2019-2020学年重庆八中九年级上学期期末考试数学试卷

合集下载

2019-2020学年重庆八中九年级上学期期末数学复习卷(解析版)

2019-2020学年重庆八中九年级上学期期末数学复习卷(解析版)

2019-2020学年重庆八中九年级上学期期末数学复习卷一、单选题1.菱形不具备的性质是( )A .对角线一定相等B .对角线互相垂直C .是轴对称图形D .是中心对称图形 【答案】A根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线,即可判断.根据菱形的性质可知:菱形的对角线互相垂直平分,故B 正确;菱形既是轴对称图形,又是中心对称图形,故C ,D 正确;菱形不具备对角线一定相等,故A 错误;故选:A .本题考查了菱形的性质,解决本题的关键是掌握菱形的性质.2.|–5|的值是( )A .15B .5C .–5D .–15【答案】B根据绝对值的定义直接写出答案.解:因为|-5|=5.故选B .本题考查了绝对值,是基础题.3.点M(5,y)与点N(x 、-6)关于x 轴对称,则x 、y 的值分别为( )A .5,-6B .5,6C .-5,-6D .-5,6【答案】B【解析】已知点M(5,y)与点N(x 、-6)关于x 轴对称,可得x=5,y=6,故选B.4.如图,点B C E 、、三点在同一直线上,且,,AB AD AC AE BC DE ===;若12394∠+∠+∠=,则3∠的度数为( )A .49°B .47°C .45°D .43°【答案】B 利用“边边边”证明△ABC 和△ADE 全等,根据全等三角形对应角相等可得∠ABC=∠1,∠BAC=∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3=∠1+∠2,然后求解即可.在△ABC 和△ADE 中AB AD AC AE BC DE =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADE(SSS),∴∠ABC=∠1,∠BAC=∠2,在△ABC 中,由三角形的外角性质得,∠3=∠ABC+∠BAC=∠1+∠2,∵∠1+∠2+∠3=94°,∴2∠3=94°,∴∠3=47°. 故选B.本题考查了全等三角形的判断与性质,解题的关键是熟练的掌握全等三角形的性质与运用. 5.下列说法正确的个数是( )①.两个无理数的和一定是无理数 ②.两个无理数的和一定是有理数③.两个无理数的积一定是无理数 ④.两个无理数的积一定是有理数A .0个B .1个C .2个D .3个【答案】A根据无理数的性质可对每一个结论进行分析,举出反例,即可进行判断.解:①两个无理数的和不一定是无理数,如0ππ-+=,是有理数,此说法错误;②两个无理数的和不一定是无理数,如2πππ+=,是无理数,此说法错误;③两个无理数的积不一定是无理数,如(2=-,是有理数,此说法错误;④两个无理数的积不一定是有理数,如(=,是无理数,此说法错误;综上:说法正确的个数为0.故选:A .本题考查了实数的运算,涉及到了两个无理数的和、差、积、商的运算.6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)【答案】C如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴12 GP GFPC BC==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键.7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个【答案】B 根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确, 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②正确,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误, 综上所述:①②正确,③④错误.故选B .本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.如图,若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 也在抛物线1L 上(点A 与点B 不重合),我们定义:这样的两条抛物1L ,2L 互为“友好”抛物线.则错误的说法是( )A .一条抛物线的“友好”抛物线可以有多条.B .如果抛物线2284y x x =-+与y 轴的交点C 关于该抛物线对称轴的对称点为D ,则以点D 为顶点的2284y x x =-+的友好抛物线的表达式为()2244y x =--+. C .若抛物线()21y a x m n =-+的任意一条友好抛物线的解析式为()22y a x h k =-+,则120a a +=.D .若抛物线()21y a x m n =-+的任意一条友好抛物线的解析式为()22y a x h k =-+,则当m x h ≤≤时,两条抛物线中y 同时随x 增大而增大.【答案】D根据“友好”抛物线的定义可知一条抛物线的“友好”抛物线有无数条,即可判断A 选项正确;先求抛物线2284y x x =-+与y 轴的交点C ,进而得到D 点坐标,再根据“友好”抛物线的定义求出表达式即可判断B 选项;将(),m n 代入()22y a x h k =-+,将(),h k 代入()21y a x m n =-+,两式相加即可判断C 选项;根据图象即可判断D 选项错误.A .根据“友好”抛物线的定义,可知经过抛物线1L 的顶点,且以抛物线1L 上任意一点作为顶点的抛物线,都是1L 的“友好”抛物线,故一条抛物线的“友好”抛物线可以有无数条,故A 选项正确;B .抛物线()22284=224=-+--y x x x ,顶点坐标为(2,-4)当0x =时,4y =,则C 点坐标为(0,4), ∵对称轴8222x -=-=⨯,点C 关于该抛物线对称轴的对称点为D ∴D 点坐标为(4,4),设抛物线2284y x x =-+的友好抛物线表达式为()244y a x =-+ 将(2,-4)代入得()24244-=-+a ,解得2a =-∴以点D 为顶点的2284y x x =-+的友好抛物线的表达式为()2244y x =--+ 故B 正确;C .抛物线()21y a x m n =-+的顶点为(),m n ,()22y a x h k =-+的顶点为(),h k ∵它们互为“友好”抛物线∴(),m n 在抛物线()22y a x h k =-+上,(),h k 在抛物线()21y a x m n =-+上 ∴()22-+=a m h k n ①,()21-+=a h m n k ②①+②得:()()2221-++-+=+a m h k a h m n n k。

八中2019年秋季9上期末-含答案

八中2019年秋季9上期末-含答案

重庆八中2019—2020学年度(上)期末考试初三年级数 学 试 题(满分150分,时间120分钟)命题:卢云 周世建 龚元敏 程灿 审核:李铁 打印:程灿 校对:周世建一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将请将答题卡...上对应题目的正确答案标号涂黑. 1.|2020|−=( )A .2020B .2020−C .20201D .20201−2.用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C . 椭圆D .三角形3.下列运算正确的是( )A .134−=−−B .51)51(52−=−⨯C .842x x x =⋅D .2382=+4.下列命题正确的是( )A .1−x 有意义的x 取值范围是1>x .B .一组数据的方差越大,这组数据波动性越大.C .若'5572︒=∠α,则α∠的补角为'10745︒.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为83. 5.已知)2,3(−A 关于x 轴对称点为'A ,则点'A 的坐标为( )A .)2,3(B .)3,2(−C .)2,3(−D .)2,3(−−6.如图,用尺规作图作∠BAC 的平分线AD ,第一步是以A 为圆心,任意长为半径画弧,分别交AB ,AC 于点E ,F ;第二步是分别以E ,F 为圆心,以大于EF 21长为半径画弧,两圆弧交于D 点,连接AD ,那么AD 为所作,则说明∠CAD =∠BAD 的依据是( )A .SSSB .SASC .ASAD .AAS7.如图,菱形ABCD 中,过顶点C 作BC CE ⊥交对角线BD 于E 点,已知134A ∠=︒, 则BEC ∠的大小为( ) A .︒23B .︒28C .︒62D .︒67B第7题图 第9题图 第10题图 8.按下面的程序计算:若开始输入的x 值为正整数,最后输出的结果为22,则开始输入的x 值可以为( ) A .1B .2C .3D .49.如图所示,已知AC 为O 的直径,直线P A 为圆的一条切线,在圆周上有一点B ,且使得BC =OC ,连接AB ,则BAP ∠的大小为( )A .︒30B .︒50C .︒60D .︒7010.如图,在平面直角坐标系中,已知点)6,3(−A ,)3,9(−−B ,以原点O 为位似中心,相似比为31,把△ABO 缩小,则点B 的对应点'B 的坐标是( ) A .)1,3(−−B .)2,1(−C .)1,9(−或)1,9(−D .)1,3(−−或)1,3(11.A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中l 1,l 2表示两人离A 地的距离S (km )与时间t (h )的关系,结合图象,下列结论错误的是( ) A .l 1是表示甲离A 地的距离与时间关系的图象B .乙的速度是h km /30C .两人相遇时间在h t 2.1=D .当甲到达终点时乙距离终点还有km 4512.如图所示,抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点 坐标为()0,3,其部分图象如图所示,下列结论: ①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是10x =,22x =; ④方程20ax bx c ++=有一个实根大于2; ⑤当0x <时,y 随x 增大而增大. 其中结论正确的个数是( ) A .4个B .3个C .2个D .1个二、填空题:(本大题共6个小题,每小题4分,共答题卡...中对应的横线上. 13.分解因式:x x 22−= .14.如图,扇形AOB 的圆心角是为90°,四边形OCDE 是边长为1的正方形,点C ,E 分别在OA ,OB ,D在弧AB π)第14题图 15.若关于x 的分式方程2223=++x mx 有增根,则m 的值为 . 16.如图,四边形ABCD 的顶点都在坐标轴上,若AB ∥CD ,△AOB 与△COD 面积分别为8和18,若双曲线x ky =恰好经过BC 的中点E ,则k 的值为 .17.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角∠ACB=72°,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为 cm .(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.1)EDB图1 图218.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =16.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当BN ∥PE 时,t 的值为 .三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:3924x y x y −=⎧⎨+=⎩; (2)化简:2442()m m m m m −−−÷.20.如图,在平行四边形ABCD 中,E 为AD 边上一点,BE 平分ABC ∠,连接CE ,已知6DE =,8CE =,10AE =.(1)求AB 的长;(2)求平行四边形ABCD 的面积; (3)求cos AEB ∠.H D E FACBDECABlNMFPC ABE21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百分制)进行分析,过程如下: 收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a = ,b = ,c = ,d = .(2) 估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人? (3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.22.如图,平面直角坐标系内,二次函数2y ax bx c =++的图象经过点()2,0A −,()4,0B , 与y 轴交于点()0,6C . (1)求二次函数的解析式;(2)点D 为x 轴下方二次函数图象上一点,连接AC ,BC ,AD ,BD ,若△ABD 的面积是△ABC 面积的一半,求D 点坐标23.一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x y =,那么称这个四位数为“对称数”.(1)最小的“对称数”为 ;四位数A 与2020之和为最大的“对称数”,则A 的值为 ;(2)一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为8,且千位数字a 使得不等式组⎪⎩⎪⎨⎧>−−≤−−a x x x 15221443恰有4个整数解, 求出所有满足条件的“对称数”M 的值.24.如图,C 是线段AB 上一动点,以AB 为直径作半圆,过点C 作CD AB ⊥交半圆于点D ,连接AD .已知8AB cm =,设A 、C 两点间的距离为x cm , △ACD 的面积为y 2cm .(当点C 与点A 或点B 重合时,y 的值为0)请根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数) (1)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:a =______;b =______;c =______.(2)根据表中数值,继续描出(1)中剩余的三个点(x ,y ),画出该函数的图象并写出这个函数的一条性质;(3)结合函数图象,直接写出当△ACD 的面积等于52cm 时,AC 的长度约为 cm .DCBA。

重庆八中2019-2020学年度初2020级九年级上定时练习(七)数学试题

重庆八中2019-2020学年度初2020级九年级上定时练习(七)数学试题

重庆八中初2021级九年级〔上〕定时练习〔七〕数学试题一、选择题〔本大题12个小题,每题4分,共48分〕在每个小题的下面,都给出了代号为 A B C D的四个答案,其中只有一个是正确的,请将做题卡上题号右侧正确答案所对应的方框涂黑^1,—1.——的相反数是〔〕3A. 1 B . -- C. 3 D. - 33 32,假设代数式+J X有意义,那么实数x的取值范围是〔〕x「1A . X#1B. X>0O. X=0D. X之0且X013.以下说法正确的选项是〔〕A.有理数和数轴上的点--- 对应B.不带根号的数一定是有理数C.一个数的平方根仍是它本身D. J4的平方根是土夜4.假设X, y均为正整数,且2X4y =32,贝U X+2y的值为〔〕A. 3B. 4C. 5D. 65.如图,数轴上有O, A, B, C, D五点,根据图中各点所表示的数, 表示数拒〔JTT-J2〕的点会落在〔〕A.点O和A之间B.点A和B之间O g 3cqC.点B和C之间D.点C和D之间一〔J J 2 3—4 /6.如图,AABC是..的内接三角形, AD 是..的直径,/ABC=45;那么/CAD=〔7.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心, AB=40m,点C是弧AB的中点,点D是AB的中点,且CD=10m,那么这段弯路所在圆的半径为〔A.25mB.24mC.30mD.60m8.以下图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5 张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为〔〕① ② ② ④A. 11 B . 13 C. 15 D. 179.如图,斜坡AB长20米,其坡度i=1: 0.75, BCXAC,斜坡AB正前方一座建筑物ME上悬挂了一幅巨型广告, 小明点B测得广告顶部M点的仰角为26.6.,他沿坡面BA走到坡脚A处,然后向大楼方向继续沿直线行走10米来到D处,在D处测得广告底部N点的仰角为50°,此时小明距大楼底端E处20米.B、C、A、D、E、M、N 在同一平面内,C、A、D、E在同一条直线上,那么广告的高度MN是〔〕〔精确到1米〕〔参考数据:sin50° =0.77, tan50° =1.19, sin26.6° =0.45, tan26.6°0.50.A . 12 B. 13 C. 14 D. 15第10题囹.................. ................................................... ............................... 4 k ,,10.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan/AOC=—,反比例函数y=—的图象3 x经过点C,与AB交于点D,假设ACOD的面积为20,那么k的值等于〔〕A. 20 B . 24 C. -20 D. -242〔 a - x〕 - -x - 4a 1 - x ................................. ,一, 一 ,、11 .如果关于x的分式万程一1-3 =一1有负分数解,且关于x的不等式组3 3x + 4 的解集为x 1 x 1 x 12x<-2,那么符合条件的所有整数a的积是〔〕A. - 3B. 0C. 3D. 912 .如图,二次函数y=ax 24bx+c 的图象经过点 A 〔- 3,0〕其对称轴为直线x= - 1,有以下结论:①abc<0;② a+b^^O;@ 5a+4c<0;@ 4ac-b 2 >0愚假设 P( - 5, y i)Q( m, y 2)是抛物线上两点,且 y i 〉y 2, 那么实数m 的取值范围是^5<m<3.其中正确结论的个数是〔 〕A. 1B. 2C. 3D. 4二、填空题〔本大题 6个小题,每题 题卡中对应的横线上.13 . .9 〔_1〕,-、/3sin45'= ___________ .2—元.15 .如图,矩形 ABCD 中,AD =4, AB=2.以A 为圆心,AD 为半径作弧交 BC 于点F 、交AB 的延长线于点 E,那么图中阴影局部的面积为16 .从-1, 1, 2这三个数中随机抽取两个数分别记为x, y,把点M 的坐标记为〔x,y 〕,假设点N 为〔3,0〕,那么在平面直角坐标系内直线 MN 经过第二象限的概率为 .17 . A, B 两地相距280千米,甲、乙两车同时相向匀速出发,甲车出发0.5小时后发现有东西落在出发地 A 地,于是立即按原速沿原路返回,在A 地取到东西后立即以原速继续向 B 地行驶,并在途中与乙车第一次相遇, 相遇后甲、乙两车继续以各自的速度朝着各自的方向匀速行驶, 当乙车到达A 地后,立即掉头以原速开往 B 地〔甲车取东西、掉头和乙车掉头的时间均忽略不计〕.两车之间的距离y 〔千米〕与甲车出发的时间 x 〔小 时〕之间的局部关系如下图,那么当乙车到达B 地时,甲车与B 地的距离为 千米.4分,共24分〕请将每题的答案直接填在答14.今年“十一〞黄金周期间某市实现旅游收入 5.71亿元,该数据用科学记数法表示第15题图18. 10月28日第七届军运会在武汉闭幕, 中国人民解放军体育代表团共获得133枚金牌、64枚银牌、42枚铜牌,位居金牌榜和奖牌榜第一. 闭幕后对局部志愿者做了一次“我最喜爱观看的比赛〞问卷调查(每名志愿者都填了调查表,且只选了一个工程),统计后射击、游泳、田径、篮球榜上有名.其中选射击的人数比选游泳的少8人;选田径的人数不仅比选游泳的人多,且为整数倍;选田径与选游泳的人数之和是选篮球与选射击的人数之和的5倍;选田径与选篮球的人数之和比选射击与选游泳的人数之和多24人.那么参加调查问卷的志愿者有人.三、解做题:(本大题8个小题,第26小题8分,其余每题10分,共78分)解答时每题必须给出必要的演算过程或推理步骤,请将解答书写在做题卡中对应的位置上. 19.化简:(1) 2(x-1 j[2x-1 )-2(x+1 ) (2) _2x__ 2X16X 1 X -12 一20.如图,在RtAABC 中,/ ACB=90 , sin A=一,点3 DE = 2, DB=9.(1)求BC的长.(2)求tanZCDE.x 3-2 ""x -2x 1D、E分别在AB、AC上,DE LAC,垂足为点E,D<x<90, D 组:90WXW100)乙校成线的扇形统计图a.甲校学生的测试成绩在 C 组的是:80, 82.5, 82.5, 82.5, 85, 85,85.5, 89, 89.5b.甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数 众数甲校 83.2 a 82.5 乙校80.68180根据以上信息,答复以下问题:(1)扇形统计图中C 组所在的圆心角度数为 度,乙校学生的测试成绩位于 D 组的人数为 人. (2)表格中a=,在此次测试中,甲校小明和乙校小华的成绩均为82.5分,那么两位同学在本校测试成绩中的排名更靠前的是 (填“小明〞或“小华〞)(3)假设甲校学生共有 400人参加此次测试,估计成绩超过 86分的人数.622.我们已经知道反比例函数的图象是双曲线,研究函数y=-------- 的图象和性质.该函数y 与自变量x 的几组对 x -3应值如下表,并画出了局部函数图象,如下图 ^21.为了解甲、乙两校学生英语口语的学习情况, 行了整理和分析,绘制成了如下两幅统计每个学校随机抽取20个学生进行测试,测试后对学生的成绩进(数据分组为: A 组:60<x<70, B 组:70Wx<80, C 组:80甲校成虢的糜数分布直方(1)函数y =-3 自变量的取值范围是(2)补全函数图像;(3)假设点A (a, c) B (b, c)为该函数图象上不同的两点,那么a+b=(4)直接写出当6之x—2时x的取值范围.x -323.一个多位正整数,将其首两位截去,假设余下的数与这个首两位数的和能被11整除,那么我们称这样的数为“双十一数〞.如1221,截去首两位12,余下的数为21, 21与12的和为33,能被11整除,那么1221是“双(1)判断5665 (是〞或“不是〞)“双十一数〞;将任意一个“双十一数〞的首两位数与余下的数交换得到一个新数,该新数被11整除;(能〞或“不能〞)(2) 一个各位数字均不为0的三位正整数m,将其各位上的数字重新排列得到新三位数械,在所有重新排2b - c 列的数中,当a+2b-3c最大时,我们称此时的三位数为m的“自恋数〞,并规定f(m)= --------------- .比方a 123,重新排歹U 可得132, 213, 231 , 312, 321 , 1+2父3—3父2=1, 2+2父1—3乂3=5,2+2父3-3父1=5, 3+2x1-3父2=-1, 3+2父2-3父13,由于5>4>1 1 尸5,所以231 是2 3-1 5123的“自恋数〞,那么f(123)=-2—=万.假设一个三位“双十一数〞t,它的十位数字与个位数字之和是7,且十位数字大于个位数字,求所有这样的“双十一数〞中f(t )的最大值.24.某水果微商九月中旬购进了榴莲和江安李共600千克,榴莲和江安李的进价均为每千克24元,榴莲以售价每千克45元,江安李以售价每千克36元的价格很快销售完.(1)假设水果微商九月中旬获利不低于10440元,求购进榴莲至少多少千克?(2)为了增加销售量,获得更大利润,根据销售情况和“国庆中秋双节〞即将来临的市场分析,在进价不变a% (降价后售价不低的情况下该水果微商九月下旬决定调整售价,将榴莲的售价在九月中旬的根底上下调5 -进价),江安李的售价在九月中旬的根底上上涨—a%;同时,与(1)中获得最低利润时的销售量相比,榴5 … ........................ .......................... ...................莲的销售量下降了一a%,而江安李的销售量上升了25%,结果九月下旬的销售额比九月中旬增加了360元,求a的值.25.如图,平行四边ABCD中,AB=BE, F是AB上一点,FB=CE,连接DF,点G是FD的中点,且满足AAFG是等腰直角三角形,连接GC, GE. A__________________________ 办(1)假设AF=3 应,求AD 的长;(2)求证:GD=V2GE;1 226.在平面直角坐标系中,抛物线丫=万/-x-4与x轴交于AB两点〔点A在点B的左侧〕,与y轴交于点C.〔1〕如图1,连接B,C两点,P为直线BC下方抛物线上一动点,连接OP交线段BC于点D,连接CP.线段AO 在x轴上平移后的线段记作A'O',连接A'D、PO’,当S班最大时,求四边形A'DPO'周长的最小值.S COD〔2〕如图2,将该抛物线沿一定方向平移后过点巳点E和点C关于原点对称,交x轴于F,B两点〔点F在点B的左侧〕,连接EF,将AEOF绕点O逆时针旋转一定的角度a 〔0,3a<360口〕,彳4到AEOF',其中直线E'F'与x轴形成的夹角记作P,当P+45红EFO时,求直线EF′与坐标轴的交点坐标,假设不存在, 请说明理由.。

重庆八中2019-2020学年度初三上期末考试及参考答案

重庆八中2019-2020学年度初三上期末考试及参考答案

C. x2 x4 = x8
D. 2 + 8 = 3 2
A. x −1 有意义的 x 取值范围是 x 1 .
B.一组数据的方差越大,这组数据波动性越大.
C.若 = 7255' ,则 的补角为10745' .
D.布袋中有除颜色以外完全相同的 3 个黄球和 5 个白球,从布袋中随机摸出一个球是
(1)通过画图、测量、计算,得到了 x 与 y 的几组值,如下表:
x / cm 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
y / cm2 0 0.5 1.3 2.3 a 4.6 5.8 7.0 8.0 8.9 9.7 10.2 10.4 10.2 b c 0
恰有
4
个整数解,
5x −1 a
求出所有满足条件的“对称数”M 的值.
24.如图, C 是线段 AB 上一动点,以 AB 为直径作半圆,过点 C 作 CD ⊥ AB 交半圆于点 D ,连接 AD .已知 AB = 8cm ,设 A 、 C 两点间的距离为 x cm , △ ACD 的面积为 y cm2 .(当点 C 与点 A 或点 B 重合时, y 的值为 0 )请根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)
补全表格中的数值: a = ______; b = ______; c = ______.
(2)根据表中数值,继续描出(1)中剩余的三个点(x,y),画出该函数的图象并写出
这个函数的一条性质;
(3)结合函数图象,直接写出当△ ACD 的面积等于 5 cm2 时,AC 的长度约为

重庆八中2019-2020学年度(上)期末考试初三年级数学试题评分标准

重庆八中2019-2020学年度(上)期末考试初三年级数学试题评分标准

重庆八中2019—2020学年度(上)期末考试初三年级数学参考答案一、选择题(每小题4分,共48分)二、填空题(每小题4分,共24分) 13.()2x x − 14.12π− 15.316.617.6018.4021三、解答题(共78分)19.(1)32x y =⎧⎨=−⎩…………5分;(2)原式22m m =−…………5分,结果若未把括号打开建议扣1分20.(1)∵四边形ABCD 是平行四边形∴AD ∥BC ∴AEB CBE ∠=∠ 又∵BE 平分ABC ∠ ∴CBE ABE ∠=∠ ∴AEB ABE ∠=∠∴AB AE =……………………………………………………………………2分 ∵10AE =∴10AB =………………………………………………………………………3分 (2)∵四边形ABCD 是平行四边形∴CD AB = ∵10AB = ∴10CD =∵在△CED 中,10CD =,8CE =,6ED = ∴222ED CE CD += ∴90CED ∠=︒∴CE AD ⊥………………………………………………………………………5分 ∴S □ABCD ()1068128AD CE =⋅=+⨯=…………………………………………6分 (3)∵四边形ABCD 是平行四边形∴BC ∥AD 且BC AD =∴90BCE CED ∠=∠=︒,16AD =∴Rt △BCE中,BE =8分∴cos cos BC AEB EBC BE ∠=∠===………………………………10分 21.(1)11,10,77.5,81a b c d ====……………………………………………………4分 (2)由样本数据可得,七年级得分在80分及以上的占712205+=,故七年级得分在80分及以上的大约26002405⨯=人;八年级得分在80分及以上的占1023205+=,故八年级得分在80分及以上的大约36003605⨯=人.故共有600人.………………………7分(3) 该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可)…………………10分22.(1)233642y x x =−++………………………………………………………………4分(2)由△ABD 的面积是△ABC 面积的一半知:132D y OC ==,又点D 在x 轴下方,故3D y =−…………………………………………………………………………… 6分代入233642y x x =−++解得:11x =,21x =,故点D坐标为()1,3−或)1,3−………………………………………………………10分23.(1)1010;7979………………………………………………………………………4分(2)由⎪⎩⎪⎨⎧>−−≤−−ax x x 15221443得145a x +<≤,由x 有四个整数解,得14a −≤<,又a 为千位数字,所以1,2,3a =.……………………………………………………………… 6分设个位数字为b ,由题意可得,十位数字为8b −,故()38a b a b +=+−, 4b a =+.…………………………………………………………………………7分故满足题设条件的M 为1335、2626、3917…………………………………10分24.(1) 3.5a =,9.3b =,7.3c =(允许合理的误差存在)…………………………3分 (2)描点1分,连线2分,答案图略;性质答案参考:当06x ≤≤时,y 随x 增大而增大,当68x <≤时,y 随x 增大而减小;当6x =时,y 的最大值为10.4.(性质2分) (3)2.7或7.8(允许合理的误差存在)(2分)25. (1)设甲单价为x 万元,则乙单价为()140x −万元,则:360480140x x=− 解得60x =………………………………………………………………………3分 经检验,60x =是所列方程的根.答:甲设备60万元每台,乙设备80万元每台.……………………………4分 (2)设每吨燃料棒成本为a 元,则其物资成本为40%a ,则:540%40%104a a a −=⨯+,解得100a =………………………………………6分设每吨燃料棒在200元基础上降价x 元,则()()200100350536080x x −−+=解得112x =,218x =……………………………………………………………8分 ∵2008%x ≤⨯ ∴12x =∴每吨燃料棒售价应为188元.………………………………………………10分26.(1)等边△CDE 2分 (2)①证明:略;……………………………………………………………………6分②提示:'BD ED CD ==,'BD AB 8分。

重庆八中九年级上学期期末考试数学试卷及答案解析

重庆八中九年级上学期期末考试数学试卷及答案解析

2020-2021学年重庆八中九年级上学期期末考试数学试卷一.选择题(共12小题,满分48分,每小题4分)
1.如果一个有理数的绝对值是6,那么这个数一定是()
A.6B.﹣6C.﹣6或6D.无法确定
2.用一个平面去截正方体ABCD﹣A1B1C1D1(如图),所截得的截面不可能的是()
A.正三角形B.正方形C.正五边形D.正六边形
3.下列运算正确的是()
A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.√2+√8=3√2 4.下列语句不是命题的是()
A.连结AB B.对顶角相等
C.相等的角是对顶角D.同角的余角相等
5.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5
6.如图,仔细观察用直尺和圆规作出∠AOB的角平分线OE示意图,请你根据所学知识,说明画出的∠AOE=∠BOE的依据是()
A.ASA B.SAS C.AAS D.SSS
7.如图,菱形ABCD的边长为2,∠B=45°,AE⊥BC,则这个菱形的面积是()
A.4B.8C.2√2D.√2
第1 页共26 页。

2019-2020学年重庆八中九年级上册期末数学试卷

2019-2020学年重庆八中九年级上册期末数学试卷

2019-2020学年重庆八中九年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共48.0分)1.−2的绝对值是A. −2B. 2C. ±2D. −122.如图,用平面去截圆锥,所得截面的形状是选项中的A.B.C.D.3.下列运算正确的是()A. (x2)3=x5B. √2+√8=√10=√2C. x⋅x2⋅x4=x6D. 2√24.下列命题正确的是()A. 对角线互相垂直平分的四边形是正方形B. 16的平方根是4C. 两边及其一角相等的两个三角形全等D. 数据4,0,4,6,6的方差是4.85.点M(3,−4)关于x轴的对称点M′的坐标是()A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)6.如图,以△ABC的顶点C为圆心,小于CA长为半径作圆弧,交CA于点E,交BC的延长线于点F;再分EF长为半径作圆弧,两弧交别以E,F为圆心,大于12于点G;作射线CG,若∠A=60°,∠B=70°,则∠ACG为()A. 75°B. 70°C. 65°D. 60°7.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=128°,则∠AOE的大小为()A. 62°B. 52°C. 68°D. 64°8.如图所示运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输入的结果为12.……则第2018次输出的结果是()A. 1B. 6C. 3D. 49.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,连接OD,若∠ACB=50°,则∠BOD=()A. 40°B. 50°C. 60°D. 80°10.如图所示,E(−4,2),F(−1,−1),以O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E′的坐标为()A. (2,−1)或(−2,1)B. (8,−4)或(−8,4)C. (2,−1)D. (8,−4)11.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(ℎ)的关系如图所示,下列说法错误的是()A. 甲的速度是6km/ℎB. 甲出发4.5小时后与乙相遇C. 乙比甲晚出发2小时D. 乙的速度是3km/ℎ12.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a−2b+c>0;②3a+b>0;③b2=4a(c−n);④一元二次方程ax2+bx+c=n−1有两个互异实根.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13.分解因式:5a2+10ab=______.14.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)15.关于x的分式方程7xx−1+5=2m−1x−1有增根,则m的值为______.16.如图,双曲线y=kx(x>0)经过△OAB的顶点A和OB的中点C,AB//x轴,点A 的坐标为(2,3),求△OAC的面积是______.17.某飞机模型的机翼形状如图所示,其中AB//DC,∠BAE=90°,根据图中的数据计算CD的长为______ cm(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=______.三、计算题(本大题共2小题,共20.0分)19. 如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.如果AD =42cm ,AP =10cm ,求△APB 的面积.20. 某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?四、解答题(本大题共6小题,共58.0分) 21. 计算:(1)4x 2−4+2x+2+12−x (2)(1+1a−1)÷(1a 2−1+1).22.为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析.下面给出了部分信息.七年级:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74八年级:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)a=______,m=______,n=______;(2)你认为哪个年级读书知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有______人.23. 已知一个二次函数的图象经过点A(−1,0)、B(3,0)和C(0,−3)三点,求此二次函数的解析式.24. 求不等式组{2(1−x)≤x +83x−26<x+13的最大整数解.25. 在数学兴趣小组活动中,同学们证明了数学定理:“直角三角形中,30°角所对直角边等于斜边的一半.”那么在直角三角形中,对于锐角O 的任意一个确定的值α,它的对边与斜边的比值y 都是多少呢?为了研究这个问题,小华在平面直角坐标系中,以原点为圆心,5cm 为半径画了一个圆弧分别交x ,y 轴于C ,D 两点,A 为圆弧上一动点(不与C ,D 重合),连接OA ,过点A 作AB ⊥x 轴于点B ,设∠AOB =α,∠AOB 的对边AB 与斜边OA 的比值为y(如图1).根据函数定义,小华判断y与α具有函数关系,并根据学习函数的经验,对函数y 随自变量α的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)通过取点、画图、测量、计算,得到了α与y的几组值,如下表:α/°1020304050607080y0.170.340.500.640.770.940.98(说明:补全表格时相关数值保留两位小数)(2)写出该函数自变量α的取值范围_______________.(3)在图2中描出“以补全后的表中各对对应值为坐标”的点,画出该函数的大致图象;(4)根据图象,写出此函数的一条性质__________________________________________.(5)结合画出的函数图象,解决问题:当锐角为45°时,这个比值约为__________.(保留两位小数)26.如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=4,点D为边AB上一动点,DE⊥AC,DF⊥BC,垂足为E,F.连接EF,CD.(1)求证:EF=CD;(2)当EF为何值时,EF//AB;(3)当四边形ECFD为正方形时,求EF的值.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【解答】解:|−2|=2.故选B.2.【答案】D【解析】【分析】本题考查圆锥的认识,熟练掌握圆锥的特点是解题关键.圆锥的截面可能是圆形,椭圆形,抛物线形,或等腰三角形,由此分析即可.【解答】解:根据圆锥的特点可知,用平面截圆锥,不可能得到不规则的四边形和长方形,不能是不规则的三角形,可能是抛物线形.故选D.3.【答案】D【解析】解:A、(x2)3=x6,故本选项错误;B、√2+√8=√2+2√2=3√2,故本选项错误;C、x⋅x2⋅x4=x7,故本选项错误;=√2,故本选项正确;D、√2故选:D.根据幂的乘方法则判断A;先把√8化为最简二次根式,再合并同类二次根式,即可判断B;根据同底数幂的乘法法则判断C;根据二次根式的除法法则判断D.本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、以及二次根式的除法法则是解题的关键.4.【答案】D【解析】解:A、对角线互相垂直平分且相等的四边形是正方形,所以A选项为假命题;B、16的平方根是±4,所以B选项为假命题;C、两边及夹角相等的两个三角形全等,所以C选项为假命题;D、数据4,0,4,6,6的方差是4.8,所以D选项为真命题.故选D.根据正方形的判定对A进行判断;根据平方根的性质对B进行判断;根据全等三角形的判定对C进行判断;根据方差的定义对D进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.【答案】A【解析】解:点M(3,−4)关于x轴的对称点M′的坐标是(3,4).故选:A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质,三角形外角的性质,关键是掌握全等三角形的判定和性质.结合图中射线CG的作法,证得△EGC≌△FGC,从而根据全等三角形对应角相等可得∠ACD(即CG为∠ACD的角平分线);观察图形,发现∠ACD是△ABC ∠ACG=∠DCG=12的一个外角,故根据外角性质,结合∠A与∠B的度数,即可求得∠ACD的度数,再结合上步提示即可求得∠ACG的度数.【解答】解:如图,连接FG、EG.根据题意可得:CE=CF,EG=FG.∵CG=CG,∴△EGC≌△FGC(SSS),∴∠ACG=∠DCG=12∠ACD,即CG为∠ACD的角平分线.∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=60°+70°=130°,∴∠ACG=12∠ACD=65°,故选C.7.【答案】D【解析】【解答】解:在菱形ABCD中,∠ADC=128°,∴∠BAD=180°−128°=52°,∴∠BAO=12∠BAD=12×52°=26°,∵OE⊥AB,∴∠AOE=90°−∠BAO=90°−26°=64°.故选:D.【分析】本题主要考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.8.【答案】C【解析】解:当x=48时,=24,第一次输出的结果为:48×12=12,第二次输出的结果为:24×12=6,第三次输出的结果为:12×12=3,第四次输出的结果为:6×12第五次输出的结果为:3+3=6,=3,第六次输出的结果为:6×12∵(2018−2)÷2=1008,∴第2018次输出的结果是3,故选:C.根据题意和运算程序,可以求得前几次的输出结果,从而可以发现输出结果的变化规律,进而求得第2018次输出的结果.本题考查有理数的混合运算、代数式求值,解答本题的关键是明确有理数混合运算的计算方法.9.【答案】D【解析】【分析】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°−∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【答案】A【解析】【试题解析】【分析】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k.利用以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,则把E 点的横纵坐标都乘以12或−12即可得到对应点E′的坐标.【解答】解:∵以O 为位似中心,按比例1:2把△EFO 缩小,∴点E 的对应点E′的坐标为(2,−1)或(−2,1).故选A .11.【答案】D【解析】【分析】根据题意,再结合甲乙两人与B 地距离和时间的一次函数图象不难解决问题,主要是根据甲乙二人相遇时建立方程求出乙的速度即可判断选项.本题是考查一个相向行走的时间、路程、速度的关系问题,结合其一次函数图象上的示数,读出示数的意义是解题的关键.【解答】解:如右图所示,甲、乙分别从A 、B 两地相向而行,从图象中可看出,当t =0时,A 、B 两地距离s =36(km),甲从A 地先出发2小时后乙才从B 地出发,故选项C 正确;从甲行走的一次函数上看,其速度v 1=36−242=6(km/ℎ),A 项正确;从图象中可得到两条直线的交点所对应的时间是甲和乙相遇的时间4.5ℎ,此时甲已出发4.5ℎ,故B 项正确;设乙的速度为v2,则甲乙相遇时他们行走的路程为A、B两地距离可得,4.5v1+(4.5−2)v2=36,解得v2=3.6(km/ℎ),故乙的速度为3.6km/ℎ,故D项错误.故选D.12.【答案】B【解析】【分析】本题主要考查抛物线与x轴的交点,图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系.利用抛物线的对称性得到抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间,则当x=−2时,y<0,于是可对①进行判断;=1,即b=−2a,则可对②进行判断;利用抛物线的对称轴为直线x=−b2a=n,则可对③进行判断;利用抛物线的顶点的纵坐标为n得到4ac−b24a由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n−1有2个公共点,于是可对④进行判断.【解答】解:①∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(−2,0)和(−1,0)之间.∴当x=−2时,y<0,即4a−2b+c<0,所以①不符合题意;=1,即b=−2a,②∵抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a<0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n),∴4ac−b2=n,4a∴b2=4ac−4an=4a(c−n),所以③符合题意;④∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n−1有2个公共点,∴一元二次方程ax2+bx+c=n−1有两个不相等的实数根,所以④符合题意.故选:B.13.【答案】5a(a+2b)【解析】解:原式=5a(a+2b),故答案为:5a(a+2b)原式提取公因式即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.15.【答案】4【解析】解:去分母得:7x+5x−5=2m−1,由分式方程有增根,得到x−1=0,即x=1,把x=1代入整式方程得:12−5=2m−1,解得:m=4,故答案为:4分式方程去分母转化为整式方程,由分式方程有增根得到x−1=0,求出x的值,代入整式方程计算即可求出m的值.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.【答案】92(x>0)上,【解析】解:∵点A(2,3)在双曲线y=kx∴k=2×3=6.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB//x轴,∴BM⊥y轴,∴MB//CN,∴△OCN∽△OBM,∵C为OB的中点,即OCOB =12,∴S△OCNS△OBM =(12)2,∵A,C都在双曲线y=6x上,∴S△OCN=S△AOM=3,由33+S△AOB =14,得:S△AOB=9,则△AOC面积=12S△AOB=92.故答案是:92.将A坐标代入反比例解析式求出k的值即可;过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM的面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.17.【答案】22【解析】解:作DM⊥AB于M,如图所示:在Rt△BCN中,BC=CN÷cos37°=50÷0.8= 62.5(cm),∴BN=BC⋅sin37°=62.5×0.60≈37.5(cm),∴AN=AB+BN=34+37.5=71.5cm,∵∠DAE=45°,∠BAE=90°,∴∠DAM=45°,∴△ADM是等腰直角三角形,∴AM=DM=50cm,∴CD=MN=AN−AM=71.5−50≈22(cm);故答案为:22.作DM⊥AB于M,在Rt△BCN中,由三角函数求出BC≈62.5(cm),BN≈37.5(cm),求出AN的长,证出△ADM是等腰直角三角形,得出AM=DM=50cm,即可得出CD 的长.本题考查了解直角三角形的应用、三角函数、等腰直角三角形的判定与性质;熟练掌握解直角三角形的方法,求出BN是解决问题的关键.18.【答案】257【解析】解:如图所示:∵Rt△ABC中,∠C=90o,AB=5,AC=4,∴BC=√AB2−AC2=3,由旋转的性质得:AD=AB=5,由平移的性质得,AE//CG,AB//EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE =∠ACB ,∴△ADE∽△ACB ,∴AE AB =AD AC=DE BC ,即AE 5=54=DE 3, ∴AE =254,DE =154,∵AB//EF ,∴△DEH∽△BAH ,∴EH AH =DE AB ,即254−AH AH =1545, 解得:AH =257;故答案为:257.先判断出∠ADE =∠ACB ,进而得出△ADE∽△ACB ,得出比例式求出AE ,再证明△DEH∽△BAH ,得出比例式,即可得出AH 的长.本题考查了平移的性质、旋转的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握平移的性质,证明三角形相似是解题的关键. 19.【答案】解:∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.. 又∵四边形ABCD 是平行四边形,∴AD//BC .∴∠PAB +∠PBA =90°.∴∠APB =180°−90°=90°.∴△APB 为直角三角形,∵四边形ABCD 是平行四边形,∴BC =AD =42cm .又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB =∠PAD =∠DPA .∴DP =AD =42cm .同理PC =BC =42cm .∴AB =DC =DP +PC =84cm .∴在Rt △APB 中,由勾股定理得:PB =√422−102=8√26cm .∴△APB 的面积是12AP ⋅BP =12×10×8√26=40√26cm 2.【解析】首先根据平行四边形性质得出AD//CB ,AB//CD ,推出∠DAB +∠CBA =180°,求出∠PAB +∠PBA =90°,进而可得△APB 为直角三角形;再根据角平分线的定义以及两条直线平行,则内错角相等.从而证明△ADP 和△BCP 是等腰三角形.则AB =CD =PD +PC =2AD =84cm ,根据勾股定理得到PB 的长,再根据直角三角形的面积等于两条直角边的乘积的一半计算即可.本题考查了平行四边形的性质以及勾股定理的运用,根据平行线的性质结合角平分线的定义,发现两个等腰三角形ADP 和等腰三角形BCP 是解题的关键.20.【答案】解:设甲商品的单价为x 元,乙商品的单价为2x 元,根据题意,得240x −3002x =15,解这个方程,得x =6,经检验,x =6是所列方程的根,∴2x =2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系“购买240元甲商品的数量比购买300元乙商品的数量多15件”是解本题的关键.21.【答案】解:(1)4x 2−4+2x+2+12−x=4x 2−4+2(x−2)(x+2)(x−2)−x+2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)(1+1a−1)÷(1a 2−1+1)=a−1+1a−1÷1+a 2−1a 2−1 =a a−1⋅(a+1)(a−1)a 2 =a+1a .【解析】(1)先通分,化为同分母分式,再根据同分母分式加减法法则计算即可;(2)先将被除式与除式分别通分计算,再将除法转化为乘法,然后根据分式的乘法法则计算即可.本题考查了分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.注意最后结果分子、分母要进行约分,运算的结果要化成最简分式或整式.22.【答案】(1)2,88.5,89;(2)∵八年级读书知识竞赛的总体成绩平均数虽然低一点,但众数和中位数高于七年级,且八年级的众数89高于七年级的众数74,说明八年级分数不低于89分的人数比七年级多,∴八年级读书知识竞赛的总体成绩较好;(3)460.【解析】【分析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.(1)根据总数据可得a的值,根据中位数和众数的定义可得m和n的值;(2)根据平均数,众数和中位数这几方面的意义解答可得;(3)分别计算该校七、八年级所有学生中获得“阅读小能手”称号的人数,相加可得结论.【解答】解:(1)a=20−1−3−8−6=2,八年级20人的成绩:50,65,68,76,77,78,87,88,88,88,89,89,89,89,91,92,93,94,94,95,∴m=88+892=88.5,n=89,故答案为:2,88.5,89;(2)见答案;(3)1+820×400+8+620×400=460,则估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有460人,故答案为:460.23.【答案】解:设抛物线解析式为y=a(x+1)(x−3),把(0,−3)代入得−3=a×1×(−3),解得a=1,所以抛物线解析式为y=(x+1)(x−3),即y=x2−2x−3.【解析】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.点A和点B是抛物线与x轴的交点,可设抛物线解析式为y=a(x+1)(x−3),然后将点C坐标代入,求出a即可.24.【答案】解:{2(1−x)≤x+8①3x−26<x+13②∵解不等式①得:x≥−2,解不等式②得:x<4,∴不等式组的解集是:−2≤x<4,∴不等式组的最大整数解是3.【解析】先求出不等式组的解集,再求出不等式组的最大整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.25.【答案】解:(1)0.87;(2)0<a<90;(3)作图如下:(4)在自变量取值范围内,函数没有最大、最小值;(5)0.71【解析】【分析】本题考查描点法画函数图象,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.(1)根据题意取点、画图、测量、最后通过计算即可填表;(2)根据α为锐角,可得α的取值范围;(3)利用描点法画出函数图象即可;(4)利用(3)中的图象,即可得到这个比值;【解答】解:(1)通过测量和计算可得,当α=60时,y≈0.87,故答案为0.87;(2)∵α为锐角,∴0<a<90,故答案为0<a<90;(3)见答案;(4)答案不唯一,例如:①在自变量取值范围内,函数没有最大、最小值;②在自变量取值范围内,y随x增大而增大;③函数图象只分布在第一象限;故答案为在自变量取值范围内,函数没有最大、最小值;(5)答案不唯一,可以为0.70−0.72之间都可或者更宽泛0.69−0.73,故答案为0.71.26.【答案】(1)证明:∵DE ⊥AC ,DF ⊥BC ,∴∠DEC =∠CFD =90°,∵∠ACB =90°,∴四边形ECFD 是矩形,∴EF =CD ;(2)解:当EF =√5时,EF//AB ,理由是:由(1)知:四边形ECFD 是矩形,∴DE//CF ,DE =CF ,∵EF//AB ,∴四边形BDEF 是平行四边形,∴DE =BF ,∴CF =BF ,同理可证:CE =AE ,∴EF =12AB , 在Rt △ABC 中,AB =√AC 2+BC 2=√22+42=2√5,∴EF =12AB =√5; (3)解:∵四边形ECFD 是正方形,∴DE =DF ,设DE =DF =a ,∴S △ABC =S △BCD +S △ACD ,12AC ⋅BC =12BC ⋅DF +12AC ⋅DE , 12×4×2=12×4a +12×2a , a =43,在Rt △DEF 中,EF =√DE 2+DF 2=√(43)2+(43)2=4√23.【解析】(1)根据有三个角是直角的四边形是矩形,证明四边形ECFD是矩形,可得结论;(2)证明四边形BDEF是平行四边形,得DE=BF,根据勾股定理可得AB的长,从而得EF的长;(3)设DE=DF=a,根据面积法得:S△ABC=S△BCD+S△ACD,代入可得a的值,从而得结论.本题考查三角形和四边形综合题、矩形、平行四边形和正方形的性质和判定、三角形的面积、勾股定理等知识,解题的关键是灵活应用矩形和正方形的判定解决问题,属于中考常考题型.。

重庆八中2019-2020学年度(上)期末考试初三年级数学试题

重庆八中2019-2020学年度(上)期末考试初三年级数学试题

重庆八中2019-2020(上)期末考试初三年级数学试题一、选择题: (本大题共 12个小题,每小题4分,共48分) 1.2020-=( ) A .2020 B .2020- C .12020 D .12020-2. 用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形3. 下列运算正确的是( )A .431--=-B .211555⎛⎫ ⎪⎝⎭⨯-=- C .248x x x ⋅= D.2832+=4. 下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C.若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为385. 已知()3,2A -关于x 轴对称点为'A ,则点'A 的坐标为( )A .()3,2B .()2,3- C.() 3,2- D .()3,2--6. 如图,用尺规作图作BAC ∠的平分线AD ,第一步是以A 为圆心,任意长为半径画弧,分别交,AB AC 于点,E F ;第二步是分别以,E F 为圆心,以大于12EF 长为半径画弧,两圆弧交于D 点,连接AD ,那么AD 为所作,则说明CAD BAD ∠=∠的依据是( )A .SSSB .SAS C.ASA D .AAS7. 如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒ C.62︒ D .67︒8. 按下面的程序计算:若开始输入x 的值为正整数,最后输出的结果为22,则开始输入的x 值可以为( )A .1B .2 C.3 D .49. 如图所示,已知AC 为O 的直径,直线PA 为圆的一条切线,在圆周上有一点B ,且使得BC OC =,连接AB ,则BAP ∠的大小为( )A .30︒B .50︒ C.60︒ D .70︒10. 如图,在平面直角坐标系中,已知点()()3,693,,A B ---,以原点O 为位似中心,相似比为13,把ABO缩小,则点B 的对应点'B 的坐标是( )A .()3,1--B .()1,2- C. ()9,1-或()9,1- D .()3,1--或()3,111. A B 、两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中12,l l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象,下列结论错误的是( )A .1l 是表示甲离A 地的距离与时间关系的图象B .乙的速度是30/km hC. 两人相遇时间在 1.2t h =D .当甲到达终点时乙距离终点还有45km12. 如图所示,抛物线2()0y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是120,2x x ==;④方程20ax bx c ++=有一个实根大于2;⑤当0x <时,y 随x 增大而增大.其中结论正确的个数有( )A .4个B .3个 C.2个 D .1个二、填空题:(本大题共6个小题,每小题4分,共24分)13. 分解因式:22x x -= . 14. 如图,扇形AOB 的圆心角是为90︒,四边形OCDE 是边长为1的正方形,点,C E 分别在,,OA OB D 在弧AB 上,那么图中阴影部分的面积为 .(结果保留π)15. 若关于x 的分式方程3222x mx +=+有增根,则m 的值为 .16. 如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB 与COD 面积分别为8和18,若双曲线ky x =恰好经过BC 的中点E ,则k 的值为17. 自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm ,中轴轴心C 到地面的距离CF 为33cm ,后轮中心A 与中轴轴心C 连线与车架中立管BC 所成夹角72ACB ∠=︒,后轮切地面l 于点D .为了使得车座B 到地面的距离BE 为90cm ,应当将车架中立管BC 的长设置为 cm .(参考数据: 720.95,720.31,2.1 )73sin cos tan ︒≈︒≈︒≈18. 如图,在Rt ABC 中,90,10,16C AC BC ∠=︒==.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与,CB AB 边交于,E F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当//BN PE 时,t 的值为 .三、解答题(本大题共8小题,第26题8分,其余每小题10分,共78分)19.()1 解方程组: 3924x y x y -=⎧⎨+=⎩; ()2化简:2442m m m m m --⎛⎫-÷ ⎪⎝⎭.20. 如图,在平行四边形ABCD 中,E 为AD 边上一点,BE 平分ABC ∠,连接CE ,已知6,8DE CE ==,10AE =.()1求AB 的长;()2求平行四边形ABCD 的面积;()3求cos AEB ∠.21.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,,,,,,80865983,777578817275,,,.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70, 41.整理数据:≤≤8089xxx≤≤≤≤90100xx4049≤≤7079≤≤5059x≤≤6069七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:()1由上表填空:a=;b=;c=;d=.()2估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?()3你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.22. 如图,平面直角坐标系内,二次函数2y ax bx c =++的图象经过点()(),2,04,0A B -,与y 轴交于点()0,6C .()1求二次函数的解析式;()2点D 为x 轴下方二次函数图象上一点,连接,,,AC BC AD BD ,若ABD 的面积是ABC 面积的一半,求D 点坐标.23. 一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x y =,那么称这个四位数为“对称数”()1最小的“对称数”为 ;四位数A 与2020之和为最大的“对称数”,则A 的值为 ; ()2一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为8,且千位数字a 使得不等式组34214251x x x a--⎧-≤⎪⎨⎪->⎩恰有4个整数解,求出所有满足条件的“对称数”M 的值.24.如图,C 是线段AB 上--动点,以AB 为直径作半圆,过点C 作CD AB ⊥交半圆于点D ,连接AD .已知8AB cm =,设A C 、两点间的距离为xcm ,ACD 的面积为2ycm .(当点C 与点A 或点B 重合时,y 的值为0)请根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)()1通过画图、测量、计算,得到了x 与y 的几组值,如下表: xcm 00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.02ycm 0 0.5 1.3 2.3 a 4.6 5.8 7.0 8.0 8.9 9.7 10.2 10.4 10.2b c 0 补全表格中的数值: a = ;b = ;c = .()2根据表中数值,继续描出()1中剩余的三个点(),x y ,画出该函数的图象并写出这个函数的一条性质; ()3结合函数图象,直接写出当ACD 的面积等于25cm 时,AC 的长度约为___ _cm .25.实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费360万元,购买乙型智能设备花费480万元,购买的两种设备数量相同,且 两种智能设备的单价和为140万元.()1求甲、乙两种智能设备单价;()2垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的40%,且生产每吨燃料棒所需人力成本比物资成本的倍54还多10元.调查发现,若燃料棒售价为每吨200元,平均每天可售出350吨,而当销售价每降低1元,平均每天可多售出5吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到36080元,且保证售价在每吨200元基础上降价幅度不超过8%,求每吨燃料棒售价应为多少元?26.如图,在ABC 中,,120AC BC ACB =∠=︒, 点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE .()1如图1,若45,6CDB AB ∠=︒=求等边CDE 的边长;()2如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G .①求证:CF DF ⊥;②如图3,将CFD 沿CF 翻折得'CFD ,连接'BD ,直接写出'BD AB的最小值.重庆八中2019-2020学年度(上)期末考试初三年级数学参考答案一、选择题(每小题4分,共48分) 1 2 3 4 5 6 7 8 9 10 11 12 A B D B D A D B C D C B二、填空题(每小题4分,共24分) 13.()2x x - 14.12π- 15.3 16.6 17.60 18.4021三、解答题(共78分)19.()132x y =⎧⎨=-⎩()2原式2–2m = 结果若未把括号打开建议扣1分20.()1四边形ABCD 是平行四边形// AD BC ∴AEB CBE ∴∠=∠又BE 平分ABC ∠CBE ABE ∴∠=∠AEB ABE ∴∠=∠AB AE ∴=10AE =10AB ∴=()2四边形ABCD 是平行四边形.CD AB ∴=10AB =10CD ∴=在CED 中,10,8,6CD CE ED ===222ED CE CD ∴+=90CED ∴∠=︒.CE AD ∴⊥()1068128.ABCD S AD CE ∴=⋅=+⨯=()3四边形ABCD 是平行四边形//BC AD ∴且BC AD =90,16BCE CED AD ∴∠=∠=︒=Rt BCE ∴中,22 85BE BC CE =+=1625585BC cos AEB cos EBC BE ∴∠=∠===21.()111,10,77.5,81a b c d ====()2由样本数据可得,七年级得分在80分及以上的占712205+=.故七年级得分在80分及以上的大约22405⨯=600人;八年级得分在80分及以上的占1023205+=,故八年级得分在80分及以上的大约36003605⨯=人.故共有600人.()3该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可)22.()1233642y x x =-++()2由ABD 的面积是ABC 面积的一半知:132D y OC ==,又点D 在x 轴下方,故3D y =-. 代入233642y x x =-++解得:1131x =--,2131x =-,故点D 坐标为()131,3---或()131,3--23. ()11010;7979()2由34214251x x x a --⎧-≤⎪⎨⎪->⎩得142a x +<≤,由x 有四个整数解,得14a -≤<,又a 为千位数字,所以1,2,3a =.设个位数字为b ,由题意可得,十位数字为8b -,故()38a b a b +=+-,4b a =+.故满足题设条件的M 为133526263917,,24.() 1 3.5,9.3,7.3a b c === ( 允许合理的误差存在)()2描点1分,连线2分,答案图略:性质答案参考;当06x ≤≤时,y 随x 增大而 增大,当68x <≤时,y 随x 增大而减小;当6x =时,y 的最大值为10.4.(性质2分) ()3 2.7或7.8 (允许合理的误差存在)25. () 1设甲单价为x 万元,则乙单价为()140x -万元,则:360480140x x =-解得60x =经检验,60x =是所列方程的根.答:甲设备60万元每台,乙设备80万元每台.()2设每吨燃料棒成本为a 元,则其物资成本为40%a ,则:540%40%104a a a -=⨯+,解得100a =设每吨燃料棒在200元基础上降价x 元,则()()200100350 536080x x --+=解得1212,18x x ==2008%x ≤⨯.12x ∴=∴每吨燃料棒售价应为188元.26. () 1等边CDE 的边长为6;()2①证明:略;②提示:'BD ED CD ==,BD AB '的最小值为36。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 21 页
2019-2020学年重庆八中九年级上学期期末考试数学试卷
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了
A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的,请将请将答题卡上对应题目的正确答案标号涂黑.
1.﹣2020的绝对值是( )
A .2020
B .﹣2020
C .−12020
D .12020
【解答】解:根据绝对值的概念可知:|﹣2020|=2020,
故选:A .
2.用一个平面去截一个圆锥,截面的形状不可能是( )
A .圆
B .矩形
C .椭圆
D .三角形
【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,
截面不可能是矩形,故B 符合题意;
故选:B .
3.下列运算正确的是( )
A .﹣4﹣3=﹣1
B .5×(−15)2=−15
C .x 2•x 4=x 8
D .√2+√8=3√2 【解答】解:A .﹣4﹣3=﹣7,故本选项不合题意;
B .5×(−15)2=15,故本选项不合题意;
C .x 2•x 4=x 6,故本选项不合题意;
D .√2+√8=√2+2√2=3√2,故本选项符合题意.
故选:D .
4.下列命题正确的是( )
A .√x −1有意义的x 取值范围是x >1.
B .一组数据的方差越大,这组数据波动性越大.
C .若∠α=72°55′,则∠α的补角为107°45′.
D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为38。

相关文档
最新文档