风力发电机的组成部件其功用

合集下载

风力发电机组的工作原理及主要组成部分

风力发电机组的工作原理及主要组成部分

风力发电机组的工作原理及主要组成部分1.风能捕捉:风力发电机组的核心部分是风轮或风叶,它们负责捕捉风能。

当风流通过风轮或风叶时,由于气流的动能和静压力的作用,会导致旋转力矩的产生。

2.动力传输:风能转化为旋转动能后,需要通过轴承和传动系统传输给发电机。

通常情况下,风轮转子和发电机的转子是相互连接的,通过传动系统将转动动能传递给发电机转子。

3.电能转化:传动系统将机械能转化为发电机的转动,进而通过电磁感应原理将机械能转化为电能。

发电机的转子通过旋转感应电流,再通过电磁感应产生电压,最终输出电能。

1.风轮:风力发电机组的核心部分,用于捕捉风能并转化为机械能。

通常采用多片叶片将风流导向转子,并利用气流的动能产生旋转力矩。

风轮的叶片材料通常采用复合材料或金属材料,以提高其耐久性和轻量化。

2.发电机:发电机负责将机械能转化为电能。

通常采用异步发电机或同步发电机来生成电能。

发电机的转子和风轮的转子相互连接,通过传动系统将旋转动能传递给发电机转子,产生电能输出。

3.传动系统:传动系统用于将风轮的旋转动能传递给发电机的转子。

传动系统通常由齿轮箱、轴承等组成。

齿轮箱用于调节风轮旋转速度,使其适应发电机的工作条件。

轴承则用于支撑风轮和发电机的转子。

4.控制系统:控制系统负责监测风力发电机组的工作状态,并控制风轮的转速和发电机的输出电压。

通过控制系统,可以使风力发电机组根据实际的风速和电网需求进行工作调节。

总结起来,风力发电机组通过捕捉风能、运用传动系统将机械能传递给发电机,并最终通过电磁感应将机械能转化为电能。

风力发电机组的主要部件包括风轮、发电机、传动系统和控制系统。

通过这些部件的协调工作,可以将风能高效地转化为电能,实现清洁能源的利用。

风力发电构造及原理

风力发电构造及原理

风力发电构造及原理
风力发电是一种利用风能将风轮转动,进而驱动发电机产生电能的方法。

风力发电主要由以下几个构造组成:
1. 风轮:也称风能转换装置,是将风能转化为机械能的装置。

风轮通常由多个叶片组成,具有较大的面积,可以更好地捕获风能。

风轮形状一般为高度弯曲的螺旋状,以提高风能转换效率。

2. 风轮轴:连接风轮和发电机的轴道,负责传递风能转换的机械能。

3. 发电机:将机械能转化为电能的装置。

当风轮转动时,风轮轴会带动发电机转动,发电机中的磁场和线圈之间的相对运动产生电流,从而产生电能。

4. 控制系统:用于监测和调节风力发电机组的运行状态。

控制系统能够根据风速和发电机负荷情况,自动调整风轮的转速和方向,以确保风力发电机组的安全运行和发电效率。

风力发电的原理是通过将风能转化为机械能,再将机械能转化为电能。

当风流通过风轮时,风轮会受到风力的作用而旋转。

风轮上的叶片被风力推动,使得整个风轮转动。

风轮转动的机械能通过风轮轴传递给发电机,发电机将机械能转化为电能。

发电机通过磁场和线圈之间的相对运动产生交流电,经过整流等处理后,最终输出为可用的电能。

风电机组成部分及结构原理

风电机组成部分及结构原理

异步双馈发电机 额定功率:1545kW 额定转速:1800rpm 重量:7t
齿轮箱(Gearbox)
作用: 将输入轴的低转 速经若干级齿轮 传动变换到输出 轴的高转速,传 输比为1:90。 结构: 三级行星齿轮传 动机构。

1.2 叶 片(Blade)
叶片主要作
用是吸收风 能。

3.7 低压开关和控制装置

主要元件: 低压配电盘 电压供应 开关部件,包括电脑 变频器
3.8 电源连接



转子叶片角度的调整是由三个转子叶片分别变 桨的,三个调整叶片用的驱动装置和各自的能 源缓冲器(不需外来的能源供应可用来关掉设备和一个 电子元件)与转子叶片角度的同步和实际值控制器一 起安放在转子轮毂里。由于三个转子叶片可分开调整, 三个制动系统也是各自独立的。 除此之外,在快速转动的驱动装置轴上还有一个机械 式制动装置。 当安全关机装置或手动关机装置启动 时,这个机械式制动装置就会起作用,最大的制动力 矩是风力发电设备的额定力矩的1,6倍。 机舱是透过球型旋转接口跟塔身联接, 风向追踪是 用电子方位驱动。
3.6 液压制动
液压机组的功能是打开刹车,或是在设备 运作中维持刹车在开着的状态。这套系统 以 “failsafe”的模式工作, 也就是说,系统 故障时弹簧会启动制动装置的闭合。 停电时,制动装置的液压阀门的开关继电 器的电压供应会中断。在无电压状态下阀 门通风所需的压力下降,制动垫层会被弹 簧推向制动片。

3.2 机 舱
机舱放置在塔的最上端,风力发电设备 的运转所需要的所有功能组件都安装在 机舱里。机舱的里面可供人行走,从塔 筒里面的梯子可进入机舱, 但必须事先启 动相关的锁定装置 (可参考安全指示)。 机舱的外壳是光纤强化塑料 ,上层的壳 盖可用吊车吊起。

风力机的组成和各部分的作用

风力机的组成和各部分的作用

风力机的组成和各部分的作用
风力机主要由以下几个部分组成:
1. 风轮:风轮是风力机的核心部件,它通过接受风能并将其转化为机械能。

风轮通常由多个叶片组成,这些叶片通过设计和制造来最大限度地捕获风能。

2. 机舱:机舱是风力机的主体部分,它容纳了风轮、发电机、变速器等重要部件。

机舱还可以提供对风轮和其他部件的保护,以防止外部环境的影响。

3. 塔架:塔架是支撑风轮和机舱的结构,它将风力机举升到适当的高度,以便更好地接受风能。

塔架的高度通常根据风资源的情况和安装地点的要求来确定。

4. 发电机:发电机是将机械能转化为电能的设备,它位于机舱内部。

发电机的类型和规格根据风力机的设计和应用需求来选择。

5. 变速器:变速器用于调整风轮的转速,使其与发电机的转速相匹配。

它可以将高速旋转的风轮转速降低到适合发电机运行的范围。

6. 控制系统:控制系统用于监测和控制风力机的运行状态,包括风速、风向、风轮转速、发电机输出等参数。

它还可以实现对风力机的远程监控和故障诊断。

这些部分协同工作,共同构成了一个完整的风力发电系统。

通过风轮接受风能,发电机将机械能转化为电能,最终输出到电网或其他用途。

风力机的设计和运行旨在实现高效、可靠和可持续的风能利用。

风力发电机组的基本构成

风力发电机组的基本构成

风力发电机组的基本构成
风力发电机组是将风能转化为电能的装置,通常由以下几个部分构成:
1. 风轮:风轮是风力发电机组的核心部件,它由叶片、轮毂和轴组成。

风轮的作用是捕捉风能并将其转化为机械能。

2. 机舱:机舱内装有风力发电机组的主要设备,如发电机、变速器、控制器等。

机舱通常安装在塔顶,通过塔筒与地面相连。

3. 塔筒:塔筒是支撑机舱和风轮的结构,它通常由钢材制成,具有足够的强度和稳定性,以承受风轮和机舱的重量以及风载荷。

4. 发电机:发电机是将机械能转化为电能的设备,它通常采用异步发电机或同步发电机。

发电机的输出功率与风轮的转速和风速有关。

5. 变速器:变速器的作用是将风轮的低速旋转转化为高速旋转,以适应发电机的转速要求。

变速器通常采用齿轮箱或液力耦合器。

6. 控制器:控制器是风力发电机组的控制中心,它负责监测风速、风向、风轮转速、发电机输出功率等参数,并根据预设的控制策略对风力发电机组进行调节和控制。

7. 基础:基础是支撑塔筒和风力发电机组的结构,它通常由混凝土制成,具有足够的承载能力和稳定性。

8. 电缆:电缆用于将发电机的输出电能传输到地面的变压器或配电柜。

以上是风力发电机组的基本构成部分,不同类型和规格的风力发电机组可能会有所不同,但总体结构和功能基本相似。

风力发电机组的构成 -回复

风力发电机组的构成 -回复

风力发电机组的构成-回复风力发电机组是利用风能将其转化为电能的一种装置。

它由多个部件组成,每个部件都发挥着重要的作用。

本文将一步一步回答关于风力发电机组构成的问题。

一、风力发电机组的主要部件1. 风轮(Rotor):风轮是风力发电机组的关键部分。

它通常由数个叶片组成,以获得最佳的风能捕获效率。

风轮的材料通常是轻质而坚固的材质,如玻璃纤维或碳纤维。

它通过风力的作用旋转,进而带动发电机发电。

2. 发电机(Generator):发电机是将风轮的旋转动能转化为电能的设备。

它通常是一种永磁同步发电机,通过风轮旋转产生的机械能转化为电能。

发电机通常将电能输出到电网供人们使用或者储存到蓄电池中。

3. 齿轮箱(Gearbox):风力发电机组的齿轮箱用于将风轮的旋转速度从低速转换为高速,以适应发电机的工作需要。

齿轮箱通常由多组齿轮组成,以实现速度的适当调整。

它还可以提供额外的力矩,以增加风轮的转速。

4. 控制系统(Control System):控制系统是风力发电机组的核心部分。

它负责监测和控制风能转化过程中的各个参数,以确保风力发电机组的安全和高效运行。

控制系统可以根据风速的变化调整风轮的转速,以最大限度地利用风能。

二、风力发电机组的辅助部件1. 塔筒(Tower):塔筒是风力发电机组的支撑结构,用于将风轮设置在适当的高度上。

塔筒通常由钢材制成,具有足够的强度和稳定性以抵御风力的影响。

塔筒的高度决定了风轮能够捕获到的风能的多少,较高的塔筒可以获得更大的风力资源。

2. 控制柜(Control Cabinet):控制柜是控制系统的一部分,用于集中控制和监测风力发电机组的运行状态。

它通常包括电气元器件和仪器仪表,用于监测各项参数如风速、转速、功率等,以保持系统的稳定运行。

3. 变流器(Converter/Inverter):变流器是将发电机输出的交流电转换为直流电或者逆变为标准电压和频率的设备。

变流器通常用于将风力发电系统产生的电能转接至电网,以满足人们日常生活和工业生产的需要。

风力发电机组构造及工作原理

风力发电机组构造及工作原理

风力发电机组构造及工作原理风力发电机是一种利用风能转化为电能的装置,它在现代可再生能源领域起着重要的作用。

本文将详细介绍风力发电机的构造以及其工作原理。

一、构造风力发电机由以下几个主要部件组成:1. 风轮/叶片:风轮是风力发电机的核心部件,通常由三个或更多的叶片组成。

这些叶片通过捕捉到的风能转化为机械能。

2. 主轴和发电机:主轴将风轮的旋转运动转变为发电机的旋转运动。

发电机通过旋转运动将机械能转化为电能。

3. 塔架:塔架是支撑风力发电机的结构,通常由钢铁或混凝土建造而成。

塔架的高度取决于风力发电机的设计和布置。

4. 控制系统:控制系统负责监测和调节风力发电机的运行。

它可以根据风速和电网需求来调整发电机的负载和转速。

二、工作原理风力发电机的工作原理可以分为以下几个步骤:1. 捕捉风能:当风吹过风轮时,风轮的叶片会受到风力的作用而旋转。

风轮的设计使得风能尽可能地转化为机械能。

2. 传输机械能:通过主轴,机械能从风轮传输到发电机。

主轴的旋转使发电机内部的线圈和磁场相互作用,产生感应电流。

3. 转化为电能:感应电流通过电路传输到变流器或逆变器,进一步将其转换为适合电网输入的交流电能。

4. 电网连接:通过输电线路,发电机产生的电能连接到电网中,为用户供电。

控制系统负责监测电网的需求,并调整发电机的负载和转速。

三、优势和挑战风力发电机有许多优势,包括:1. 可再生能源:风能是一种可再生能源,与化石燃料相比无排放,对环境友好。

2. 多样化的规模:风力发电机可以根据需求进行大规模或小规模的布置,适用于不同地理区域和用途。

然而,风力发电机也面临一些挑战:1. 依赖风能:风力发电机需要稳定的风能才能运行,因此在风量不稳定的地区可能发电效率较低。

2. 空间需求:风力发电机需要一定的空间来布置,这在有限的城市环境中可能存在限制。

结论风力发电机是一种重要的可再生能源装置,利用风能转化为电能。

通过了解其构造和工作原理,我们可以更好地理解风力发电机的运行原理。

风力发电机的结构与组成

风力发电机的结构与组成

风力发电机的结构与组成风力发电机是一种利用风能转化为电能的装置,它由多个部件组成。

本文将介绍风力发电机的结构与组成。

一、塔架风力发电机的塔架是支撑整个设备的基础结构,通常由钢铁或混凝土建造而成。

塔架的高度往往决定了风力发电机的发电效率,因为高度可以使其处于更高的风速区域。

二、风轮风轮是风力发电机的核心部件,也被称为风力涡轮机。

它由多个叶片组成,通常为三片或更多片。

叶片的材料通常是复合材料,如玻璃纤维和碳纤维。

风轮的主要作用是捕捉风能并转化为旋转动能。

三、发电机发电机是将旋转的机械能转化为电能的设备。

在风力发电机中,发电机通常位于塔架的顶部,与风轮相连。

它通过叶片的旋转运动产生电流,将机械能转化为电能。

四、变速器变速器是控制风轮旋转速度的装置。

由于风速的不稳定性,风力发电机需要根据风速的变化来调整旋转速度,以保持发电效率。

变速器可以根据需要调整风轮旋转的速度,使其始终在最佳工作状态。

五、控制系统风力发电机的控制系统负责监测和控制整个发电过程。

它可以实时监测风速、风向、温度等参数,并根据这些参数来调整发电机的工作状态。

控制系统还可以进行故障检测和保护,确保风力发电机的安全运行。

六、电力传输系统电力传输系统将发电机产生的电能传输到电网中。

它包括变压器、电缆和开关装置等设备。

变压器用于提高或降低电压,以适应电网的要求。

电缆用于连接发电机和电网,将电能传输到用户。

七、基础设施除了上述主要部件外,风力发电机还需要一些基础设施来支持其正常运行。

例如,风力发电机需要道路或平台来进行维护和保养。

此外,还需要配套的风能资源评估系统和监测系统,以提高发电效率和安全性。

总结起来,风力发电机的结构与组成主要包括塔架、风轮、发电机、变速器、控制系统、电力传输系统和基础设施。

这些部件相互协作,将风能转化为电能,实现可持续发展的清洁能源。

风力发电机的不断发展和推广将对环境保护和能源安全产生积极影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机的组成部件及其功用风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。

风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。

下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。

图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。

图3-3-4 小型风力发电机示意图1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器图3-3-5 中大型风力发电机示意图1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。

1 风轮风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。

其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。

叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。

风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。

图3-3-7所示为风力发电机叶片(横截面)的几种结构。

图3-3-6 风轮1.叶片2.叶柄3.轮毂4.风轮轴图3-3-7 叶片结构(a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面;(e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。

木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。

用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。

叶片的材质在不断的改进中。

1 机头座与回转体风力发电机塔架上端的部件——风轮、传动装置、对风装置、调速装置、发电机等组成了机头,机头与塔架的联结部件是机头座与回转体(参阅后面的图3-3-24)。

(1)机头座它用来支撑塔架上方的所有装置及附属部件,它牢固如否将直接关系到风力机的安危与寿命。

微、小型风力机由于塔架上方的设备重量轻,一般由底板再焊以加强肋构成;中、大型风力机的机头座要复杂一些,它通常由以纵梁、横梁为主,再辅以台板、腹板、肋板等焊接而成。

焊接质量要高,台板面要刨平,安装孔的位置要精确。

(2)回转体(转盘)回转体是塔架与机头座的连接部件,通常由固定套、回转圈以及位于它们之间的轴承组成。

固定套销定在塔架上部,而回转圈则与机头座相连,通过它们之间轴承和对风装置,在风向变化时,机头便能水平的回转,使风轮迎风工作。

大、中型风力机的回转体常借用塔式吊车上的回转机构;小型风力机的回转体通常中在上、下各设一个轴承,均可采用圆锥滚子轴承,也可以上面用向心球轴承以承受径向载荷,下面用推力轴承来承受机头的全部重量;微型风力机的回转体不宜采用滚动轴承,而用青铜加工的轴套,以防对风向(瞬时变化)过敏,导致风轮的频繁回转。

2 对风装置自然界的风,方向和速度经常变化,为了使风力机能有效地捕捉风能,就应设置对风装置以跟踪风向的变化,保证风轮基本上始终处于迎风状况。

风力机的对风装置常用的有:尾舵(尾翼)、舵轮、电动机构和自动对风四种。

(1)尾舵尾舵也称尾翼,是常见的一种对风装置,微、小型风力发电机普遍应用它。

尾舵有3种基本形式如图3-3-8所示,(a)是老式的,(b)是改进的,(c)为新式的,它的翼展与弦长的比为2~5,对风向变化反应敏感,跟踪性好。

图3-3-8 尾舵形式尾舵常处于风轮后面的尾流区里,为了避开尾流的影响,可将尾舵翘起安装,高出风轮(见图3-3-9之a)。

有人研制的10kW左右的风力发电机,将尾舵改进成如力图3-3-9之b所示的型式,既减少了尾舵面积,又使调向平稳。

图3-3-9 尾舵的进一步改进尾舵到风轮的距离一般取为风轮直径的0.8~1.0值。

尾舵的面积,在高速风力发电机中,可取为风轮旋转面积的4%左右;而在低速风力发电机中,可取为10%左右的风轮旋转面积。

(1)舵轮在风轮后面、机舱两侧装有两个平行的多叶片式小风轮,称舵轮(也称侧风轮)(见图3-3-10),其旋转面与风轮扫掠面相垂直。

舵轮的轴带动由圆锥齿轮和圆柱齿轮组成的传动系统,图示的中间齿轮与装在塔架顶端的回转体上的从动大圆柱齿轮啮合。

正常工作时,风力机的风轮对准风向,舵轮旋转平面与风向平行,它不转动。

当风向变化时,舵转与风向成某一角度,在风力作用下舵轮开始旋转,通过传动系统,使风力机的风轮再对准风向,舵轮旋转平面又恢复到与风向平行的位置,便停止转动。

图3-3-10 舵轮对风装置舵轮对风装置比尾舵工作得平稳,多用于中型风力发电机上。

其传动装置也可以设计成蜗轮蜗杆式的。

(1)电动对风装置电动对风装置常被大型和中型风力发电机采用。

图3-3-11是国产FD16.2-55型风力发电机组对风装置示意图。

该装置的风向感受信号来自于装在机舱上面的风向标。

在风向标的垂直轴上有一个凸轮,轴的下端有浸没在油缸中的阻尼板(板上钻有很多小孔),用以吸收风向听脉动。

当风向偏离风轮轴线±15°时,风向标带动其垂直轴上的凸轮转动,使左侧或右侧的限位开头接通,经过30秒(可任意调时)延时后,交流接触器闭合,起动对风伺服电动机左转或右转,并接通相应的批示灯。

伺服电动机经过减速器带动回转体上的转盘转动,使风轮重新迎风后,限位开关断开,电动机停转,指示灯熄灭。

两只交流接触器互为闭锁,从而保证动作时只能闭合一只,而不会同时接通造成短路。

图3-3-11 电动对风装置(1)自动对风风轮按吹向风力发电机的风先到机舱还是先到风轮,风力机可分为上风向(式)和下风向(式)的(见图3-3-5)。

相应的风轮配置称为前置式的和后置式的。

对于下风向(式)的风力机,可将风轮设计成如力图3-3-12的型式,利用风作用在风轮上的阻力的方法,使风轮自动对准风向,成为自动对风风轮。

但当风向变换频繁时,易使风轮摇摆不定,为此应加阻尼装置,即在回转体外缘对称设置2~3对橡胶或尼龙摩擦块,摩擦块支座固定在塔架上,压块对回转盘的摩擦力的大小用可调节弹簧来调节。

这种对风装置图3-3-12 自动对风风轮多用于中、大型风力发电机上。

2 调速装置自然界的风速经常变化,风轮的转速随风速的增大而变快。

风轮转速的变快,将使发电机的输出电压、频率、功率增加;当风轮的转速超过设计允许值时,有可能导致机组的毁坏或寿命的减少。

为使风轮能稳定一定转速内工作,风力发电机上设有调速装置。

调速装置是在风速大于设计额定风速时才起作用,因此,又被称为限速装置。

当风速增至停机风速时,调速装置能使风轮顺桨停机(风向与风轮旋转平面平行)。

国内外研制了许多风力机的调速装置,归纳起来,就其调速原理大体上可分为三类:减少风轮迎风面积;改变叶片翼型攻角值和利用空气在风轮圆周切线方向的阻力限制风轮转速。

(1)减少风轮迎风面积靠升力旋转的风轮,正常工作时,风轮旋转平面与风向垂直,其迎风面积为叶片回转时所扫掠的圆形面积A(图3-3-13和3-3-14之a位置)。

当风速变大超过额定风速(风力机输出额定功率时的风速)时,为了不让风轮超速旋转,可减少风轮的迎风面积,使其由圆形变为椭圆形,或缩小圆形的直径,下面列举4种方法。

图3-3-12 自动对风风轮图3-3-13 侧翼装置调速原理示意图1—未调速位置;2—调速位置;3—顺浆位置。

图3-3-14 偏心装置调速原理示意图1—未调速位置;2—调速位置;3—顺浆位置。

1)侧翼装置(图3-3-13)。

在风轮后面向一侧伸出一支侧翼,翼柄平行地面和风轮旋转面;另一侧配有弹簧。

当风速大于额定风速时,风施加在侧翼压力对回转轴的力矩,大于弹簧拉力对回转轴的力矩,风轮开始偏移,由(a)位置到(b)位置,若偏转角度为θ,则(b)的位置风轮的迎风面积则变成了(椭圆形),迎风面积减少了,尽管风速增大了,而风轮的转速并没增加。

风速再增大,风轮可能偏转到(c)的位置,迎风面积就更小了。

当风速逐渐减少时,在弹簧的拉力作用下,风轮又恢复到(b)→(a)的位置。

2)偏心装置(图3-3-14)风轮轴线与机头座回转体的转向轴的轴线有一定的偏心距,另一侧亦设弹簧。

当风速超过额定风速后,风作用在风轮上的正面压力的合力对转向轴的力矩克服弹簧的拉力,风轮偏转到(b)的位置(迎风面积呈椭圆形)的位置;风再大,到(c)的位置。

风速减小时,又依次恢复到(b)→(a)的位置。

此图所示是风轮向侧向偏转的,按同一原理,亦可设计成向上偏转式的。

如图3-3-15所示。

图3-3-15 仰头调速(a)风力发电机在额定风速下运转;(b)超额定风速仰头调速1)尾翼升降装置(图3-3-16)。

上述两种调速装置都用了弹簧,但是弹簧暴露于大气中很容易锈蚀,可用配重或能产生回位力矩的尾舵来代替弹簧。

利用尾翼升降进行调节的基本结构是将尾翼与机头的连接转轴向后倾斜一个角度。

当风轮位置(a)→(b)→(c)时,尾舵绕其转轴向轮靠拢,它的相对高度发生了变化,从B向看,对应为(aˊ)→(bˊ)→(cˊ)。

尾舵重心提高了,产生了回位力矩,当风速变小时,它依次回位(cˊ)→(bˊ)→(aˊ)。

尾舵如此安装,就相当于一个重心能上下变动的配重,用它们位置高度的变化,代替弹簧拉力的作用。

图3-3-16 尾翼升降调节原理示意图1)缩小风轮圆形迎风面积。

图3-3-17所示为叶片用铰链安装在风轮轴上,并借助弹簧的压力保持其设计位置。

当风速超过额定值时,作用在叶片上风的正面力加大,克服弹簧作用力,叶片由实线位置变到虚线位置,风轮扫掠面积缩小了,转速不再增加;当风速变小时,在弹簧力的作用下,叶片由虚线位置恢复到实线位置。

利用减少风轮迎风面积的调速方法,多用于15kW以下的微型、小型及中型风力机上。

(1)改变叶片翼型攻角值前已述及,叶片升力与翼型攻角值有着密切的关系。

改变翼型攻角的基本方法是:当风速达到一定量值后,设法使叶片能绕叶片长度方向的转动轴回转某一角度,改变了攻角α值;当然同时也改变了叶片安装角β值。

风速再变大,而叶片升力却不再增加;甚至随叶片阻力的增大,可使风轮转速降低。

利用改变叶片翼型攻角值的调速方法,常被称作变桨距调速法。

不同风轮上的叶片有两种安装型式:一种叶片安装后可绕其长度方向的转动轴转动,这种风轮称为变桨距风轮;另一种叶片与轮毂的连接是固定的,叶片不能绕叶柄方向的轴转动,这种风轮称为定桨距风轮。

下面介绍利用改变叶片攻角值进行调速的3种方法。

1)配重(飞球)与弹簧配合装置(图3-3-18)。

当风轮转速达到额定值时,风速再增大,风轮转速再加快,配重(飞球)的离心力将克服套管(未绘了出)中弹簧的作用力,向外移动,这时曲柄将拉动叶片轴(柄)转动,改变叶片横截面的弦与吹来的风之间的夹角(攻角),升力系数随之减少,升力不再增大,风轮的转速也就不再增加。

相关文档
最新文档