平面向量的概念(公开课)
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量的概念课件

向量投影求解问题
通过向量的投影,可以解决一些涉及到几何图形的问题。
向量运算的几何应用
向量运算可以应用于解决几何图形的面积、周长和角度等问题。
向量表示几何图形的问题
通过向量的加法和数量积,可以用向量来表示几何图形。
向量积应用于面积的计算
向量积可以用于计算平面中三角形和四边形的面积。
向量加法和减法
向量加法是将两个向量相加,而向量减法是将一个向量从另一个向量中减去。
向量的数量积和向量积
数量积是两个向量的乘积,它表示两个向量之间的夹角和向量之间的投影。
向量积的几何意义
向量积表示两个向量所确定的平行四边形的面积。
向量积的计算方法
通过行列式或向量的坐标运算,可以计算向量积的值。
平面向量的概念
在数学中,向量是由有序的数组成的几何实体,用于表示大小和方向。
向量的定义和表示方法
向量是有大小和方向的箭头。它可以在平面内由起点和终点来表示。
向量的模长和方向角
向量的模长表示向量的大小,方向角表示向量与坐标轴之间的夹角。
单位向量及其性质
单位向量具有长度为1的性质。它可以表示方向,而不考虑具体的大小。
向量的线性运算
向量的线性运算包括标量乘法和向量加法,它们遵循一些特定的规律和性质。
向量组的线性相关和线性无关 性质
向量组的线性相关性质表示向量组中的向量是否可以通过线性组合得到零向 量。
基底及其坐标表示
基底是一个向量组,它可以表示一个向量空间中的所有向量。
坐标系的建立方法
建立坐标系是为了更好地表示向量和进行向量运算,常用的坐标系有直角坐 标系和极坐标系。
向量的坐标运算
通过向量的坐标运算,可以进行向量之间的加法、减法和数量积等运算。
人教版数学必修第二册6.1平面向量的概念课件

(4)如何判断相等向量或共线向量?向量与向量是相等向量吗?
(5)零向量与单位向量有什么特殊性?0与0的含义有什么区别?
课前小测
边长相等
1.正n边形有n条边,它们对应的向量依次为a1,a2,a3,…,
an,则这n个向量( D )
A.都相等
B.都共线
C.都不共线
D.模都相等
2.有下列物理量:
①质量;②温度;③角度;④弹力;⑤风速.
√
√
×
×
×
其中可以看成是向量的有( B )
A.1个
B.2个
C.3个
D.4个
3
3.已知||=1,||=2,若∠ABC=90°,则||=________.
C
2
B
1
A
||= 22 − 12 = 3
4.如图,四边形ABCD是平行四边形,则图中相等的向量
(1)作出向量, ,;
(2)求的模.
2.某人从A点出发向东走了5米到达B点,然后改变方向沿东北方向走
了10 2米到达C点,到达C点后又改变方向向西走了10米到达D点.
(1)作出向量, ,;
D
C
北
西
A
南
东
B
2.某人从A点出发向东走了5米到达B点,然后改变方向沿东北方向走
b,c,…表示,或用表示向量的有向线段的起点和终点字
母表示,例如: , .
注意:用字母a表示向量时,印刷用黑体a,书写用Ԧ .
?
思考
(1)向量可以比较大小吗?
向量不能比较大小,但向量的模可以比较大小.
(2)有向线段就是向量吗?
有向线段只是表示向量的一个图形工具,它不是向量.
3.向量的有关概念
6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
6.1平面向量的概念(课件)-【新教材】人教A版(2019)高中数学必修第二册

摩托车正以高速前进…
位移和距离这两个量有什么不同?
位移既有大小又有方向,距离只有大小没 有方向
请大家举例我们生活中还有哪些量具有既有大小 又有方向的特征?
加
速 度
力
重力
…...
速度
一、向量的定义 既有大小又有方向的量
向量的长度
向量的模
二、向量的表示方法
①图示法——向量常用有向线段表示:有向线段的长度 表示向量的大小,箭头所指的方向表示向量的方向。
6.1平面向量的概念(课件)-【新教 材】202 0-2021 学年人 教A版 (2019 )高中 数学必 修第二 册
所以 |DA|=|CB|=
米.
6.1平面向量的概念(课件)-【新教 材】202 0-2021 学年人 教A版 (2019 )高中 数学必 修第二 册
例2.
已知O为正六边形ABCDEF的中心,在图中所标
6.1平面向量的概念(课件)-【新教 材】202 0-2021 学年人 教A版 (2019 )高中 数学必 修第二 册
6.1平面向量的概念(课件)-【新教 材】202 0-2021 学年人 教A版 (2019 )高中 数学必 修第二 册 6.1平面向量的概念(课件)-【新教 材】202 0-2021 学年人 教A版 (2019 )高中 数学必 修第二 册
出的向量中:
(1)试找出与 FE 共线的向量;
(2)确定与FE 相等的向量; (3) OA 与 BC 相等吗?
解:(1)与 FE 共线的向量是 OA、BC ;
E
D
(2)BC 与 FE 长度相等且方向
相同,故 BC = FE;
F
O
C
A
中职数学基础模块下册《平面向量的概念》公开课课件

01
02
03
平行四边形的性质
通过平面向量的线性组合 ,可以证明平行四边形的 对边相等、对角线互相平 分等性质。
三角形的重心
利用平面向量,可以求出 三角形的重心坐标,进而 求出其他几何量。
空间几何
平面向量可以扩展到三维 空间,用于描述空间几何 图形的位置和方向。
平面向量在物理中的应用
力的合成与分解
在物理中,力是矢量,可以用平 面向量来表示和运算。通过力的 合成与分解,可以求解物体的运
向量的正交分解
将一个向量分解为两个相互垂直的向量的线性组合。
向量的坐标表示
将一个向量用一组有序实数对(x,y)表示,这组实数对称为该向量的坐标。
05
平面向量的解题技巧与方法
运用向量性质简化问题
01
向量具有方向性
利用向量的方向性,可以解决一些与向量方向相关的问题,如向量旋转
、向量投影等。
02
向量模的非负性
中职数学基础模块下册《平 面向量的概念》公开课课件
汇报人: 202X-12-22
目 录
• 平面向量的基本概念 • 平面向量的运算 • 平面向量的应用 • 平面向量的性质与定理 • 平面向量的解题技巧与方法 • 平面向量与其他数学知识的联系与区别
01
平面向量的基本概念
平面向量的定义与表示
向量的定义
数乘向量
数乘向量的定义
数乘向量是指将一个实数与一个向量相乘,得到一个新的向量。其实质是将向量 的每个分量都乘以该实数。
数乘向量的运算规则
数乘向量的运算规则是线性运算的分配律,即对于任意实数k和任意向量a,有 ka=k(a1,a2,...,an)=(k*a1,k*a2,...,k*an)。
平面向量的概念教学课件

通过具体例子展示如何利用夹角计算公式求解两向量的夹角, 并解释夹角在实际问题中的应用,如力的合成与分解等。
投影概念及其在计算中应用
投影概念
一个向量在另一个向量上的投影 是一个标量,其值等于该向量的 模与两向量夹角的余弦的乘积。
在计算中应用
通过具体例子展示如何利用投影 概念求解数量积和夹角,强调投 影在计算中的重要性。
向量减法
两个向量相减,对应坐标 分量相减,结果向量的坐 标为$(x_1-x_2,y_1-y_2)$。
向量数乘
一个向量与一个实数相乘, 结果向量的坐标为 $(kx,ky)$,其中$k$为实 数。
坐标运算在实际问题中应用
力的合成与分解
多个力作用于同一物体时,可用向量加法求解合力;一个力产生 多个效果时,可用向量减法求解分力。
实施方案
教师准备相关例子和问题,学生分组进行讨论,每组选派代表进行抢答,教师根据回答情况进行点评 和补充。
知识巩固检测题目设置和难度控制
题目设置
针对向量的基本概念和性质,设置选择题、填空题和计算题,确保题目覆盖全面,难度适中。
难度控制
根据学生的学习情况和反馈,适时调整题目难度,确保题目具有挑战性和可完成性,达到巩固知识的目的。
难度适中
按照循序渐进的原则,设计不同难 度的例题,以适应不同学生的学习 需求。
解题思路展示
通过详细解析例题的解题过程,展 示正确的解题思路和方法,帮助学 生理解和掌握平面向量的知识要点。
常见错误类型总结及避免方法
1 2 3
概念混淆 如将向量与标量混淆、误解向量运算性质等。应 加强对平面向量基本概念和性质的记忆和理解, 避免概念混淆。
共面向量
平行于同一平面的向量叫做共面向量。共面向量定理:如果两个非零向量 $\vec{a}$、$\vec{b}$不共线,那么向量$\vec{p}$与向量$\vec{a}$、 $\vec{b}$共面的充要条件是存在唯一一对实数$x$、$y$,使得 $\vec{p}=x\vec{a}+y\vec{b}$。
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/13
2.下列说法正确的是 (A )
A) 方向相同或相反的向量是平行向量. B) 零向量是0 . C)长度相等的向量叫做相等向量. D) 共线向量是在一条直线上的向量.
3.已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量.
H
L
Z
CD
FK
Q
P
G
图7−4
方向相同或 相反的两个非零 向量叫做互相平 行的向量.
向量a与向量 b平行记作a//b.
规定:零向 量与任何一个向 量平行.
2020/9/13
动脑思考 探索新知
下图中,哪些向量是共线向量?
由于任意一 组平行向量都 可以平移到同 一条直线上, 因此相互平行 的向量又叫做 共线向量.
A
B
图7-5
2020/9/13
巩固知识 典型例题
例2 在平行四边形ABCD中(图7-4),O为对角线交点.
(1)找出与向量 D A 相等的向量; (2)找出向量 D C 的负向量;
D
C
O
(3)找出与向量 A B 平行的向量. 解 由平行四边形的性质,得
A
B
图7-4
(1) CBDA; (2) B A D C , C D D C ; (3)B A / / A B , D C / / A B , C D / / A B .
东
A b
a
b A
a
A
B√
南
b
b
A
A
100km.
a
a
C
D
2020/9/13
3.向量的关系:
a
平行向量: 表示为:
方向相 同或 相反的非零向量. a//b//c
b
零向量与任一向量平行. L
c
共线向量: 任一组平行向量都可平移到同一直线上.
即平行向量也叫做共线向量.
2020/9/13
相等向量
长度相等且方向相同的向量.表示为:
向量的大小叫做向量的模.向量a, A B 的模依次记作 a , A B .
模为零的向量叫做零向量.记作0, 零向量的方向是不确定的.
模为1的向量叫做单位向量.
B a A
2020/9/13
巩固知识 典型例题
说出下图中各向量的模,并指出其中的单位向量 (小方格边长为1).
N
B
E
M
K A
H
L
Z
CD
FK
Q
做相等向量。
注意:1°零向量与零向量相等。
2°任意两个相等的非零向量,都可以
用一条有向线段来表示,并且与有向线段的起点
无关。
a
b
ab
2020/9/13
2020/9/13
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
2020/9/13
练习1:判断下列各命题是否正确? (1)a = b ,则a = b;
(2)若两个向量相等,则它们的起点相同,终点相同; (3)若AB = CD, 则四边形ABCD是平行四边形; (4)若a = b,b=c,则a =c;
(5)若a//c,b//c,则a//b
(1)错 (4)对
2020/9/13
相等吗?
B
A
(2) OB 与 AF
相等吗?
O
(3) 与 OA 长度相等 C
F
的向量有几个? 12 (4) 与 OA 共线的
向量有哪几个?
D
E
有 CB,FE,DO.
2020/9/13
如下图,与AB有几个?与AB长度相等的 有几个?
B
相等的有 7个
长度相等
A
的有9个
2020/9/13
练习3: 1、下列命题正确的是 ( D )
其中是向量a与b平行的有_①__③__. ④
2020/9/13
课堂小结:
1、向量定义:既有大小又有方向的量。
AB
A
B
2.向量的长度:向量的大小就是向量的长
度
| AB |
(或称为模)。记作
3.零向量:长度为0的向量叫做零向量,记 作 0 (手写体)。
2020/9/13
8.相等向量:长度相等且方向相同的向量叫
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
(3)与零向量相等的向量是什么向量? 零向量 (4)存在与任何向量都平行的向量吗? 零向量 (5)若两个向量在同一直线上,则这两个向量一定是 什么向量? 平行向量(共线向量) (6)两个非零向量相等的条件是什么?
模相等且方向相同
(7)共线向量一定在同一直线上. ×
例2 在平行四边形ABCD中(图7-5),O为对角线交点.
(1)找出与向量 D A 相等的向量; (2)找出向量 D C 的负向量;
D
C
O
(3)找出与向量 A B 平行的向量.
要结合平行四边形 的性质进行分析.两个 向量相等,它们必须是 方向相同,模相等;两 个向量互为负向量,它 们必须是方向相反,模 相等;两个平行向量的 方向相同或相反.
A
OD
略.
B
C
第2题图
2020/9/13
自我反思 目标检测
向量、向量的模、向量相等是如何定义的?
当一种量既有大小,又有方向,例如力、速度、 位移等,这种量叫做向量(矢量)
向量的大小叫做向量的模.向量a, A B 的模依次 记作 a ,A B .
向量a与向量b的模相等并且方向相同时,称向量 a与向量b相等,记作a = b .
a
|a||b| √
b
ab
×
2020/9/13
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, |0|0
单位向量: 模为1个单位长度的向量.
2020/9/13
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.两架飞机位移的有向线段表示分别为图中 的有向线段 a 与 b. 下列各图中哪个表示正确?
ab
a
b 负向量(相反向量)
与非零向量的模相等,且方向相反的向 量叫做向量的负向量,记作 -a.
a
a
2020/9/13
巩固知识 典型例题
说出下图中各向量的模,并指出其中的单位向量 (小方格边长为1).
N
B
E
M
K A
H
L
Z
CD
FK
Q
P
G
图7−4
2020/9/13
例1.判断下列命题真假或给出问题的答案:
2020/9/13
运用知识 强化练习
1. 如图,ABC中,D、E、F分别是三边的中点,试写出
A
(1)与 E F 相等的向量;
D
F
(2)与 A D 共线的向量.
B
E
C
第1题图
略.
2.如图,O点是正六边形ABCDEF的中心,试写出
(1)与 O C 相等的向量;
F
E
(2)O C 的负向量; (3)与 O C 共线的向量.
2020/9/13
V
二.向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
用字母表示 AB , 或 a
始点
终点
2020/9/13
三. 向量的有关概念
1.向量的大小(模): (模)表示: | AB |
向或量|aAB|
或 a的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
2020/9/13
巩固知识 典型例题
例2 在平行四边形ABCD中(图7-5),O为对角线交点.
(1)找出与向量 D A 相等的向量; (2)找出向量 D C 的负向量;
D
C
O
(3)找出与向量 A B 平行的向量.
要结合平行四边形 的性质进行分析.两个 向量相等,它们必须是 方向相同,模相等;两 个向量互为负向量,它 们必须是方向相反,模 相等;两个平行向量的 方向相同或相反.
N
B
E
M
TK A
H
L
Z
CD
FK
Q
P
G
图7−4
2020/9/13
方向相同或 相反的两个非零 向量叫做互相平 行的向量.
向量a与向量 b平行记作a//b.
规定:零向 量与任何一个向 量平行.
动脑思考 探索新知
图7−4中的平行向量 A B 与 M N ,方向相同,模相等;平行 向量G H 与T K ,方向相反,模相等.
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 速度
2020/9/13
F
力
F
三要素:大小,方向,作用点 2020/9/13
S
位移:质点做机械运动,从初位置 到末位置的有向线段叫做位移。
2020/9/13
速度:物 体运动的 位移与所 用的时间 的比值
平面向量的概念及表示
• 学校:鹤山职中 • 教师:麦 群 超
2020/9/13
第七章 平面向量