考虑;推敲使其成立需要具备的条件;然后再把所需的条件看成要证的结论继续推敲;如此逐步往上逆求;直到已知事实为止;(3)分析综合法:将分析与综合法合并使用;比较起来;分析法利于思考;综合法易于表达;因此;在实际思考问题时;可合并使用;灵活处理;以利于缩短题设与结论的距离;最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的;因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形;在构造基本图形时往往需要添加辅助线;以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质;其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示;∆ABC 中;∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCFBA ED图1分析:由∆ABC 是等腰直角三角形可知;∠=∠=︒A B 45;由D 是AB 中点;可考虑连结CD ;易得CD AD =;∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅证明:连结CDΘΘΘAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中;作斜边上的中线是常用的辅助线;在等腰三角形中;作顶角的平分线或底边上的中线或高是常用的辅助线。

【专题培优】2018年 八年级数学上册 全等三角形证明题 培优专题(含答案)

【专题培优】2018年 八年级数学上册 全等三角形证明题 培优专题(含答案)

2018年八年级数学上册全等三角形证明题培优专题1.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.2.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.3.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.4.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.5.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B6.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.7.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.8.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.9.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG 交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.10.如图,已知:正方形ABCD,由顶点A引两条射线分别交BC、CD于E、F,且∠EAF=45°,求证:BE+DF=EF.11.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.12.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.13.如图,已知在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=1200,求证:AM=2MB;(2)求证:∠MPB=900﹣∠FCM.14.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.15.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.参考答案1.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.2.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.3.答案为:80°,50°;4.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE 所以:AE=CE 所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA 所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB 所以:△AEC≌△AGB所以:EC=BG=DG 所以:BD=2CE5.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD ∴AE=AB∵AD平分∠CAB ∴∠EAD=∠BAD∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B6.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

八年级全等三角形简单证明题及答案(15道)

八年级全等三角形简单证明题及答案(15道)

∴BC=ED.
全等三角形的判定与性 质.
01
如图,在△ABC中, ∠C=90°,点D是AB边上的 一点,DM⊥AB,且 DM=AC,过点M作 ME∥BC交AB于点E.求证: △ABC≌△MED。
02
证明:∵MD⊥AB,
∴∠MDE=∠C=90°,
∵ME∥BC,
∴∠B=∠MED,
在△ABC与△MED中, ∠B=∠MED ∠C=∠EDM DM=AC ,
∠D=∠B , ∴△ADF≌△CBE(ASA), ∴AF=CE, ∴AF+EF=CE+EF,即
AE=CF.
全等三角形的判定与性 质.
11.在△ABC中,AB=CB,∠ABC=90°,F为AB延 长线上一点,点E在BC上,且AE=CF.求证: Rt△ABE≌Rt△CBF;
证明:∵∠ABC=90°,
角平分线的性质;全等三角形的判定与性质.
全等三角形的判定.
如图,在△ABC中, AB=AC,AD平分 ∠BAC.求证: ∠DBC=∠DCB.
解:∵AD平分∠BAC, ∴∠BAD=∠CAD. ∴在△ACD和△ABD中 AB=AC ∠BAD=∠CAD
AD=AD , ∴△ACD≌△ABD, ∴BD=CD, ∴∠DBC=∠DCB.
:∵AC平分∠BAD,
∴∠BAC=∠DAC,
在△ABC和△ADC中, AB=AD ∠BAC=∠DAC AC=AC ,
∴△ABC≌△ADC.
全等三角形的判定.
9.如图,已知 点E,C在线段
BF上, BE=CF, AB∥DE, ∠ACB=∠F.
求证: △ABC≌△DEF

证明:∵AB∥DE,
∴∠B=∠DEF.
全等三角形的判定与性质.

初二数学全等三角形压轴几何题(讲义及答案)含答案

初二数学全等三角形压轴几何题(讲义及答案)含答案

初二数学全等三角形压轴几何题(讲义及答案)含答案一、全等三角形旋转模型1.问题背景:如图1,在四边形ABCD 中,90BAD ∠=︒,90BCD ∠=︒,BA BC =,120ABC ∠=︒,60MBN ∠=︒,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .探究图中线段AE ,CF ,EF 之间的数量关系.小李同学探究此问题的方法是:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,再证明BFC BFE △≌△,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD 中,90BAD ∠=︒,90BCD ∠=︒,BA BC =,2ABC MBN ∠=∠,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由. 探究延伸2:如图3,在四边形ABCD 中,BA BC =,180BAD BCD ∠+∠=︒,2ABC MBN ∠=∠,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30的A 处舰艇乙在指挥中心南偏东70︒的B 处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处,且指挥中心观测两舰艇视线之间的夹角为70︒,试求此时两舰艇之间的距离.答案:E解析:EF=AE+CF .探究延伸1:结论EF=AE+CF 成立.探究延伸2:结论EF=AE+CF 仍然成立.实际应用:210海里.【分析】延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF ≌,可得GF=EF ,即可解题;探究延伸1:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF ≌,可得GF=EF ,即可解题;探究延伸2:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,可得BG=BE ,∠CBG=∠ABE ,再证明BGF BEF ≌,可得GF=EF ,即可解题;实际应用:连接EF ,延长AE ,BF 相交于点C ,然后与探究延伸2同理可得EF=AE+CF ,将AE 和CF 的长代入即可.【详解】解:EF=AE+CF理由:延长FC 到G ,使CG AE =,连接BG ,在△BCG 和△BAE 中,90BC BA BCG BAE CG AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCG BAE △≌△(SAS ),∴BG=BE ,∠CBG=∠ABE ,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=60°,∴∠CBG+∠CBF=60°,即∠GBF=60°,在△BGF 和△BEF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF ,∵GF=CG+CF=AE+CF ,∴EF=AE+CF .探究延伸1:结论EF=AE+CF 成立.理由:延长FC 到G ,使CG AE =,连接BG ,在△BCG 和△BAE 中,90BC BA BCG BAE CG AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴BCG BAE △≌△(SAS ),∴BG=BE ,∠CBG=∠ABE ,∵∠ABC=2∠MBN ,∴∠ABE+∠CBF=12∠ABC , ∴∠CBG+∠CBF=12∠ABC , 即∠GBF=12∠ABC , 在△BGF 和△BEF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF ,∵GF=CG+CF=AE+CF ,∴EF=AE+CF .探究延伸2:结论EF=AE+CF 仍然成立.理由:延长FC 到G ,使CG AE =,连接BG ,∵180BAD BCD ∠+∠=︒,∠BCG+∠BCD=180°,∴∠BCG=∠BAD在△BCG 和△BAE 中,BC BA BCG BAE CG AE =⎧⎪∠=∠⎨⎪=⎩,∴BCG BAE △≌△(SAS ),∴BG=BE ,∠CBG=∠ABE ,∵∠ABC=2∠MBN ,∴∠ABE+∠CBF=12∠ABC , ∴∠CBG+∠CBF=12∠ABC , 即∠GBF=12∠ABC , 在△BGF 和△BEF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△BGF ≌△BEF (SAS ),∴GF=EF ,∵GF=CG+CF=AE+CF ,∴EF=AE+CF .实际应用:连接EF ,延长AE ,BF 相交于点C ,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=12∠AOB ∵OA=OB ,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件∴结论EF= AE+CF 仍然成立即EF=75×1.2+100×1.2=210(海里)答:此时两舰艇之间的距离为210海里.【点睛】本题考查了全等三角形的判定与性质.作辅助线构造全等三角形是解题的关键. 2.一位同学拿了两块45︒三角尺MNK ∆,ACB ∆做了一个探究活动:将MNK ∆的直角顶点M 放在ACB ∆的斜边AB 的中点处,设4AC BC ==.(1)如图1所示,两三角尺的重叠部分为ACM ∆,则重叠部分的面积为______,周长为______.(2)将如图1所示中的MNK ∆绕顶点M 逆时针旋转45︒,得到如图2所示,此时重叠部分的面积为______,周长为______.(3)如果将MNK ∆绕M 旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.(4)在如图3所示情况下,若1AD =,求出重叠部分图形的周长.答案:A解析:(1)4,4+;(2)4,8;(3)4;(4)4+【分析】()1根据4AC BC ==,90ACB ∠=,得出AB 的值,再根据M 是AB 的中点,得出AM MC =,求出重叠部分的面积,再根据AM ,MC ,AC 的值即可求出周长;()2易得重叠部分是正方形,边长为12AC ,面积为214AC ,周长为2.AC ()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、.E 求得Rt MHD ≌Rt MEG ,则阴影部分的面积等于正方形CEMH 的面积. ()4先过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,根据DMH EMH ∠∠=,MH ME =,得出Rt DHM ≌Rt EMG ,从而得出HD GE =,CE AD =,最后根据AD 和DF 的值,算出DM =.【详解】解:()14AC BC ==,90ACB ∠=,AB ∴== M 是AB 的中点,AM ∴=45ACM ∠=,AM MC ∴=,∴重叠部分的面积是42=, ∴周长为:44AM MC AC ++==+故答案为4,4+;()2重叠部分是正方形,∴边长为1422⨯=,面积为14444⨯⨯=, 周长为248⨯=.故答案为4,8.()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、E , M 是ABC 斜边AB 的中点,4AC BC ==, 12MH BC ∴=, 12ME AC =, MH ME ∴=,又90NMK HME ∠∠==,90NMH HMK ∠∠∴+=,90EMG HMK ∠∠+=, HMD EMG ∠∠∴=,在MHD 和MEG 中,HMD GME MH MEDHM MEG ∠=∠⎧⎪=⎨⎪∠=∠⎩, MHD ∴≌()MEG ASA ,∴阴影部分的面积等于正方形CEMH 的面积, 正方形CEMH 的面积是1144422ME MH ⋅=⨯⨯⨯=; ∴阴影部分的面积是4;故答案为4.()4如图所示, 过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,∴四边形MECH 是矩形,MH CE ∴=,45A ∠=,45AMH ∠∴=,AH MH ∴=,AH CE ∴=,在Rt DHM 和Rt GEM 中,DMH EMG MH MEDHM GEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, Rt DHM ∴≌.Rt GEMGE DH ∴=,AH DH CE GE ∴-=-,CG AD ∴=,1AD =,1.DH ∴= 145DM ∴=+= .∴四边形DMGC 的周长为:CE CD DM ME +++2AD CD DM =++425=+.【点睛】此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.4.如图,△ABC 中,O 是△ABC 内一点,AO 平分∠BAC ,连OB ,OC .(1)如图1,若∠ACB =2∠ABC ,BO 平分∠ABC ,AC =5,OC =3,则AB = ; (2)如图2,若∠CBO +∠ACO =∠BAC =60°,求证:BO 平分∠ABC ;(3)如图3,在(2)的条件下,若BC =3B 绕点O 逆时针旋转60°得点D ,直接写出CD 的最小值为 .答案:A解析:(1)8;(2)见解析;(3)33【分析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC=AB AC .如图1中,延长CO 交AB 于E ,由OA 平分∠EAC ,推出AE AC =OE OC,推出AE EO =AC OC =53,设AE =5k ,OE =3k ,利用相似三角形的性质构建方程求出k 即可解决问题. (2)如图2中,过点O 作EF ⊥OA 交AB 于E ,交AC 于F ,作CG ∥EF 交AB 于G ,连接OG .证明△AGO ≌△ACO (SAS ),推出OG =OC ,推出∠OGC =∠OCG ,证明O ,G ,B ,C 四点共圆,可得结论.(3)如图3中,以BC 为边向上作等边△BCH ,连接OH ,作HM ⊥BC 于M .证明△HBO ≌△CBD (SAS ),推出OH =CD ,由(2)可知∠BOC =120°,推出当点O 落在HM 上时,OH 的值最小.【详解】解:(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC =AB AC. 理由:过C 作CE ∥DA ,交BA 的延长线于E ,∵CE∥DA,∴∠1=∠E,∠2=∠3,∠1=∠2,∴∠E=∠3,∴AE=AC,∵BDDC =BAAE,∴BDDC =ABAC.如图1中,延长CO交AB于E,∵OA平分∠EAC,∴AEAC=OEOC,∴AEEO =ACOC=53,设AE=5k,OE=3k,∵OB平分∠ABC,∴OC平分∠ACB,∵∠ACB=2∠ABC,∴∠BCE=12∠ACB=∠EBC,∴EB=EC=3k+3,∵∠ACE=∠ABC,∠CAE=∠BAC,∴△ACE∽△ABC,∴ACAB =AEAC,∴5533k k =55k,解得k=58或﹣1(舍弃),∴AB=8k+3=8.故答案为:8.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.∵AO平分∠AEF,∴∠OAE=∠OAF,∵AO=AO,∠AOE=∠AOF=90°,∴△AOE≌△AOF(ASA),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°=∠FOC+∠FCO,∵∠OBC+∠FCO=60°,∴∠FOC=∠OBC,∵EF∥CG,∴∠AGC=∠AEF=60°,∠ACG=∠AFE=60°,∴∠AGC=∠ACG,∴AG=AC,∵∠GAO=∠CAO,AO=AO,∴△AGO≌△ACO(SAS),∴OG=OC,∴∠OGC=∠OCG,∵∠FOC=∠OCG,∴∠OBC=∠OGC,∴O,G,B,C四点共圆,∴∠ABO=∠OCG,∴∠ABO=∠OBC,∴OB平分ABC.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.∵△OBD,△BCH都是等边三角形,∴∠HBC=∠OBD=60°,BH=BC,BO=BD,∴∠HBO=∠CBD,∴△HBO≌△CBD(SAS),∴OH=CD,由(2)可知∠BOC=120°,∴当点O落在HM上时,OH的值最小,此时OH=HM﹣OM=3﹣3,∴CD的最小值为3﹣3.故答案为:3﹣3.【点睛】本题主要考查角平分线、三角形相似的判定和性质、三角形全等的判定和性质、等边三角形等相关知识点,解题关键在于作出辅助线构造相应图形.5.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,请直接写出线段BD与CF的数量关系:;(2)如图2,当点D在线段BC的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系:;②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.答案:B解析:(1)BD=CF;(2)221;(3)①CD=CF+BC,②等腰三角形,见解析【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF=CD+BC ,然后求出答案;(3)中的①与(1)相同,可证明BD=CF ,又点D 、B 、C 共线,故:CD=BC+CF ; ②由(1)猜想并证明BD ⊥CF ,从而可知△FCD 为直角三角形,再由正方形的对角线的性质判定△AOC 三边的特点,再进一步判定其形状. 【详解】解:(1)证明:∵∠BAC=90°,AB=AC , ∴∠ABC=∠ACB=45°, ∵四边形ADEF 是正方形, ∴AD=AF ,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°, ∴∠BAD=∠CAF , 在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAF (SAS ), ∴BD=CF ,(2)与(1)同理,证△BAD ≌△CAF ; ∴BD=CF , ∴CF=BC+CD , ∵AC=AB=2,CD=1,∴BC ==∴CF=1;(3)①BC 、CD 与CF 的关系:CD=BC+CF理由:与(1)同法可证△BAD ≌△CAF ,从而可得: BD=CF , 即:CD=BC+CF②△AOC 是等腰三角形理由:与(1)同法可证△BAD ≌△CAF ,可得:∠DBA=∠FCA , 又∵∠BAC=90°,AB=AC , ∴∠ABC=∠ACB=45°, 则∠ABD=180°-45°=135°, ∴∠ABD=∠FCA=135° ∴∠DCF=135°-45°=90° ∴△FCD 为直角三角形.又∵四边形ADEF是正方形,对角线AE与DF相交于点O,∴OC=12DF,∴OC=OA∴△AOC是等腰三角形.【点睛】本题考查了等腰三角形、正方形的性质及全等三角形的判定与性质等知识点,一般情况下,要证明两条线段相等,就得证明这两条线段所在的两个三角形全等,关键是掌握图形特点挖掘题目所隐含的条件.6.综合与探究问题情境在Rt△ABC中,∠BAC=90°,AB=AC,点D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°至AE,连接DE,CE.探究发现(1)如图1,BD=CE,BD⊥CE,请证明;探究猜想;(2)如图2,当BD=2DC时,猜想AD与BC之间的数量关系,并说明理由;探究拓广(3)当点D在BC的延长线上时,探究并直接写出线段BD,DC,AD之间的数量关系.答案:B解析:(1)证明见解析;(2)10AD BC=,理由见解析;(3)2222BD CD AD+=.【分析】(1)根据题意计算得∠BAD=∠CAE;再根据旋转的性质,通过证明△BAD≌△CAE,从而完成求解;(2)结合(1)的结论,通过△BAD≌△CAE,得CE;通过勾股定理,得2DE=;再通过勾股定理计算,记得得到答案;(3)过点A作AM BC⊥交BC于点M;根据等腰三角形三线合一的性质,得BM CM=,再根据直角三角形斜边中线的性质,得12AM BM CM BC===;根据勾股定理的性质,通过计算,即可得到线段BD,DC,AD之间的数量关系.【详解】(1)由题意得,∠BAC =∠DAE =90° ∵∠BAD +∠CAD =∠CAE +∠CAD ∴∠BAD =∠CAE∵线段AD 绕点A 逆时针旋转90°至AE ∴AD=AE 又∵AB=AC , ∴△BAD ≌△CAE ∴BD=CE ,∠B =∠ACE =45° ∴∠ECD =90°,BD ⊥CE . (2)由(1)得:△BAD ≌△CAE ∴BD=CE ,∠B =∠ACE =45° ∵13CD BC =,BD =2DC ,即23BD BC =, ∴23BD CE BC ==, ∵AD=AE ∴222DE AD AE AD =+=∴∠B =∠ACB =45° ∴∠BCE =∠ACB+∠ACE =90°∴CD 2+CE 2=DE 2,即22212()()233BC BC AD +=, ∴106AD BC =; (3)如图,过点A 作AM BC ⊥交BC 于点M∵∠BAC =90°,AB =AC ∴12BM CM BC ==∴12AM BM CM BC ===∴()1122AM BC BD CD ==-,()1122DM CM CD BC CD BD CD =+=+=+ ∵222AM DM AD +=∴()()2221122BD CD BD CD AD ⎡⎤⎡⎤-++=⎢⎥⎢⎥⎣⎦⎣⎦∴2222BD CD AD +=. 【点睛】本题考查了旋转、等腰直角三角形、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握旋转、等腰三角形三线合一、勾股定理、直角三角形斜边中线的性质,从而完成求解.7.如图1所示,在Rt ABC △中90BAC ∠=︒,AB AC =,2BC =,以BC 所在直线为x 轴,边BC 的垂直平分线为y 轴建立平面直角坐标系,将ABC 绕P 点0,1顺时针旋转.(1)填空:当点B 旋转到y 轴正半轴时,则旋转后点A 坐标为______;(2)如图2所示,若边AB 与y 轴交点为E ,边AC 与直线1y x =-的交点为F ,求证:AEF 的周长为定值;(3)在(2)的条件下,求AEF 内切圆半径的最大值.解析:(1)2,21;(2)见解析;(3)324【分析】(1)作出图形,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,根据2BC =,y 轴垂直平分BC , AB AC =,()0,1P -可证得四边形ABPC 是正方形,则有 '''2BP B PAB A B ,'0'21B B PPO,可得点 A 坐标;(2)作BPQ CPF ∠=∠,交AB 延长线于Q 点,根据四边形ABPC 是正方形,得到90QBP FCP ∠=∠=︒,BP CP =,可证BPQ CPF ASA ≌△△,得BQ CF =,QP FP =,利用ASA 再可证得QPE FPE ≌△△,得QE FE =则AEF 的周长22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为r ,由(2)可得22AF m n =--则2AE AF EF r +-=222n m n m+---=2m =-,当m 最小时,r 最大.得到22222n m nm 整理得:2224220nm n m,关于n的一元二次方程有解,即22244220m m化简得24280m m +-≥,利用二次函数图像可得422m ≥-或422m ≤--(不合题意,舍去)可得m 的最小值为422-,即r 的最大值为2422324,则有AEF 内切圆半径的最大值为324-.【详解】解:(1)如图示,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,∵2BC =,y 轴垂直平分BC ∴1BO CO ==又∵Rt ABC △中,AB AC = ∴1AO =,2AB AC ==∵()0,1P - ∴1PO =∴AO BO CO PO === ∴四边形ABPC 是正方形 ∴'''2BP B P AB A B∴'0'21B B PPO∴点A 坐标为2,21(2)如图2所示,作BPQ CPF ∠=∠,交AB 延长线于Q 点 ∵四边形ABPC 是正方形∴90QBP FCP ∠=∠=︒, BP CP = ∴BPQ CPF ASA ≌△△∴ BQ CF =,QP FP =∵点F 在直线1y x =-∴45FPE ∠=︒∴ 45BPE FPC ∠+∠=︒ ∴45BPE BPQ ∠+∠=︒∴45QPE FPE ∠=∠=︒ ∵EP EP =∴QPE FPE ASA ≌△△∴ QE FE =∴AEF 的周长AE EF AF AE QE AF =++=++ AE BE BQ AF AE BE FC AF =+++=+++22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为 r , 由(2)可得22AF m n =-则2AE AF EFr +-=22n m n m+---=2m =∴当m 最小时,r 最大.∵在Rt AEF 中,222AE AF EF +=∴22222n m nm 整理得: 2224220nm nm ∵关于n 的一元二次方程有解∴22244220m m∴24280m m +-≥利用二次函数图像可得422m ≥-422m ≤--(不合题意,舍去) ∴m 的最小值为422-r 2422324即AEF 内切圆半径的最大值为324. 【点睛】本题主要考查了一次函数的综合应用以及根的判别式、全等三角形的判定与性质、旋转、三角形内切圆等知识,能熟练应用相关性质是解题关键. 8.问题解决一节数学课上,老师提出了这样一个问题:如图①,点P 是等边ABC 内的一点,6PA =,8PB = ,10PC =.你能求出APB ∠的度数和等边ABC 的面积吗?小明通过观察、分析、思考,形成了如下思路:如图①将BPC △绕点B 逆时针旋转60°,得到BPA △,连接PP ',可得BPP '是等边三角形,根据勾股定理逆定理可得AP P '是直角三角形,从而使问题得到解决. (1)结合小明的思路完成填空:PP '=_____________,APP '∠=_______________,APB ∠=_____________ ,ABCS= ______________.(2)类比探究Ⅰ如图②,若点P 是正方形ABCD 内一点,1PA = ,2PB =,3PC =,求APB ∠的度数和正方形的面积.Ⅱ如图③,若点P 是正方形ABCD 外一点,3PA = ,1PB =, 11PC =,求APB ∠的度数和正方形的面积.答案:B解析:(1)8,90˚,150˚,25336;(2)Ⅰ135APB ∠=︒, 722ABCD S =+正方形;Ⅱ45APB ∠=︒, 1032ABCD S =-正方形【分析】(1)根据小明的思路,然后利用等腰三角形和直角三角形性质计算即可;(2)Ⅰ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BE ⊥AP 于点E ,然后利用勾股定理求出AB 的长度即可求出正方形面积;Ⅱ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BF ⊥AP 于点F ,然后利用勾股定理求出AB 的长度即可求出正方形面积; 【详解】解:(1)由题易有P BP '∆是等边三角形,AP P '∆是直角三角形 ∴PP '=BP=8,90?APP '=∠,60?P PB '=∠,∴APB ∠=APP '∠+=P PB '∠150˚, 如图1,过B 作BD ⊥AP 于点D∵APB ∠=150°∴30?BPD =∠在Rt △BPD 中,30?BPD =∠,BP=8∴BD=4,PD=43 ∴AD=6+43∴AB 2=AD 2+BD 2=100+483∴ABC S =234AB =25336+ (2)Ⅰ.如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt △PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=22,∵AP=1,∴AP 2+PP'2=1+8=9,∵AP'2=32=9,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;过B 作BE ⊥AP 于点E ,∵∠APB=135°∴∠BPE=45°∴△BPE 是等腰直角三角形∴BE=BP=22BP =2 ∴AE=1+2∴AB 2=AE 2+BE 2=7+22 ∴2722ABCD S AB ==+正方形Ⅱ.如图3,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=1,AP'=CP=11,在Rt △PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=2,∵AP=3,∴AP 2+PP'2=9+2=11,∵AP'2=(11)2=11,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'-∠BPP'=90°-45°=45°.过B 作BF ⊥AP 于点F∵∠APB=45°∴△BPF 为等腰直角三角形∴PF=BF=22BP =22 ∴2 ∴AB 2=AF 2+BF 2=1032-∴21032ABCD S AB ==-正方形【点睛】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.9.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)2713【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB≌△AEC∴BD=EC,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF≌△ECH∴BF=CH∴BF=CF∴点F是BC的中点∆',连接(3)当点P在△ABC内部,如图所示,将△ABP逆时针旋转120°,得到ACPPP'和PC∆'∵将△ABP旋转120°得到ACP∴∠PAP'=120°,AP='AP=2,BP=CP'=4∴PP'3∵∠AP C'=120°,∠AP P'=30°,∴∠PP C'=90°,∴()2223427+=.当点P在△ABC外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '=23, ∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+= . 综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.10.如图,直线y =﹣x +c 与x 轴交于点B (3,0),与y 轴交于点C ,过点B ,C 的抛物线y =﹣x 2+bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式和点A 的坐标;(2)P 是直线BC 上方抛物线上一动点,PA 交BC 于 D .设t =PD AD,请求出t 的最大值和此时点P 的坐标;(3)M 是x 轴上一动点,连接MC ,将MC 绕点M 逆时针旋转90°得线段ME ,若点E 恰好落在抛物线上,请直接写出此时点M 的坐标. 答案:A解析:(1)y=﹣x2+2x+3,A(﹣1,0);(2)t的最大值为916,此时P (32,154);(3)M(9332-,0)或(9332+,0).【分析】(1)利用待定系数法解决问题即可;(2)连接AC,PC,PB,过点A作AE⊥BC于E,过等P作PF⊥BC于F.设P(m,﹣m2+2m+3).利用相似三角形的性质构建二次函数解决问题即可;(3)过点E作EH⊥x轴于H.设M(m,0),利用全等三角形的性质求出点E的坐标(用m表示),再利用待定系数法解决问题即可.【详解】解:(1)∵直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,∴0=﹣3+c,解得c=3,∴C(0,3),∵抛物线经过B,C,∴9303b cc-++=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0);(2)如图,连接AC,PC,PB,过点A作AE⊥BC于E,过点P作PF⊥BC于F.设P(m,﹣m2+2m+3).∵AE∥PF,∴△PFD∽△AED,∴PDAD =PFAE,∵S△PBC=12•BC•PF,S△ACB=12•BC•AE,∴PDAD =PBCABCSS∆∆,∵S △ABC =12•AB •OC =12×4×3=6, ∴t =PD AD =6PBC S ∆=211133(23)332226m m m ⨯⨯+⨯⨯-++-⨯⨯=﹣14m 2+34m =﹣14(m ﹣32)2+916, ∵﹣14<0, ∴m =32时,t 有最大值,最大值为916,此时P (32,154); (3)如图,过点E 作EH ⊥x 轴于H ,∵∠COM =∠EHM =∠CME =90°,∴∠EMH +∠CMH =90°,∠EMH +∠MEH =90°,∴∠MEH =∠CMO ,∵MC =ME ,∴△COM ≌△MHE (AAS ),∴OC =MH =3,OM =EH ,设M (m ,0),则E (m ﹣3,﹣m ),把E (m ﹣3,﹣m )代入y =﹣x 2+2x +3,可得﹣(m ﹣3)2+2(m ﹣3)+3=﹣m , 整理得,m 2﹣9m +12=0,解得m 933-933+, ∴M 933-,0933+0). 【点睛】本题考查的是二次函数综合题,涉及全等三角形的性质和判定,相似三角形的性质和判定,解题的关键是利用数形结合的思想,在二次函数图象上构造全等三角形或相似三角形,利用几何的性质进行点坐标的求解.11.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)13【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(3)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E在同一直线上,∴AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM≌△EAD(SAS),∴BM=DE=22EG DG+=2246213+=.故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.12.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE=∠CAB,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI ,∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。

人教版数学八年级上册:证明三角形全等的解题思路 (附参考答案)

人教版数学八年级上册:证明三角形全等的解题思路 (附参考答案)

证明三角形全等的解题思路思路一:找边边相等呈现的方式:①公共边(包括全部公共和部分公共);②中点.类型1已知两边对应相等,找第三边相等1.如图,已知AB=DE,AD=EC,D是BC的中点,求证:△ABD≌△EDC.类型2已知两角对应相等,找夹边相等2.如图,∠ABD=∠CDB,∠ADB=∠DBC,求证:△ABD≌△CDB.类型3已知两角对应相等,找其中一角的对边相等3.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?类型4已知直角三角形的直角边(或斜边)相等,找斜边(或直角边)相等4.如图,∠A=∠D=90°,AB=DF,BE=CF.求证:△ABC≌△DFE.思路二:找角角相等呈现的方式:①公共角;②对顶角;③角平分线;④垂直;⑤平行.类型5已知两边对应相等,找夹角相等5.如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.6.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.7.如图,已知AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.类型6已知一边一角对应相等,找另一角相等8.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:△ABC≌△DAE.9.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC,求证:(1)△ADO≌△AEO;(2)△BDO≌△CEO.参考答案专题1 证明三角形全等的解题思路1.证明:∵D 是BC 的中点,∴BD =CD.在△ABD 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,AD =EC ,BD =DC ,∴△ABD ≌△EDC(SSS ).2.证明:在△ABD 和△CDB 中,⎩⎪⎨⎪⎧∠ABD =∠CDB ,BD =DB ,∠ADB =∠CBD ,∴△ABD ≌△CDB(ASA ). 3.解:全等.理由:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D. ∴AB -BF =BD -BC , 即AF =DC.在△AOF 和△DOC 中,⎩⎪⎨⎪⎧∠A =∠D ,∠AOF =∠DOC ,AF =DC ,∴△AOF ≌△DOC(AAS ). 4.证明:∵BE =CF ,∴BE +EC =CF +EC , 即BC =EF.在Rt △ABC 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DF ,BC =FE , ∴Rt △ABC ≌Rt △DFE(HL ).5.证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC. ∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE , ∴△ABC ≌△ADE(SAS ).6.证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△ABE ≌△ACD(SAS ).7.证明:∵AD 是△ABC 的中线,∴BD =CD.在△ACD 和△EBD 中,⎩⎪⎨⎪⎧CD =BD ,∠ADC =∠EDB ,DA =DE ,∴△ACD ≌△EBD(SAS ). 8.证明:∵DE ∥AB ,∴∠CAB =∠EDA.在△ABC 和△DAE 中,⎩⎪⎨⎪⎧∠CAB =∠EDA ,AB =DA ,∠B =∠DAE ,∴△ABC ≌△DAE(ASA ). 9.证明:(1)∵AO 平分∠BAC ,∴∠DAO =∠EAO.∵∠BDC =∠CEB =90°, ∴∠ADO =∠AEO.在△ADO 和△AEO 中,⎩⎪⎨⎪⎧∠ADO =∠AEO ,∠DAO =∠EAO ,AO =AO ,∴△ADO ≌△AEO(AAS ). (2)∵△ADO ≌△AEO , ∴DO =EO.在△BDO 和△CEO 中, ⎩⎪⎨⎪⎧∠BDO =∠CEO ,DO =EO ,∠DOB =∠EOC , ∴△BDO ≌△CEO(ASA ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCFBA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。

有兴趣的同学不妨一试。

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。

求证:∠E =∠FDBCFE A图2证明:连结AC 在∆ABC 和∆CDA 中,AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CFBE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。

2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。

求证:KH ∥BCABC MNQ PKH 图3分析:由已知,BH 平分∠ABC ,又BH ⊥AH ,延长AH 交BC 于N ,则BA =BN ,AH =HN 。

同理,延长AK 交BC 于M ,则CA =CM ,AK =KM 。

从而由三角形的中位线定理,知KH ∥BC 。

证明:延长AH 交BC 于N ,延长AK 交BC 于M ∵BH 平分∠ABC ∴=∠∠ABH NBH 又BH ⊥AH∴==︒∠∠A H B N H B 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH HN(),同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。

我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。

求证:FD ⊥EDBC A FED321图4证明一:连结ADAB AC BD DCDAE DABBAC BD DCBD ADB DAB DAE==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090在∆ADE 和∆BDF 中,AE BF B DAE AD BD ADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。

证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BMBCA EFD M图5BD DCBDM CDE DM DE BDM CDE CE BM C CBM BM ACA ABM AAB AC BF AE AF CE BM=∠=∠=∴≅∴=∠=∠∴∠=︒∴∠=︒=∠==∴==,,,∆∆//9090∴≅∴==∴⊥∆∆AEF BFM FE FM DM DE FD ED说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。

(3)证明二直线的夹角等于90°。

3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。

(截长法)例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

求证:AC =AE +CD图6B CAEDF O142356分析:在AC 上截取AF =AE 。

易知∆∆AEO AFO ≅,∴∠=∠12。

由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。

∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,证明:在AC 上截取AF =AE()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()即AC AE CD =+(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。

(补短法)例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45。

求证:EF =BE +DFGB EC AFD123图7分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。

不妨延长CB 至G ,使BG =DF 。

证明:延长CB 至G ,使BG =DF在正方形ABCD 中,∠=∠=︒=ABG D AB AD 90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE =∠FAE ∴=∴=+GE EFEF BE DF4、中考题:如图8所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。

求证:EC =EDE BD F AC 图8证明:作DF//AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形又AE =BD∴==∴==AE FD BFBA AF EF即EF =ACAC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆题型展示:证明几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC 。

求证:BD DC >D B A1C 2E图9证明一:延长AC 到E ,使AE =AB ,连结DE 在∆ADE 和∆ADB 中,AE AB AD AD ADE ADBBD DE E B DCE B DCE EDE DC BD DC=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆证明二:如图10所示,在AB 上截取AF =AC ,连结DFD BA2C 1F 图1043则易证∆∆ADF ADC ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,DF DC BFD B BFD B BD DF BD DC说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。

【实战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。

求证:DE CD =12C图11AB D E2. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的平分线。

求证:BC =AC +ADA CBD图123. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。

设M 为BC 的中点。

求证:MP =MQBP MQCA 图134. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取CD 的中点F ,连结AF3EA D 41CB FAC ADAF CD AFC CDE =∴⊥∴∠=∠=︒90又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD ∆∆() 2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。

“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

BDC AE证明:延长CA 至E ,使CE =CB ,连结ED在∆CBD 和∆CED 中,CB CE BCD ECDCD CD CBD CEDB E BAC BBAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+A D E E AD AE BC CE AC AE AC AD, 3. 证明:延长PM 交CQ 于RQP BM C ARCQ AP BP APBP CQ PBM RCM⊥⊥∴∴∠=∠,//又BM CM BMP CMR =∠=∠, ∴≅∴=∆∆BPM CRM PM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E ,连结AEAB CD E∠=︒∴=BAC AE BC 902AD BC AD AE BC AE AD⊥∴<∴=>,22 () AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。

相关文档
最新文档