卫星轨道计算.doc

合集下载

卫星轨道计算

卫星轨道计算

v(min )
2 rm in
1 a
8.11k m /
s
16
例2 已知地球半径R=6378km,静止卫星的周 期T=24恒星时=23h56min4.09s(平均太阳时), 求卫星离地面高度h和匀速圆周运动速度v。
❖ 解:由于静止卫星作匀速圆周运动,r=a, 由开普勒第三定理
T 2 a3
ra3
9
❖ 开普勒第二定律(面积定律) :卫星与地心的 连线在相同时间内扫过的面积相等。
B C D
A
10
❖ 由第二定律可导出卫星在轨道上任意位置 的瞬时速度为:
v 2 1 (km/ s)
r a
❖ v为卫星在轨道上的瞬时速度。其中a为椭 圆轨道的半长轴,r为卫星到地心的距离。
为开普勒常数,值为3.986105 km3/s2。
P a(1 e2 ) 8762 (1 0.125) 7669 km
轨道方程 r( ) 7769 km
1 0.125cos
15
公转周期
T 2
a3 2
7789.53 3.986105 6843s 114min
远地点瞬时速度
v(rmax)
2 rm a x
1 a
6.31k m /
s
近地点瞬时速度
半长轴 远地点
半短轴
近地点
14
❖ 解: rmin hA R 439 6378 6817 km
rmax hB R 2384 6378 8762 km
a rmax rmin 7789.5km 2
c rmax rmin 1945km 2
e c rmax rmin 8762 6817 0.125 a rmax rmin 8762 6817

卫星轨道参数计算

卫星轨道参数计算

卫星轨道平面的参数方程:1cos()p e rr :卫星与地心的距离P :半通径(2(1)p a e 或21p b e ) θ:卫星相对于升交点角 ω:近地点角距卫星轨道六要素:长半径a 、偏心率e 、近地点角距ω、真近点角f (或者卫星运动时间t p )、轨道面倾角i 、升交点赤径Ω。

OXYZ─赤道惯性坐标系,X轴指向春分点T ;ON─卫星轨道的节线(即轨道平面与赤道平面的交线),N为升交点;S─卫星的位置;P─卫星轨道的近地点;f─真近点角,卫星位置相对于近地点的角距;ω─近地点幅角,近地点到升交点的角距;i─轨道倾角,卫星通过升交点时,相对于赤道平面的速度方向;Ω─升交点赤经,节线ON与X轴的夹角;e─偏心率矢量,从地心指向近地点,长度等于e;W─轨道平面法线的单位矢量,沿卫星运动方向按右旋定义,它与Z轴的夹角为i;a─半长轴;α,δ─卫星在赤道惯性坐标系的赤经、赤纬。

两个坐标系:地心轨道坐标系、赤道惯性坐标系。

地心轨道坐标系Ox0y0z0:以ee1为x0轴的单位矢量,以W为z0轴的单位矢量,y0轴的单位矢量可以由x0轴的单位矢量与z0轴的单位矢量确定,它位于轨道平面内。

赤道惯性坐标系:OXYZ,X轴指向春分点。

由地心轨道坐标系到赤道惯性坐标系的转换:1.先将地心轨道坐标绕W旋转角(-ω),旋转矩阵为R Z(-ω);2.绕节线ON旋转角(-i),旋转矩阵为R X(-i);3.最后绕Z轴旋转角(-Ω),旋转矩阵为R Z(-Ω);经过三次旋转后,地心轨道坐标系和赤道惯性坐标系重合。

在地心轨道坐标系中,卫星的位置坐标是:0 0 0cos sin 0x r f y r fz地心轨道坐标系到赤道惯性坐标系的转换关系是:000()()()cos cos sin cos sin sin cos cos cos sin sin sin cos =cos sincos cos sin sin sincos cos cos sin cos sin sin cos sin cos z x z x x y R R i R y z z i i i r f i i i i ii2sin 0cos sin()sin sin()cos(1)=sin cos()cos sin()cos 1cos sin()sin r f f f i a e f f ie ff i赤道惯性坐标系下的坐标确定后,可与r 、α、δ联系起来,关系式如下:1222()2arctan arctan(1)1cos 1cos y xz x y p a e re fe f若卫星六要素都已知,则可以解出α、δ。

卫星轨道参数详解

卫星轨道参数详解

卫星轨道参数详解⽬录⼀.卫星根数1.1 六根数1.2 卫星星历两⾏根数(TLE(two line element))tle1:tle2:1.3 航天器的运⾏轨道分类1.4轨道速度的计算⼀.卫星根数1.1 六根数⼈造卫星轨道六要素(也称为轨道六根数)是⽤于表征卫星轨道形状、位置及运动等属性的参数,可⽤来确定任意时刻卫星的轨道和位置。

通常的轨道六根数指的是:半长轴a、离⼼率e、轨道倾⾓i、近⼼点辐⾓ω、升交点经度Ω和真近点⾓φ。

六根数中,前2项确定了轨道形状,第3、4、5项确定了轨道平⾯所处的位置,第6项确定了卫星在轨道中当前所处位置(注意:第6项除了⽤真近点⾓来表征外,还常常⽤平近点⾓、过升交点时刻、过近地点时刻等参量表征,其效果是等价的。

六根数⽰意图半长轴a:这个根数决定了卫星轨道形成的椭圆长半轴的长度,及轨道的⼤⼩。

同时,这个根数也决定了发射卫星到这个轨道需要多少能量,因为根据活⼒公式,⼀个确定轨道的机械能是固定的。

不同任务类型的卫星,或者运载约束,⼯作在不同的轨道⾼度上。

发射到不同轨道所需要的能量都需要依靠半长轴来计算。

如下图所⽰,飞得越⾼的卫星速度越慢,也是依据半长轴计算⽽来的。

偏⼼率e:跟椭圆的扁率是⼀个意思,代表轨道偏⼼的程度。

偏⼼率近似等于0的轨道⼀般称为近圆轨道,此时地球的质⼼⼏乎与轨道⼏何中⼼重合。

偏⼼⼤于0⼩于1,轨道就呈椭圆状,偏⼼率越⼤轨道越扁。

轨道倾⾓i:即轨道平⾯与⾚道平⾯之间的夹⾓,⽤于描述轨道的倾斜程度,简单地说就是轨道平⾯相对于地球⾚道平⾯是躺着的还是⽴着的或者是斜着的。

卫星轨道的倾⾓决定了卫星星下点所能覆盖的地理⾼度,并对发射场和运载⽕箭的运⼒形成硬性约束。

具体⽽⾔,若想卫星⾏下点轨迹覆盖⾼纬度地区,则卫星轨道倾⾓不能⼩于该纬度;发射场的纬度不能⾼于卫星轨道倾⾓;在半长轴和发射场相同的情况下,运载⽕箭发射倾⾓更⾼的卫星需要提供更多的能量。

升交点⾚经Ω:理解这个轨道根数需要在称为惯性系的三维空间中进⾏。

卫星运动基础与轨道计算

卫星运动基础与轨道计算

卫星轨道方程:r p
讨论:
1 e cos l
e=0, r=p 即a=b, 轨道为圆
e<1, m inpp,m axp 为椭圆轨道
1e 2
1e
e1,m inp,m ax 为抛物线,卫星飞离地
球e1 ,m in2pp,m ax
1e 2
为双曲线
发射参数与轨道方程的关系
第一、二、三宇宙速度
OMEGA_0= -0.6E+01 ;//100.0/180.0* pi; 点赤经
// 参 考 时 刻 的 升 交
i0=0.958512160302E+00; //30.0/180.0*pi; //参考时刻的轨道倾角
omega_s=-0.258419417299E+01;//50.0/180.0*pi; 点角距
// 近 地
OMEGA_=-0.819426989566E-08; //升交点赤经变率
i_=-0.253939149013E-09;
//轨道倾角变率
Cuc=0.2E-06;
//改正项振幅
Cus=0.912137329578E-05 ;
Crc=0.201875E+03;
Crs=0.40625E+01;
开普勒方程求解
6.求卫星在轨道面的直角坐标系中的坐标
cos
r
sin
0
r
M
ms
近地点
开普勒方程求解
7.轨道面坐标转向升交点为轴
x0 cos
y0
r
sin
z 0 0
w
w
i 升交点
x
春分点
x0
开普勒方程求解
8.卫星在天球坐标系中位置

《卫星轨道计算》课件

《卫星轨道计算》课件
通过分析卫星轨道的参数变化,判断其是否具有稳定性。
判据种类
包括周期性判据、频率分析判据、Lyapunov指数判据等。
判据应用
用于预测卫星轨道的变化趋势,评估卫星轨道的寿命。
卫星轨道的摄动分析
摄动定义
01
摄动是指卫星轨道受到外部因素的干扰,导致其偏离理想轨迹
的现象。
摄动分类
02
包括地球非球形摄动、大气阻力摄动、太阳辐射压摄动等。
《卫星轨道计算》ppt课件
目录
• 卫星轨道计算概述 • 卫星轨道的数学模型 • 卫星轨道的力学模型 • 卫星轨道的稳定性分析 • 卫星轨道的观测与测量 • 卫星轨道计算的应用与发展
01
卫星轨道计算概述
卫星轨道的基本概念
01
02
03
卫星轨道
指卫星在空间运行的路径 ,由地球引力、太阳辐射 压和其他天体引力作用维 持。
时间测量
通过测量卫星与地面站之间的 时间差来确定卫星位置。
雷达干涉测量
利用雷达信号干涉原理进行高 精度测量。
星间测量
利用卫星之间的信号传输和干 涉进行高精度测量。
卫星轨道的校准与修正
校准
使用已知精确的卫星轨道数据对观测 数据进行校准,以提高精度。
修正
根据观测数据和计算结果对卫星轨道 进行修正,以实现实时更新。
牛顿万有引力定律
总结词
描述了物体之间的万有引力关系,是卫星轨道计算的基础。
详细描述
牛顿万有引力定律指出任何两个物体都相互吸引,引力的大 小与两个物体的质量成正比,与它们之间的距离的平方成反 比。对于卫星轨道计算,地球对卫星的引力是决定卫星运动 轨迹的关键因素。
地球的引力扰动
总结词

卫星运动椭圆轨道计算

卫星运动椭圆轨道计算

卫星运动椭圆轨道计算
卫星的运动轨迹可以使用椭圆轨道来描述。

在计算椭圆轨道时,需要考虑卫星的速度、质量、引力、离心力等因素。

下面将详细介绍卫星运动椭圆轨道计算的相关知识。

首先,我们需要了解椭圆轨道的基本定义。

椭圆轨道是指一个物体以一个焦点为中心,另一个焦点为另一端点的椭圆运动轨迹。

在卫星运动中,这两个焦点分别是地球的中心和一个虚拟点。

其次,我们需要了解椭圆轨道的参数。

椭圆轨道的参数包括长轴、短轴、偏心率、倾角等。

其中,长轴是椭圆轨道的最长直径,短轴是椭圆轨道的最短直径,偏心率是椭圆轨道焦点距离轨道中心的距离与长轴的比值,倾角是轨道平面与地球赤道面的夹角。

接下来,我们需要了解卫星的运动方程。

在计算卫星的运动轨迹时,需要根据牛顿运动定律来求解卫星的加速度和速度,然后再根据运动方程求解卫星的位置。

具体来说,卫星的运动方程为:
f(r) = r - (a*(1 - e^2)/(1 - e*cos(theta))) - r0 = 0
其中,f(r)是卫星的运动方程,r是卫星距离地心的距离,a是椭圆轨道的长轴,
e是椭圆轨道的偏心率,theta是卫星当前的真近点角度,r0是卫星当前的距离地心的距离。

最后,我们需要了解卫星轨道的计算方法。

在计算卫星轨道时,可以采用数值模拟和解析计算两种方法。

数值模拟方法利用计算机模拟卫星在轨道上的运动,可以得到较为准确的结果;解析计算方法则通过求解卫星的运动方程来计算卫星的运动轨迹,可以得到精确的结果,但需要较高的数学能力。

以上是关于卫星运动椭圆轨道计算的相关知识介绍,希望对您有所帮助。

卫星轨道计

卫星轨道计

卫星轨道计算1.轨道根数如果知道卫星的轨道根数,可以根据它们求出卫星在任一时刻的位置。

1.1 开普勒六参数卫星的轨道根数包括六个积分常数,如图1,包括,a为轨道长半轴;e为轨道偏心率;i 为卫星运动轨道面与赤道面的夹角;Ω为卫星轨道升交点N的赤道经度(自春分点算起);ω为轨道近地点极角,即轨道平面内升交点到近地点的角度;ζ为卫星过近地点时刻1. 轨道半长轴,是椭圆长轴的一半。

2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。

3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。

对于位于赤道上空的同步静止卫星来说,倾角就是0。

4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。

这个点和春分点对于地心的张角称为升交点赤经。

5. 近地点幅角:这是近地点和升交点对地心的张角。

6. 过近地点时刻:卫星位置随时间的变化需要一个初值。

其中i、Ω、ω决定卫星轨道平面和长轴在空间的位置,而a、e、ζ可求出卫星在任何时刻在轨道上的位置。

1.2 TLE卫星星历TLE两行根数格式如下:AAAAAAAAAAAAAAAAAAAAAAAA1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN以国际空间站为例ISS (ZARYA)1 25544U 98067A 06052.34767361.00013949 00000-0 97127-4 0 39342 25544 051.6421 063.2734 0007415 308.6263 249.9177 15.74668600414901(1)第0行第0行是一个最长为24个字符的卫星通用名称,由卫星所在国籍的卫星公司命名,如SINOSAT 3。

卫星轨道参数计算

卫星轨道参数计算

卫星轨道平面的参数方程:1cos()p e rr :卫星与地心的距离P :半通径(2(1)p a e 或21p b e ) θ:卫星相对于升交点角 ω:近地点角距卫星轨道六要素:长半径a 、偏心率e 、近地点角距ω、真近点角f (或者卫星运动时间t p )、轨道面倾角i 、升交点赤径Ω。

OXYZ─赤道惯性坐标系,X轴指向春分点T ;ON─卫星轨道的节线(即轨道平面与赤道平面的交线),N为升交点;S─卫星的位置;P─卫星轨道的近地点;f─真近点角,卫星位置相对于近地点的角距;ω─近地点幅角,近地点到升交点的角距;i─轨道倾角,卫星通过升交点时,相对于赤道平面的速度方向;Ω─升交点赤经,节线ON与X轴的夹角;e─偏心率矢量,从地心指向近地点,长度等于e;W─轨道平面法线的单位矢量,沿卫星运动方向按右旋定义,它与Z轴的夹角为i;a─半长轴;α,δ─卫星在赤道惯性坐标系的赤经、赤纬。

两个坐标系:地心轨道坐标系、赤道惯性坐标系。

地心轨道坐标系Ox0y0z0:以ee1为x0轴的单位矢量,以W为z0轴的单位矢量,y0轴的单位矢量可以由x0轴的单位矢量与z0轴的单位矢量确定,它位于轨道平面内。

赤道惯性坐标系:OXYZ,X轴指向春分点。

由地心轨道坐标系到赤道惯性坐标系的转换:1.先将地心轨道坐标绕W旋转角(-ω),旋转矩阵为R Z(-ω);2.绕节线ON旋转角(-i),旋转矩阵为R X(-i);3.最后绕Z轴旋转角(-Ω),旋转矩阵为R Z(-Ω);经过三次旋转后,地心轨道坐标系和赤道惯性坐标系重合。

在地心轨道坐标系中,卫星的位置坐标是:0 0 0cos sin 0x r f y r fz地心轨道坐标系到赤道惯性坐标系的转换关系是:000()()()cos cos sin cos sin sin cos cos cos sin sin sin cos =cos sincos cos sin sin sincos cos cos sin cos sin sin cos sin cos z x z x x y R R i R y z z i i i r f i i i i ii2sin 0cos sin()sin sin()cos(1)=sin cos()cos sin()cos 1cos sin()sin r f f f i a e f f ie ff i赤道惯性坐标系下的坐标确定后,可与r 、α、δ联系起来,关系式如下:1222()2arctan arctan(1)1cos 1cos y xz x y p a e re fe f若卫星六要素都已知,则可以解出α、δ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档