肠道菌群紊乱和自闭症3
从肠道菌群-肠-脑轴调控角度探讨针刺长强穴治疗孤独症谱系障碍机制

福建中医药2024 年1 月第55 卷第1期Fujian Journal of TCM January 2024,55(1)从肠道菌群-肠-脑轴调控角度探讨针刺长强穴治疗孤独症谱系障碍机制卜婉萍1,林栋2*(1.泉州医学高等专科学校,福建泉州 362011;2.福建中医药大学针灸学院,福建福州 350122)摘要:近年来研究发现孤独症谱系障碍(ASD)的发病机制与肠道菌群有关,肠道菌群可通过肠-脑轴对机体的生理、病理过程产生多途径调控作用,ASD患者常存在肠道菌群失调,影响机体的神经发育及行为认知。
针刺长强穴具有醒脑开窍、安神定志之功,可改善ASD患者的学习、记忆能力等。
笔者基于“肠脑同治”中医理论,从肠道菌群-肠-脑轴调控角度分析认为针刺长强穴治疗ASD的具体调节途径分别为:参与调节肠脑神经通路、调节下丘脑-垂体-肾上腺轴(HPA)。
关键词:孤独症谱系障碍;肠道菌群-肠-脑轴;长强穴孤独症谱系障碍(autism spectrum disorder,ASD)属于复杂的神经系统发育障碍性疾病,随着生活节奏及大环境的改变,患有ASD的人群日益攀升。
美国最新流行病学调查显示ASD的发病率约2.3%[1],最新数据显示我国ASD的发病率也达到1%左右[2]。
然而对ASD发病机制的认识并不清楚,目前主流观点认为其病因与遗传及环境因素交互作用相关[3]。
罹患ASD给患儿的生活及其家庭带来沉重的负担,因此ASD的治疗显得尤为重要。
长强穴作为督脉上的起始穴位,是督脉经气初始的地方,具有醒脑开窍、安神定志的功效,常被用于ASD的相关治疗[4]。
既往对其针刺效应的研究多着眼于脑功能效应,鲜有关注肠道菌群-肠-脑轴与其针刺效应的关系。
相关研究表明消化道相关疾病作为儿童ASD占比最高的共患病,在ASD儿童中占23%~70%[5],因此越来越多学者开始关注肠道菌群与肠-脑轴之间的关系及对ASD发病机制的影响。
研究表明肠道菌群可以影响γ-氨基丁酸、多巴胺等大脑神经递质的合成与调节,对大脑调控情绪、认知、学习能力及注意力等方面至关重要[6]。
自闭症是什么原因引起

自闭症是什么原因引起自闭症,也被称为孤独症谱系障碍,是一种复杂的神经发育障碍,它会影响一个人的社交互动、沟通能力、兴趣和行为模式。
对于自闭症的成因,科学界至今仍在不断探索和研究中,但已经有了一些较为明确的线索和可能的因素。
遗传因素在自闭症的发生中起着重要的作用。
研究表明,如果一个人的亲属中有自闭症患者,那么他患自闭症的风险会显著增加。
许多基因的变异和组合可能与自闭症的发展有关,这些基因可能影响大脑的发育、神经连接的形成以及神经递质的功能。
例如,某些基因可能影响神经元的迁移和分化,导致大脑结构和功能的异常。
环境因素也被认为可能对自闭症的发生产生影响。
在胎儿发育期间,母亲的健康状况、感染、药物使用、营养不良等都可能对胎儿的大脑发育产生不利影响。
例如,母亲在怀孕期间感染风疹、巨细胞病毒等,可能增加孩子患自闭症的风险。
另外,出生时的并发症,如早产、低体重出生、缺氧等,也可能对婴儿的大脑发育造成损害,从而增加自闭症的发生几率。
神经生物学因素在自闭症的成因中也占据重要地位。
研究发现,自闭症患者的大脑结构和功能存在异常。
例如,大脑的体积、皮层厚度、神经元的数量和分布等方面可能与正常人有所不同。
在神经连接方面,自闭症患者大脑中的突触连接可能存在异常,导致信息传递和处理的障碍。
神经递质的失衡,如血清素、多巴胺等,也可能影响大脑的功能和行为表现。
免疫系统的异常也可能与自闭症有关。
一些研究表明,自闭症患者的免疫系统可能存在过度活跃或反应不当的情况。
免疫系统的异常可能导致炎症反应,影响大脑的发育和功能。
此外,免疫细胞产生的抗体可能攻击自身的神经细胞,从而影响神经系统的正常运作。
肠道微生物群的失衡也被认为是自闭症的一个潜在因素。
肠道微生物群在维持人体健康方面起着重要作用,包括影响免疫系统、代谢和神经功能。
研究发现,自闭症患者的肠道微生物群组成与正常人有所不同,这种失衡可能通过肠脑轴影响大脑的发育和功能。
环境毒素的暴露也可能是自闭症的一个诱因。
自闭症与肠道菌群的关系

自闭症与肠道菌群的关系目前,医学领域对自闭症的病理和病因的了解较浅,虽然有大量的行为治疗被证明是科学、有效的,但有效的药物却很少。
另有研究发现,很多自闭症患者同时还存在严重的胃肠道疾病,所以自闭症与肠道菌群之间可能存在一定关联。
下文针对自闭症与肠道菌群的关系进行介绍。
一、肠道菌群与自闭症的关系肠道菌群是非常复杂的群落,在人体肠道系统中,有超过1 000种不同类型的细菌,其中最主要的细菌门是拟杆菌门、厚壁菌门两种,这两种细菌可占据肠道菌群的93.8%左右。
而像变形菌门、放线菌门、疣微菌门等的数量则较少。
对于自闭症患者来说,除了会表现出一些神经系统异常现象以外,还会存在大量的肠道疾病症状,如腹痛、腹泻、便秘、肠胃胀气、胃食管反流等。
因此,在自闭症患者中表现出的这些肠道问题,可以佐证肠道菌群会在自闭症患者的发病机制中产生一定影响。
肠道菌群之所以可以对自闭症造成影响,主要原因还是在于自闭症患者的肠道通透性较强,所以患者胃肠道屏障会存在缺陷,最终造成毒素和细菌产物等进入到血液中,从而影响到大脑的正常功能。
比如,肠道酵母菌不仅能够黏附并定植于肠道黏膜上,还具有穿透肠黏膜屏障的转运能力,能够破坏肠道上皮细胞间的紧密连接,酵母菌过度增殖会使肠道通透性增大。
还有一些微生物群会产生神经活性化合物,它们会通过肠—脑轴进入大脑,并影响神经回路,从而对大脑功能造成影响并诱发一些异常行为。
而某些肠道菌群的代谢物及神经活性化合物会促使肠神经元活跃,然后通过迷走神经对大脑功能造成影响。
文/樊郑阳 新疆医科大学中医学院 陈伟民 同济大学附属养志康复医院二、肠道菌群治疗自闭症1.益生元改善自闭症益生元主要是纤维,属于不容易消化食物中存在的必要成分,这种物质可以选择性刺激结肠中某些微生物的生长或者是活性,从而对宿主产生有益的影响。
而益生元组的低聚半乳糖,也会促进双歧杆菌的增值。
而在体外肠道模型中,有研究特意采集了有无服用益生元的自闭症儿童的粪便,将肠道有益菌群数量进行对比,发现低聚半乳糖对胃肠道中有益菌群的增多有着很大程度的贡献,同时还在多种研究层面获得较为理想的效果。
肠道藏着的心理秘密之这是怎么回事莫桂珍

如果孩子平时喜欢跪着睡或者用什么东西抵住腹部,那很有可能是肠胃不适导致的,因为自闭患儿的表达往往会存在问题,所以很容易用一些发脾气和自伤行为表达不适。
通过X光可以发现有些孩子的消化道出现了一种“粪便压实”的状况,沉积的粪便会导致寄生虫、真菌、病毒的繁殖,产生的毒素可能会进入孩子的血液中。
自闭患儿的肠道活检显示,自闭症与肠道慢性炎症疾病有关,这些患儿的直肠,出现了回肠淋巴组织结节样增生和非特异性结肠炎。
回肠是小肠的最后一段,约占小肠的3/5,小肠主要负责吸收营养,而回肠有两大功能:第一个功能是过滤来自回肠的淋巴液,去除细菌、真菌、病毒死亡的细胞和各种毒素。
第二个功能是产生淋巴细胞,即免疫系统细胞中的一大群,主要负责对抗感染。
遇到感染时淋巴结会变大和发炎,而自闭患儿就会出现淋巴结肿大的情况。
很多孩子在接受了麻疹疫苗后发展成了自闭症,安德鲁·韦克菲尔德医生邀请了知名的病毒学家——约翰·奥利瑞加入了研究,在自闭症患儿的回肠淋巴结中也发现了麻疹病毒,虽然引发了很大的争论和政府的阻拦,但是由于对抗麻疹病毒而肿胀的淋巴结是身体对抗感染的一个清晰的信号。
这类细菌是人体固有的友好细菌。
主要包括双歧杆菌、乳酸菌、丙酸杆菌、大肠杆菌的生理性菌株、消化链链球菌及肠球菌。
第二,机会型菌群。
数量和组合形态因人而异。
包括拟杆菌、消化球菌、葡萄球菌、链球菌、芽孢杆菌、梭状芽孢杆菌、酵母菌、肠细菌(变形杆菌、克雷伯菌、柠檬酸杆菌等)、梭杆菌、真细菌、粪球菌和许多其他细菌。
这些细菌受到有益菌的严格控制,如果在有益菌失衡的情况下,这些细菌可能会引发健康问题。
第三,过渡型菌群。
这些是通过饮食进入肠道的菌群,通常是非发酵的革兰氏阴性杆菌,如果有益菌失衡,这种菌也会对健康造成危害。
我们的消化道是被细菌涂布的,免于受到外界微生物、化学物质和毒素的侵害,如果这层屏障破损,胃肠壁就会遭殃。
肠道菌群产出类抗菌物质、抗真菌挥发物、抗病毒物质(干扰素、溶菌酶、表面活性肽)融解病毒和细菌的膜,对抗微生物。
肠道菌群失调症

肠道菌群失调症人体消化功能图健康人的胃肠道内寄居着种类繁多的微生物,这些微生物称为肠道菌群。
肠道菌群按一定的比例组合,各菌间互相制约,互相依存,在质和量上形成一种生态平衡,一旦机体内外环境发生变化,特点是长期应用广谱抗生素,敏感肠菌被抑制,未被抑制的细菌而乘机繁殖,从而引起菌群失调,其正常生理组合被破坏,而产生病理性组合,引起临床症状就称为肠道菌群失调症(alteration of intestinal flora)。
本症的发生率约为2%~3%。
治疗措施一全身支持疗效对施行大手术患者,手术前注意补充营养,亦可肌注丙种球蛋白以提高机体免疫机能。
有研究表明,溃结患者肌注入免疫球蛋白可使结肠内乳酸杆菌和双岐杆菌增加,某些条件致病菌减少。
也可试用注射转移因子,免疫核糖核酸、胸腺素等,亦可用白细胞介素2,每次5万U 肌注,10日为一疗程,可连续应用。
二原因治疗如由于巨结肠,胆囊炎引起的肠球菌过度繁殖;维生素缺乏造成的肠球菌减少或消失;小肠蠕动过快而引起的酵母菌过多等,都必须无除去这些原因,然后再扶持正常菌群,方能奏效。
三调整菌群治疗1.饮食调整:发酵性腹泻应限制碳水化合物;腐败性腹泻应限制蛋白质的摄入。
增强肠粘膜的局部防御屏障功能,防止细菌易位,应增加纤维食物。
2.抗菌药物:立即停止原抗生素,应根据菌群分析以及抗菌药物敏感试验,选用合适的抗生素以及抑制过度繁殖的细菌,从而间接扶植肠道繁殖不足的细菌。
此外还可采用广谱抗菌药物将肠道细菌大部分消灭,然后再灌入正常肠道菌群的菌液以使其恢复。
3.活菌制剂:目前常用的活菌制剂有嗜酸乳杆菌、保加利亚乳杆菌、乳酸乳杆菌、芽胞乳杆菌、分叉乳杆菌、粪链球菌、大肠杆菌、粪杆菌和枯草杆菌等。
其中以分叉乳杆菌制剂疗效最好。
枯草杆菌制剂疗效也较好,其疗效机制可能是由于该菌是需氧的,能吸收氧氧,降低肠腔氧化还原电位,支持厌氧菌(类杆菌、乳杆菌)生长,从而间接扶植了正常菌菌群。
还可以用正常人大便悬液做成复方活菌制剂用来治疗葡萄球菌引起的伪膜性肠炎,收到较好的效果。
自闭症患者肠道菌群的结构变化及NS乳酸菌干预机制研究

自闭症患者肠道菌群的结构变化及NS乳酸菌干预机制研究研究背景:自闭症是一种严重的神经发育障碍,它对社会和患者家庭造成极其严重的经济和医疗负担,并且目前临床中尚未有有效的治疗方法。
据保守估计我国自闭症患病率为1 070,并且呈逐年上升趋势。
自闭症患者不仅表现出行为症状,还伴随着诸多典型的生物学症状,如免疫功能异常、胃肠功能紊乱、多种过敏等问题。
尽管人们多年来致力于寻找致病基因,但其患病率急剧上升的现状完全不符合群体遗传学的哈迪一温伯格平衡,表明外在因素对其发生的影响远大于遗传因素。
事实上,肠道微生物在自闭症的发生与发展中起重要作用,自闭症与个体的肠道微生物失衡及肠一脑轴异常密切相关。
由于婴幼儿的肠脑发育与大脑发育几乎同步,因而在发育关键期,任何影响其肠道微生物的因素均可增加自闭症风险。
肠道微生物可通过其代谢产物、免疫、神经内分泌、以及迷走神经等途径影响大脑和行为。
目前以肠道微生物为靶点干预自闭症正在成为研究热点,主要方式包括饮食干预、药物干预、粪菌移植和益生菌干预,其中益生菌以其有效性和安全性得到较多认可。
本研究在关注近年来与肠道微生物相关的自闭症研究基础上,尝试对自闭症患者进行特定益生菌干预,从而为了解共生微生物在自闭症发病中的角色和相应对策展开深层次的认识。
研究目的:1.建立健康儿童以及自闭症儿童肠道微生物数据库,分析自闭症儿童肠道微生物的构成,尝试通过调整和改变肠道微生物组份来干预自闭症。
2.通过自闭症儿童肠道微生物与对照儿童肠道微生物结构的比较研究,确定自闭症儿童肠道微生物的变化,确定自闭症相关微生物标记物。
3.通过检测微生物一肠一脑轴功能相关生理生化指标变化,分析自闭症儿童与健康对照儿童生理生化指标差异,探讨肠道微生物影响自闭症的分子途径。
确定与疾病密切相关的生理指标及其变化,为临床诊断和干预提供参考。
4.通过分析直接监护人填写的评估问卷,对比自闭症儿童的行为异常和消化道症状在特定乳酸菌干预前后的变化,评估患者行为认知症状和胃肠道症状的改善程度。
肠道脆弱拟杆菌BF839让你远离自闭症

肠道脆弱拟杆菌(BF839):可以让人远离自闭症肠道细菌能够影响消化、过敏反应以及新陈代谢,这些都是我们所熟知的。
但是肠道细菌也可能会出现更深入影响,甚至会深及人类大脑。
现在人们对于肠道菌群的生态系统已经耳熟能详了,在全球各地,现在出现越来越多的研究者正在对这个微生物组(Microbiome)如何调节人类的想法和感觉进行探索。
而且现在一些科学家们已经发现证据,这个总重量在一磅到三磅之间、包含着一千多种不同的细菌、由万亿个细胞共同形成的细菌集合物,可以在很多的疾病中发挥着关键作用,例如:自闭症、焦虑症、抑郁症等其他的疾病。
近几十年来,在自闭症的研究上我们取得了一些非常引人注目的成果。
通过大量的研究证明,大约四分之三的自闭症患者都会出现某些胃肠功能异常,例如消化问题、食物过敏或麸质过敏(gluten sensitivity)。
这项研究结果促进了科学家们检验肠道微生物与自闭症之间的潜在联系,最近几期的报告以及研究显示着,自闭症患者的肠道菌群与对照组有显著差异。
加州理工学院的微生物学家萨尔基斯·马兹曼尼亚(Sarkis Mazmanian)主要对肠道菌群中一种常见品种——脆弱拟杆菌BF839(Bacteroides fragilis)进行深入研究,很多的研究证实,脆弱拟杆菌BF839zai 自闭症儿童体内数量较少。
在两年前发表在《细胞》(Cell)杂志的一篇论文中,马兹曼尼亚以及同事对类似于自闭症症状的小鼠使用了取自人体的脆弱拟杆菌BF839进行饲喂,结果显示这种细菌不仅改变了小鼠体内的菌群组成,更加然人欣喜的是,脆弱拟杆菌BF839更改善了它们的行为,结果显示,这些小鼠的焦虑程度降低,与其他小鼠的互动更多,重复性行为明显的减少。
马兹曼尼亚在2012年,因为他在肠道菌群方面的贡献,从而获得了麦克阿瑟奖。
马兹曼尼亚将这一研究发现称为为对研究微生物如何在自闭症和其他神经发育障碍中起作用所取得的“潜在的突破性进展”。
肠道菌群失调诊断标准

肠道菌群失调诊断标准
肠道菌群失调的诊断标准主要包括以下三点:
1. 轻度菌群失调:在去除致病因素后,肠道功能紊乱的症状可以恢复好转。
这种情况通常见于急性疾病引起的肠道功能紊乱。
2. 中度菌群失调:即使去除病因,肠道症状往往不能恢复,并且出现慢性肠道症状。
3. 重度菌群失调:表现为菌群交替或二重感染,需要通过粪便性状和实验室检查来确定特异性诱因,例如志贺菌、沙门菌、空肠弯曲菌、艰难梭菌和轮状病毒感染等。
如果出现肠道菌群失调的症状,如便秘、腹泻、胀气等,应及时就医,以便早期诊断和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肠道菌群紊乱和自闭症3•1Faculty of Life Sciences, The University of Manchester , Manchester , UK.AbstractAutism spectrum disorder (ASD) is a heterogeneous condition affecting an individual's ability tocommunicate and socialize and often presents with repetitive movements or behaviors. It tends to be severe with less than 10% achieving independent living with a marked variation in the progression of the condition. To date, the literature supports a multifactorial model with the largest, most detailed twin study demonstrating strong environmental contribution to the development of the condition. Here, we present a brief review of the neurological, immunological, and autonomic abnormalities in ASD focusing on the causative roles of environmental agents and abnormal gut microbiota. We present a working hypothesis attempting to bring together the influence of environment on the abnormal neurological, immunological, and neuroimmunological functions and we explain in brief how such pathophysiology can lead to, and/or exacerbate ASD symptomatology. At present, there is a lack of consistent findings relating to theneurobiology of autism. Whilst we postulate such variable findings may reflect the marked heterogeneity in clinical presentation and as such the variable findings may be of pathophysiological relevance, more research into the neurobiology of autism is necessary before establishing a working hypothesis. Both the literature review and hypothesis presented here explore possible neurobiological explanations with an emphasis of environmental etiologies and are presented with this bias.Ann Pharm Fr. 2014 Jan;72(1):15-21. doi: 10.1016/j.pharma.2013.09.001. Epub 2013 Oct 16.[Current view on gut microbiota].[Article in French]Bourlioux P1.Author information•111, avenue de la République, 94400 Vitry-sur-Seine, France. Electronic address: pierre.bourlioux@u-psud.fr.AbstractGut microbiota is more and more important since metagenomic research have brought new knowledge on this topic especially for human health. Firstly, gut microbiota is a key element for our organism he lives in symbiosis with. Secondly, it interacts favorably with many physiological functions of our organism. Thirdly, at the opposite, it can be an active participant in intestinal pathologies linked to a dysbiosis mainly in chronic inflammatory bowel diseases like Crohn disease or ulcerative colitis but also in obesity, metabolic syndrome, and more prudently in autism and behavioral disorders. In order to keep a good health, it is essential to protect our gut microbiota as soon as our young age and maintain it healthy. Face to a more and more important number of publications for treating certain digestive diseases with fecal microbial transplantation, it needs to be very careful and recommend further studies in order to assess risks and define standardized protocols. Gut microbiota metabolic capacities towards xenobiotics need to bedeveloped, and we must take an interest in the modifications they induce on medicinal molecules. On theother hand, it is essential to study the potent effects of pesticides and other pollutantson microbiota functions.•1Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.•2Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA. Electronic address: Lloyd.H.Kasper@.AbstractMammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gutand central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatricdisorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNSdisorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.Nat Rev Neurol. 2014 Feb;10(2):60. doi: 10.1038/nrneurol.2013.267. Epub 2013 Dec 24.Neurodevelopmental disorders: human gut microbiota alleviate behavioural symptoms in a mouse modelofautism spectrum disorder.Malkki H.Comment on•1Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.•2Nutricia Research, Utrecht, The Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.•3Nutricia Research, Utrecht, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.•4Nutricia Research, Utrecht, The Netherlands.•5Nutricia Research, Utrecht, The Netherlands. Electronic address: raish.oozeer@.AbstractAutism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders with evidence of genetic predisposition. Intestinal disturbances are reported in ASD patients andcompositional changes in gut microbiota are described. However, the role of microbiota in brain disorders is poorly documented. Here, we used a murine model of ASD to investigate the relationbetween gut microbiota and autism-like behaviour. Using next generation sequencingtechnology, microbiota composition was investigated in mice in utero exposed to valproic acid (VPA).Moreover, levels of short chain fatty acids (SCFA) and lactic acid in caecal content were determined. Our data demonstrate a transgenerational impact of in utero VPA exposure on gut microbiota in the offspring.Prenatal VPA exposure affected operational taxonomic units (OTUs) assigned to genera within the main phyla of Bacteroidetes and Firmicutes and the order of Desulfovibrionales, corroborating human ASD studies. In addition, OTUs assigned to genera of Alistipes, Enterorhabdus, Mollicutes andErysipelotrichalis were especially associated with male VPA-exposed offspring. The microbial differences of VPA in utero-exposed males deviated from those observed in females and was (i) positively associated with increased levels of caecal butyrate as well as ileal neutrophil infiltration and (ii) inversely associated with intestinal levels of serotonin and social behaviour scores. These findings show that autism-likebehaviour and its intestinal phenotype is associated with altered microbial colonization and activity in a murine model for ASD, with preponderance in male offspring. These results open new avenues in the scientific trajectory of managing neurodevelopmental disorders by gut microbiome modulation.•1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology,Pasadena, CA 91125, USA. Electronic address: ehsiao@.•2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.•3Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA.•4Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.•5Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address: php@.•6Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address: sarkis@.AbstractNeurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities.We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identifya potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmentaldisorders.•1Alimentary Pharmabiotic Center.AbstractTo date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels ofcomplexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition hassignificantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics ininforming host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason thatthe microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction.•1Preventative Health National Research Flagship, CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, South Australia 5001, Australia. michael.conlon@csiro.au.AbstractBACKGROUND:A recent report indicated that numbers of Sutterella spp. are elevated in gastrointestinal biopsies takenfrom children with autismspectrum disorder (ASD). We have recently reported changes in the numbers of some bacteria within the stool of ASD children, and now examine whether numbers of Sutterella spp. and some other mucosa-associated bacteria linked with gastrointestinal disease (Ruminococcus gnavus and Ruminococcus torques) are also altered in the stool of these children.FINDINGS:We show that numbers of Sutterella spp. are elevated in feces of ASD children relative to controls, and that numbers of R. torques are higher in the children with ASD with a reported functionalgastrointestinal disorder than those without such a disorder.CONCLUSIONS:We show further evidence of changes in the gut microbiota of children with ASD and confirm that the abundance of Sutterella spp. is altered in stool.•1Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.AbstractAutism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) areneurodevelopmental disorders which occur in childhood and may persist into adulthood. Although the etiology of these disorders is largely unknown, genetic and environmental factors are thought to play a role in the development of ASD and ADHD. Allergic immune reactions, in prenatal and postnatal phases, are examples of these environmental factors, and adverse reactions to foods are reported in thesechildren. In this review, we address the clinical and preclinical findings of (food) allergy in ASD and ADHD and suggest possible underlying mechanisms. Furthermore, opportunities for nutritional interventions in neurodevelopmental disorders are provided.•1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy.AbstractThis study aimed at investigating the fecal microbiota and metabolome of children with PervasiveDevelopmental Disorder Not Otherwise Specified (PDD-NOS) and autism (AD) in comparison to healthy children (HC). Bacterial tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) of the 16S rDNA and 16S rRNA analyses were carried out to determine total bacteria (16S rDNA) and metabolically active bacteria (16S rRNA), respectively. The main bacterial phyla (Firmicutes, Bacteroidetes, Fusobacteria and Verrucomicrobia) significantly (P<0.05) changed among the three groups of children. As estimated by rarefaction, Chao and Shannon diversity index, the highest microbial diversity was found in AD children.Based on 16S-rRNA and culture-dependent data, Faecalibacterium and Ruminococcus were present at the highest level in fecal samples of PDD-NOS and HC children. Caloramator, Sarcina and Clostridium genera were the highest in AD children. Compared to HC, the composition of Lachnospiraceae family also differed in PDD-NOS and, especially, AD children. Except for Eubacterium siraeum, the lowest level of Eubacteriaceae was found on fecal samples of AD children. The level of Bacteroidetes genera and some Alistipes and Akkermansia species were almost the highest in PDD-NOS or AD children as well as almost all the identified Sutterellaceae and Enterobacteriaceae were the highest in AD. Compared to HC children, Bifidobacterium species decreased in AD. As shown by Canonical Discriminant Analysis of Principal Coordinates, the levels of free amino acids and volatile organic compounds of fecal samples were markedly affected in PDD-NOS and, especially, AD children. If the gut microbiota differences among AD and PDD-NOS and HC children are one of the concomitant causes or the consequence of autism, they may have implications regarding specific diagnostic test, and/or for treatment and prevention.。