七年级数学下册期中考试模拟试题精品
人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。
2023-2024学年浙教版数学七年级下册期中模拟试题(含答案)

2023-2024学年浙教版数学七年级下册期中模拟试题浙教版数学七年级下册期中模拟卷(三)范围(第1~4章)满分:120分 测试一、选择题(本题共10小题,每题3分,共30分)1. 如图,与是同位角的是( )1∠A. B. C. D. 2∠3∠4∠5∠2. 下列运算正确的是( )A. a 10÷a 2=a 8B. (a 2)3=a 5C. a·a 2=a 2D. 2a 2+3a 2=5a 43. 下列多项式中,能用完全平方公式进行因式分解的是( )A. x 2-1B. x 2+2xC. x 2+2x +1D. x 2-2x -14. 已知若x -y =7,则m 的值为( ){x +2y =‒4m ,2x +y =2m +1.A. 1 B. -1 C. 2 D. -25. 如图,在下列给出的条件中,不能判定的是( )DF BC ∥A. B. 42180∠+∠=︒3=4∠∠C. D. 1B ∠=∠3B ∠=∠6. 若关于的代数式是一个完全平方式,则的值为( )x 236x kx -+k A. B. C. D. 1812-6±12±7. 有若干个大小、形状完全相同的小长方形,现将其中4个按如图1所示的方式摆放,构造出一个正方形,其中阴影部分的面积为40.再用5个按如图2所示的方式摆放,构造出一个长方形,其中阴影部分的面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为( )A. 5B. 10C. 20D. 308. 如图,在三角形ABC 中,∠ABC =90°,将三角形ABC 沿AB 方向平移得到三角形DEF.已知EF =8,BE =3,CG =3,则图中阴影部分的面积为( )A. 12.5B. 19.5C. 32D. 45.59. 已知关于x ,y 的方程组有以下两个结论:①当a =1时,方程组的解也是{x +y =1‒a ,x ‒y =3a +5,方程x +y =2的解.②不论a 取什么值,代数式2x +y 的值始终不变.下列说法正确的是( )A. ①②都正确 B. ①正确,②错误C. ①错误,②正确D. ①②都错误10. 如图,AB ∥CD ,E 为AB 上方一点,FB ,CG 分别平分∠EFG ,∠ECD.若∠E +2∠G =210°,则∠EFG 的度数为( )A. 130°B. 140°C. 150°D. 160°二、填空题(本题共6小题,每题4分,共24分)11. 计算:=__________ .36(2)a b ab ÷-12.有一种口罩能过滤空气中95%的直径约为0.000 000 3 m 的非油性颗粒,数据0.000 000 3用科学记数法表示为___________.13. 已知方程|2a +3b +1|+(3a -b -1)2=0,则a 2+2ab +b 2的值为___________.14. 已知,EF ∥BC ,BE ∥CF ,现将一副三角尺OAB(∠OAB =45°)和OCD(∠OCD =30°)按如图所示的方式放置,直角顶点O 重合,点A ,D 在EF 上.若∠1+∠2=70°,∠3∶∠4=4∶3,则∠DAB 的度数为__________°.15. 如图1所示为一架消防云梯,它由救援台AB 、延展臂BC(点B 在点C 的左侧)、伸展主臂CD 、支撑臂EF 构成,在作业过程中,救援台AB 、车身GH 及地面MN 三者始终保持水平.现为参与一项高空救援工作,需要进行作业调整,如图2,使得延展臂BC 与支撑臂EF 所在直线互相垂直,且∠EFH =69°,则这时∠ABC =__________°.16. 如图,正方形和三角形重叠部分是长方形,四边形和均ABCD EFG HFID AJFH FKCI 为正方形.若长方形面积为4,,,,连接,,则阴HFID 3EH =1IG =EF FG =HB IB 影部分的面积为________.三、解答题(第17至19题每题6分,第20至21题每题8分,第22题至23题每题10分,第24题12分,共66分)17. 计算:(1) (2)2023021(1)(3)+()2---π--()()()222121x x x --+-18. 解下列方程组:(1) (2){x ‒y =2,3x +2y =11.{8x +9y =6,4x 5+5y 6=715.19. 如图,已知∠1+∠BDE =180°,∠2+∠4=180°.(1)试说明:AD ∥EF.(2)若∠3=90°,∠4=140°,求∠BAC 的度数.20. (1)先化简,再求值:(2x +1)(2x -1)-(2x -3)2,其中x =1.(2)已知y 2-5y +3=0,求2(y -1)(2y -1)-2(y +1)2+7的值.21. 在如图所示方格中,按下列要求作格点三角形(图形的顶点都在正方形格纸的格点55⨯上).(1)将三角形平移得到三角形,使得线段在三角形内部.ABC A B C '''PQ A B C '''(2)连结则四边形的面积为 .AA CC '',ACC A ''22. 已知关于x ,y 的二元一次方程组{2x +y ‒6=0,2x ‒2y +my +8=0.(1)请直接写出方程2x+y-6=0的所有正整数解.(2)若方程组的解满足x-y=0,求m的值.(3)若方程组无解,求m的值.(4)无论实数m取何值,方程2x-2y+my+8=0总有一个固定的解,请求出这个解.23. 2022年北京冬奥会取得了圆满成功,蕴含中华文化的冬奥场馆是北京冬奥会上一道特有的风景.某校40名同学要去参观A,B,C三个冬奥场馆,每一位同学只能选择一个场馆参观.已知购买2张A场馆门票和1张B场馆的门票共需要110元,购买3张A场馆门票和2张B场馆门票共需要180元.(1)求A场馆和B场馆门票的单价.(2)已知C场馆门票每张售价15元,且参观当天有优惠活动:每购买1张A场馆门票就赠送1张C场馆门票.①若购买A场馆门票赠送的C场馆门票刚好够参观C场馆的同学使用,且此次购买门票所需总金额为1 140元,则购买A场馆门票____张.②若参观C场馆的同学在用完赠送的门票后,还需另外购买部分门票,且最终购买三种门票共花费了1 035元,求所有满足条件的购买方案.24.如图,AB∥CD,直线EF与AB,CD分别相交于点G,H,∠EHD=α(0°<α<90°).小安将一个含30°角的直角三角尺PMN按如图1所示的方式放置,使点N,M分别在直线AB,CD上,且在点G,H的右侧,∠P=90°,∠PMN=60°.(1)∠PNB+∠PMD____∠P(填“>”“<”或“=”).(2)如图2,∠MNG的平分线NO交直线CD于点O.①当NO∥EF∥PM时,求α的度数.②小安将三角尺PMN保持PM∥EF并向左平移,在平移的过程中求∠MON的度数(用含α的代数式表示).【答案解析】一、选择题(本题共10小题,每题3分,共30分)1. A3. C4. A{x +2y =‒4m ,①2x +y =2m +1.②②-①,得x -y =6m +1.又∵x -y =7,∴6m +1=7,解得m =1.5. DA.∵ ,42180∠+∠=︒∴(同旁内角互补,两直线平行),DF BC ∥能判定,故A 选项不符合题意.DF BC ∥B. ∵,3=4∠∠∴(内错角相等,两直线平行),DF BC ∥能判定,故B 选项不符合题意.DF BC ∥C. ∵,1B ∠=∠∴(同位角相等,两直线平行),DF BC ∥能判定,故C 选项不符合题意.DF BC ∥D. ∵,3B ∠=∠∴(同位角相等,两直线平行),AB EF ∥不能判定,故D 选项符合题意.DF BC ∥故选:D6. D是一个关于的完全平方式,236x kx -+x 或,∴()22366x kx x -+=+()22366x kx x -+=-或.∴12k =-12k =故选:D .7. A 设小长方形的长为a ,宽为b ,由图1可知,(a +b)2-4ab =40,即a 2+b 2=2ab +40,由图2可知,(2a +b)(a +2b)-5ab =100,即a 2+b 2=50,∴2ab +40=50,∴ab =5,即小长方形的面积为5.由平移得,BC =EF =8,S 三角形DEF =S 三角形ABC ,∴S 三角形ABC -S 三角形DBG =S 三角形DEF -S 三角形DBG ,∴S 阴影=S 梯形BEFG .∵CG =3,∴BG =BC -CG =5,∴S 阴影=S梯形BEFG =(BG +EF)·BE =19.5.129. C把a =1代入原方程组中的第一个方程,得x +y =0,∴当a =1时,方程组的解不是方程x +y =2的解,①错误.{x +y =1‒a ,①x ‒y =3a +5.②①+②,得2x =2a +6.①-②,得2y =-4-4a ,∴y =-2-2a ,∴2x +y =2a +6-2-2a =4,∴不论a 取什么值,代数式2x +y 的值始终不变,②正确.10. B如答图所示标注角,过点G 作GM ∥AB ,则∠2=∠5.答图∵AB ∥CD ,∴MG ∥CD ,∴∠6=∠4,∴∠FGC =∠5+∠6=∠2+∠4.∵FB ,CG 分别平分∠EFG ,∠ECD ,∴∠1=∠2=∠EFG ,∠3=∠4=∠ECD ,1212∴∠E +∠EFG +∠ECD =∠E +2∠2+2∠4=∠E +2(∠2+∠4)=∠E +2∠FGC =210°.∵AB ∥CD ,∴∠ENB =∠ECD ,∴∠E +∠ENB +∠EFG =210°.∴(180°-∠EFN)+∠EFG =210°,∴∠1+∠EFG =∠1+2∠1=210°,∴∠1=70°,∴∠EFG =2∠1=140°.二、填空题(本题共6小题,每题4分,共24分)11. 23a 12.__3×10-7__.13. ____.9121 由题意,得{2a +3b +1=0,①3a ‒b ‒1=0.②①+②×3,得11a =2,解得a =.211把a =代入②,得b =-,211511∴a 2+2ab +b 2=(a +b)2=(211‒511)2=.912114. _115__°.由题意,得∠ABO =45°,∠OCD =30°,∠AOB =∠COD =90°.∵BE ∥CF ,∴∠CBE +∠BCF =180°,即∠1+∠ABO +∠3+∠4+∠OCD +∠2=180°.∵∠1+∠2=70°,∴∠3+∠4=35°.∵∠3∶∠4=4∶3,∴∠3=∠4,43∴∠4+∠4=35°,43解得∠4=15°,则∠3=20°,∴∠ABC =∠ABO +∠3=65°.∵EF ∥BC ,∴∠ABC +∠DAB =180°,∴∠DAB =115°.15. __159__°.如答图,延长BC ,FE 相交于点P ,则可得BP ⊥EP ,延长AB ,FP 相交于点Q.答图由题意,得AB ∥FH ,∠EFH =69°,∴∠Q =∠EFH =69°.∵BP ⊥EP ,∴∠BPQ =90°,∴∠PBQ =180°-∠BPQ -∠Q =21°,∴∠ABC =180°-∠PBQ =159°.16. 10.设长方形中,,,HFID HD IF a ==ID HF b ==∵四边形,四边形和均为正方形,ABCD AJFH FKCI ∴,则,AH HF b ==AB AD BC a b ===+∵长方形面积为4,,,,HFID 3EH =1IG =EF FG =∴,,则,4ab =13a b +=+2a b -=∴,()()22420a b a b ab +=-+=连接,则阴影部分的面积BD 1122HD AB ID BC =⋅+⋅()()1122a a b b a b =+++()212a b =+,10=故10.三、解答题(第17至19题每题6分,第20至21题每题8分,第22题至23题每题10分,第24题12分,共66分)17. 解:(1)原式;11+42=--=(2)原式.()224 4 41x x x =-+--224441x x x =-+-+2345x x =--+18. 解下列方程组:(1)解:{x ‒y =2,①3x +2y =11.②①×2+②,得5x =15,解得x =3.把x =3代入①,得y =1,∴原方程组的解为{x =3,y =1.(2)解:方程组整理得{8x +9y =6,①24x +25y =14.②①×3-②,得2y =4,解得y =2.把y =2代入①,得x =-,32∴原方程组的解为{x =‒32,y =2.19. 解:(1)∵∠1+∠BDE =180°,∴AC ∥DE ,∴∠2=∠ADE.又∵∠2+∠4=180°,∴∠ADE +∠4=180°,∴AD ∥EF.(2)∵AD ∥EF ,∴∠BAD =∠3=90°.∵∠2+∠4=180°,∠4=140°,∴∠2=40°,∴∠BAC =∠BAD -∠2=50°.20. (1)解:原式=4x 2-1-(4x 2-12x +9)=4x 2-1-4x 2+12x -9=12x -10.当x =1时,原式=12×1-10=2.(2)解:原式=2(2y 2-y -2y +1)-2(y 2+2y +1)+7=4y 2-6y +2-2y 2-4y -2+7=2y 2-10y +7.∵y 2-5y +3=0,∴y 2-5y =-3,∴原式=2(y 2-5y)+7=2×(-3)+7=1.21. 解:(1)观察是一个单位长度的线段,要使其放入中,需向右移动个PQ ABC ABC 3长度单位、向下移动个单位,如下图所示.1 (2)如图所示,四边形的面积为方格的大正方形减去边角处的四个小直角三角形的面积:ACC A ''44⨯.144413102⨯-⨯⨯⨯=22. 解:(1)或{x =1,y =4{x =2,y =2.(2){2x +y ‒6=0,①2x ‒2y +my +8=0.②∵x -y =0,∴y =x.把y =x 代入①,得2x +x -6=0,解得x =2,∴x =y =2.把x =y =2代入②,得2m +8=0,解得m =-4.(3)由2x +y -6=0,得2x =6-y.把2x =6-y 代入2x -2y +my +8=0,得6-y -2y +my +8=0,即(m -3)y =-14,显然当m =3时方程组无解.(4)2x -2y +my +8=2x +(m -2)y +8=0.当y =0时,x =-4,∴固定的解为{x =‒4,y =0.23. 解:(1)设A 场馆门票的单价为x 元,B 场馆门票的单价为y 元.由题意,得{2x +y =110,3x +2y =180,解得{x =40,y =30.答:A 场馆门票的单价为40元,B 场馆门票的单价为30元.(2)①设购买A 场馆门票a 张,则购买B 场馆门票(40-2a)张.由题意,得40a +30(40-2a)=1 140,解得a =3.②设购买A 场馆门票m 张,C 场馆门票n 张,则购买B 场馆门票(40-2m -n)张.由题意,得40m +30(40-2m -n)+15n =1 035,∴n =11-m.43又∵m ,n 均为正整数,∴或{m =3,n =7{m =6,n =3.当m =3,n =7时,40-2m -n =40-2×3-7=27;当m =6,n =3时,40-2m -n =40-2×6-3=25,∴共有2种购买方案:方案一:购买3张A 场馆门票,27张B 场馆门票,7张C 场馆门票;方案二:购买6张A 场馆门票,25张B 场馆门票,3张C 场馆门票.24.解:(1)如答图1,过点P 作PQ ∥AB ,则∠PNB =∠NPQ.答图1∵AB ∥CD ,∴PQ ∥CD ,∴∠PMD =∠QPM ,∴∠PNB +∠PMD =∠NPQ +∠QPM =∠MPN.(2)①∵NO ∥EF ∥PM ,∴∠ONM =∠NMP =60°.又∵NO 平分∠MNG ,∴∠ANO =∠ONM =60°.又∵AB ∥CD ,∴∠NOM =∠ANO =60°.又∵EF ∥NO ,∴α=∠NOM =60°.②当点N 在点G 的右侧时.∵PM ∥EF ,∠EHD =α,∴∠PMD =α,∴∠NMD =60°+α.又∵AB ∥CD ,∴∠ANM =∠NMD =60°+α.又∵NO 平分∠ANM ,∴∠ANO =∠ANM =30°+α.1212又∵AB ∥CD ,∴∠MON =∠ANO =30°+α;12当点N 在点G 的左侧时,如答图2.答图2∵PM ∥EF ,∠EHD =α,∴∠PMD =α,∴∠NMD =60°+α.∵AB ∥CD ,∴∠BNM +∠NMO =180°,∠BNO =∠MON.又∵NO 平分∠MNG ,∴∠BNO =[180°-(60°+α)]=60°-α,1212∴∠MON =60°-α.12综上所述,∠MON 的度数为30°+α或60°-α.1212。
【浙教新版】2022-2023学年七年级下册数学期中模拟试卷(含解析)

【浙教新版】2022-2023学年七年级下册数学期中模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,∠1和∠2不是同位角的是()A.B.C.D.2.下列方程是二元一次方程的是()A.x+y﹣z=0B.x2+x=1C.2x=4y D.x++1=0 3.已知,则a+b=()A.2B.C.3D.4.已知是二元一次方程2x+my=5的一组解,则m的值是()A.B.C.D.5.如图,可以判定AD∥BC的条件是()A.∠1=∠4B.∠3=∠5C.∠1=∠6D.∠1=∠2 6.下列计算正确的是()A.a2•a3=a6B.a2•b3=ab5C.(a2)3=a6D.(a2)3=a5 7.下列说法正确的是()A.a,b,c是同一平面内直线,且a∥b,b∥c,则a∥cB.a,b,c是同一平面内直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是同一平面内直线,且a∥b,b⊥c,则a∥cD.a,b,c是同一平面内直线,且a⊥b,b∥c,则a∥c8.若(x+a)(x﹣5)=x2+bx﹣10,则ab﹣a+b的值是()A.﹣11B.﹣7C.﹣6D.﹣559.如图,点E,F分别为长方形纸片ABCD的边AB,CD上的点,将长方形纸片沿EF翻折,点C,B分别落在点C',B'处.若∠DFC'=α,则∠FEA﹣∠AEB'的度数为()A.45αB.60αC.90αD.90α10.已知43x=2021,47y=2021,则[(x﹣1)(1﹣y)]2021=()A.1B.2021C.﹣1D.22021二.填空题(共6小题,满分24分,每小题4分)11.若22n+1=16,则n=.12.如图,AB∥CD,∠A=37°,∠C=60°,则∠F=.13.如图,在△ABC中,∠ABC=90°,BC=11,把△ABC向下平移至△DEF后,AD=CG=6,则图中阴影部分的面积为.14.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为.15.若x2+(2m﹣3)x+16是完全平方式,则m的值等于.16.已知关于x,y的方程组,给出下列结论:①当k=2时,是方程组的解;②当k=时,x,y的值互为相反数;③若2x•8y=2z,则z=1;④若方程组的解也是方程x+y=2﹣k的解,则k=1.其中正确的是(填写正确结论的序号).三.解答题(共7小题,满分66分)17.(6分)计算:(1)(﹣x)•(﹣x3)+(x2)2;(2);(3)(4m2+6m+9)•(2m﹣3);(4)(x+3)(x﹣2)﹣(x﹣2)(x﹣8).18.(8分)如图,在正方形网格中,已知点A的坐标为(﹣1,﹣2),点B的坐标为(4,0).(1)建立恰当的平面直角坐标系xOy,直接写出点C的坐标:C();(2)将三角形ABC进行平移得到三角形A1B1C1,已知点A的对应点A1的坐标为(﹣5,1),请画出三角形A1B1C1;(3)求三角形A1B1C1的面积.19.(8分)解方程组:.20.(10分)如图,在△ABC中,D,E,F分别是三边上的点,且DE平分∠ADF,∠ADF=2∠DFB.(1)判断DE与BC是否平行,并说明理由.(2)若EF∥AB,∠DFE=4∠CFE,求∠ADE的度数.21.(10分)“已知x a=5,x a+b=30,求x b的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法法则,可得:x a+b=x a•x b,所以30=5x b,所以x b=6.请利用这样的思考方法解决问题:已知x a=3,x b=6,求x2a+b以及x a﹣2b的值.22.(12分)今年疫情期间某物流公司计划用两种车型运输救灾物资,已知:用2辆A型车和1辆B型车装满物资一次可运11吨;用1辆A型车和2辆B型车装满物资一次可运13吨.(1)求1辆A型车和1辆B型车都装满物资一次可分别运多少吨?(2)该物流公司现有31吨救灾物资,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满.请你帮该物流公司设计租车方案.23.(12分)如图,正方形ABCD的边长为a,点E在AB上,四边形EFGB是边长为b的正方形,连接AC,CE.(1)用含a,b的代数式表示:GC=,△AEC的面积=;(2)若△BCE的面积为10,两个正方形的面积之和为60,求GC的长.答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、∠1和∠2不是同位角,故此选项符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2是同位角,故此选项不符合题意;故选:A.2.解:2x=4y是二元一次方程,故选:C.3.解:,①+②,得6a+6b=18,∴6(a+b)=18,a+b=3,故选:C.4.解:由题意,得2﹣2m=5,解得m=﹣.故选:B.5.解:由∠1=∠4,不能判定AD∥BC,故A不符合题意;∵∠3=∠5,∴AB∥CD,故B不符合题意;由∠1=∠6,不能判定AD∥BC,故C不符合题意;∵∠1=∠2,∴AD∥BC,故D符合题意;故选:D.6.解:A、原式=a5,故本选项计算错误,不符合题意;B、原式=a2b3,故本选项计算错误,不符合题意;C、原式=a6,故本选项计算正确,符合题意;D、原式=a6,故本选项计算错误,不符合题意;故选:C.7.解:a,b,c是同一平面内直线,且a∥b,b∥c,则a∥c,故A正确,符合题意;a,b,c是同一平面内直线,且a⊥b,b⊥c,则a∥c,故B错误,不符合题意;a,b,c是同一平面内直线,且a∥b,b⊥c,则a⊥c,故C错误,不符合题意;a,b,c是同一平面内直线,且a⊥b,b∥c,则a⊥c,故D错误,不符合题意;故选:A.8.解:∵(x+a)(x﹣5)=x2+(a﹣5)x﹣5a,又∵(x+a)(x﹣5)=x2+bx﹣10,∴x2+(a﹣5)x﹣5a=x2+bx﹣10.∴a﹣5=b,﹣5a=﹣10.∴a=2,b=﹣3.∴ab﹣a+b=2×(﹣3)﹣2﹣3=﹣11.故选:A.9.解:根据折叠的性质得到,∠CFE=∠C′FE,∠BEF=∠B′EF,∵∠DFC'=α,∠CFE=∠C′FE,∴∠CFE=∠C′FE=(180°﹣α)=90°﹣α,∵∠BEF=∠B′EF,CD∥AB,∴∠BEF=∠B′EF=∠DFE=180°﹣∠CFE=180°﹣(90°﹣α)=90°+α,∠FEA=∠CFE=90°﹣α,∴∠AEB'=∠FEB′﹣∠FEA=90°+α﹣(90°﹣α)=α,∴∠FEA﹣∠AEB'=90°﹣α﹣α=90°﹣α,故选:D.10.解:∵43xy=2021y,47xy=2021x,∴(43×47)xy=2021x+y,∵43×47=2021,∴xy=x+y,∴(x﹣1)(1﹣y)=x﹣xy﹣1+y=﹣1∴[(x﹣1)(1﹣y)]2021=(﹣1)2021=﹣1.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵22n+1=16=24,∴2n+1=4,解得:n=.故.12.解:∵AB∥CD,∠C=60°,∴∠C=∠BEF=60°,∵∠BEF=∠A+∠F,∠A=37°,∴∠F=∠BEF﹣∠A=60°﹣37°=23°,故23°.13.解:∵三角形ABC 向下平移至三角形DEF ,∴AD =BE =6,EF =BC =11,S △ABC =S △DEF ,∵BG =BC ﹣CG =11﹣6=5,∴S 梯形BEFG =(5+11)×6=48,∵S 阴影部分+S △DBG =S △DBG +S 梯形BEFG ,∴S 阴影部分=S 梯形BEFG =•(11+5)•6=48.故答案为48.14.解:设小长方形的长为x ,宽为y ,依题意得:,解得:.故5.15.解:根据题意得:2m ﹣3=±8,∴m =5.5或﹣2.5.故5.5或﹣2.5.16.解:①把代入得:,解两方程得:k =2,故①结论正确;②当k =时,,解得:,故x ,y 的值互为相反数,故②结论正确;③2x •8y =2z ,则x +3y =z ,即3k ﹣2+3(﹣k +1)=z ,解得:z=1,故此③结论正确;④若方程组的解也是方程x+y=2﹣k的解,解方程组,得,故3k﹣2﹣k+1=2﹣k,解得:k=1,故④结论正确,综上所述,正确的是①②③④.故①②③④.三.解答题(共7小题,满分66分)17.解:(1)原式=x4+x4=2x4;(2)原式=(﹣)2019×(23)2019×=(﹣)2019×82019×=(﹣×8)2019×=﹣1×=﹣;(3)原式=8m3﹣12m2+12m2﹣18m+18m﹣27=8m3﹣27;(4)原式=(x﹣2)[(x+3)﹣(x﹣8)]=(x﹣2)(x+3﹣x+8)=11(x﹣2)=11x﹣22.18.解:(1)如图,平面直角坐标系如图所示,C(3,﹣3),故3,﹣3;(2)如图,三角形A1B1C1即为所求;(3)三角形A1B1C1的面积=3×5﹣×1×3﹣×1×4﹣×2×5=6.5.19.解:,②×2得:8x﹣2y=26③,①+③得:11x=33,解得x=3,把x=3代入②得:12﹣y=13,解得y=﹣1.故原方程组的解是.20.解:(1)DE∥BC,理由如下:∵DE平分∠ADF,∴∠ADF=2∠EDF,又∵∠ADF=2∠DFB,∴∠EDF=∠DFB,∴DE∥BC;(2)设∠CFE=α,则∠DFE=4∠CFE=4α,∵EF∥AB,∴∠B=∠CFE=α,又∵DE∥BC,∴∠ADE=∠B=α,∵DE平分∠ADF,DE∥BC,∴∠DFB=∠EDF=∠ADE=α,∵∠DFB+∠DFE+∠CFE=180°,∴α+4α+α=180°,∴α=30°,∴∠ADE=30°.21.解:∵x a=3,x b=6,∴x2a+b=x2a•x b=(x a)2•x b=32×6=54;x a﹣2b=x a÷x2b=x a÷(x b)2=3÷(62)=.22.解:(1)设1辆A型车装满物资一次可运x吨,1辆B型车装满物资一次可运y吨,由题意,得,解得:,答:1辆A型车装满物资一次可运3吨,1辆B型车装满物资一次可运5吨;(2)由题意,得3a+5b=31,∵a,b均为非负整数∴,,答:有两种租车方案:①租A型车2辆,B型车5辆;②租A型车7辆,B型车2辆.23.解:(1)∵四边形ABCD是正方形,四边形EFGB是正方形,∴AB=BC=a,GB=BE=b,AB⊥BC,∴GC=BC+GB=a+b,S△AEC=AE•BC=(a﹣b)a=;故a+b,;(2)∵△BCE的面积为10,∴,即ab=20.∵两个正方形的面积之和为60,∴a2+b2=60.∴(a+b)2=a2+b2+2ab=100.∴GC=a+b=10.。
下学期 期中考试 七年级数学模拟试题

- 1 -七年级(下)数学期中考试数学试卷一、 填空题(2×13=26)1.计算 23a a ⋅=________;26x x ÷=____________2.如果多项式92++mx x 是一个完全平方式,则m 的值是__________3.一个角的余角是065,则这个角为______;图中,若∠A+∠B=180º,∠ C=65º,则∠1=____4.在生物课上,老师告诉同学们:“微生物很小,支原体的直径只有0.1微米”,这相当于________________米.( 请用科学记数法表示).5.b a b ax x x2353-==,则,已知=______6、()()2332-+-x nx x 的积中不含x 的二次项,则n 的 值_______7.如图,∠ABC=40º,∠ACB=60º,BO 、CO 平分∠ABC 和∠ACB ,DE 过O 点,且DE ∥BC , 则∠BOC=_____8.如图,已知AB //CD ,∠1=∠2.若∠ACD =46º,则∠1= .9.修建铁路,需要开掘山洞,为省时高效,需在山两面A 、B 两点同时开工,在A 处测得洞的走向是北偏东50度,那么在B 处应按 方向开工,才能使山洞准确接通.10.如图把一张长方形纸片ABCD 沿EF 折叠后,ED 交BC 于点G ,点D 、C 分别落在D ′、C ′位置上.若∠EFG =50°,那么∠EGB = °.11.计算:(2+1)(22+1)(24+1)(28+1)+1= .12.已知ab b a b a 10162222=+++,那么=+22b a . 13.若,0132=+-x x 那么=+221x x .二、 选择题(3×10=30)1、下列说法正确的是 ( )A .相等的角是对顶角 B 、同位角相等 C 、A BCDEFG D C ′′两直线平行,同旁内角相等 D 、同角的补角相等2、如果一个三角形的三个内角的度数之比为3:2:1,那么这个三角形是 ( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形或直角三角形3、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( )A 、cm cm cm 5,4,3B 、cm cm cm 15,8,7C 、1cm cm cm 20,12,3D 、cm cm cm 11,5,54、在数学课上,同学们在练习画ABC 的高BE 时,有一部分同学画出下列四种图形,请你算一算,错误的个数为 ( )A .1个B .2个C .3个D .4个 5、(-a -b )2 = ( ) A 、a 2 +b 2 B 、a 2 -b 2 C 、a 2 +2ab +b 2 D 、a 2 -2ab +b 26、已知:x +y =-6, x -y =5,则下列计算正确的是 ( )A 、(x +y )2 =-36;B 、(y -x) 2 =-10;C 、xy =2.75;D 、x 2-y 2=25 7、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy-21y 2)-(-21x 2+4xy -23y 2)=-21x 2_____+ y 2空格的地方被钢笔水弄污了,那么空格中的一项是 ( )A 、-7xyB 、7xyC 、-xyD 、xy 8、下列说法中,正确的是 ( ) A 、一个角的补角必是钝角 B 、两个锐角一定互为余角 C 、直角没有补角 D 、如果∠MON=180°,那么M 、O 、N 三点在一条直线上 9.如图,∠AOB 是平角,OD 平分∠BOC ,OE 平分∠AOC ,那么∠AOE 的余角有( )(A )1个 (B )2个 (C )3个 (D )4个 10.如图所示,要得到DE ∥BC ,则需要的条件是( )(A )CD ⊥AB ,GF ⊥AB (B )∠DCE +∠DEC =180°(C )∠EDC =∠DCB (D )∠BGF =∠DCBABCD EFGABCDE O- 3 -三、计算题(6×5=30)1、 222)2()41(ab b a -⋅2、-23+81-×(-1)3×(-21)2-+7º3、 ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+-xy xy xy 414122 4、)12)(12(-++-y x y x5、22222)()()y x y x y x ++-( 6、化简求值 ))(()2(2y x y x y x -+-+,其中21,2=-=y x四、证明和解答如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2。
七年级数学下册期中测试卷【及参考答案】

七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版

七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
七年级数学下册期中模拟考试试题一

BA CDO七年级数学下册期中模拟考试试题一一、选择题(每题3分,共30分)1.三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.锐角三角形 B.钝角三角形; C.直角三角形 D.无法确定2、在平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,已知点A(-2,1)的对应点为A ′(3,1),点B 的对应点为B ′(4,0),则点B 的坐标为:( ) A .(9,0) B .(-1,0) C .(3,-1) D .(-3,-1)3、如图:已知AB ∥CD ,∠B=1200,∠D=1500,则∠O 等于( ). (A )500 (B )600 (C )800 (D )9004.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于( )A .50°B .130°C .40°D .140°5.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠46、如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( ) A 、9015x y x y +=⎧⎨=-⎩ B 、90215x y x y +=⎧⎨=-⎩C 、90152x y x y +=⎧⎨=-⎩D 、290215x x y =⎧⎨=-⎩7.有两边相等的三角形的两边长为3cm,5cm,则它的周长为 ( ) A.8cm B.11cm C.13cm D.11cm 或13cm8.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( )A .正三角形B .长方形C .正八边形D .正六边形 9、给出下列说法:(1) 两条直线被第三条直线所截,同位角相等;(2) 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3) 相等的两个角是对顶角;(4) 从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有( )A 0个 B 1个 C 2个 D 3个ACB21F EDCBA G1A B FD C E210.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠1 二、填空(每题3分,共15分)11、P (m-4,1-m )在x 轴上,则m= 。
精品 七年级数学下册 期中测试题

七年级数学 期中测试题满分:120分 限时:60分钟 姓名: 得分:一、选择题:(30分)1.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ) A.4 B.3C.2D.12.如图,已知BC EF AD ////,AC EH //,AC 平分DCB ∠,则图中与1∠相等的角有( )A .3个B .4个C .5个D .6个3.如果点P(m,1-2m)在第四象限,那么Q(m -21,-m)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l 1∥l 2,l 3⊥l 4,有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是( )A .只有①正确B .只有②正确C .①和③正确D .①②③都正确 5.如图,AB ∥DE ,∠1=∠2,则AE 与DC 的位置关系是( )A.相交B.平行C.垂直D.不能确定6.如图所示,OA=AB=BC=CD=DE=EF ,∠O=150,且AB 、BC 、CD 、DE 、EF 、···均为等长的小棒,则在该图中如此摆放,最多可以放( )个小棒。
A.7 B. 6 C.8 D. 5 7.一个多边形的内角和与外角和的比为2:5,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形8.小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形9.已知:面积为16的ABC ∆中两中线AD BE ⊥,若:2:3AD BE =,则BE =( ) A.2 B.4 C.6 D.810.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动[即(00)(01)(11)(10)→→→→,,,,…],且每秒移动一个单位....,那么第35秒时质点所在位置的坐标是( )A.(40),B.(50),C.(05),D.(55),二、填空题:(27分)11.如图,已知∠1=420,∠2=300,∠3=380,则∠4=12.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=13.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是 14.已知点A (2,3a b -)在第一象限,点B(4,3a b --)在第四象限,若,a b 都为整数,则2a b += 15.若等腰三角形的两边为,a b 满足2|2|(2311)0a b a b -+++-=,则此等腰三角形的周长为 16.如图,BD 平分∠ABC ,∠A=(4x+30)0,∠DBC=(x+15)0,要使AD ∥BC,则x=17.如图,AD 是△ABC 的中线,E 是AD 的中点,F 是AB 的中点,△ABC 的面积为64 cm 2,则△EFB 的面积是 cm 218.如图,△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB,则∠BIC= ,若BM ,CM 分别平分∠ABC,∠ACB 的外角平分线,则∠M=三、计算证明题:(43分)19.(7分)如图,已知∠BAP 与∠APD 互补,∠1=∠2,在括号中填上理由. ∵∠BAP 与∠APD 互补( )∴AB ∥CD( )从而∠BAP=∠APC( ) 又∠1=∠2( )∴∠BAP -∠1=∠APC -∠2 ( ) 即∠3=∠4∵AE ∥PF( ) ∴∠E=∠F( )20.(5分)如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期中考试模拟试题(二)
一.选择题(共15小题)
1.如图,与∠1互为同旁内角的角共有()个.
A.1 B.2 C.3 D.4
2.下面说法正确的个数为()
(1)过直线外一点有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)两角之和为180°,这两个角一定邻补角;
(4)同一平面内不平行的两条直线一定相交.
A.1个 B.2个 C.3个 D.4个
3.下列命题为假命题的是()
A.等腰三角形一边上的中线、高线和所对角的角平分线互相重合
B.角平分线上的点到角两边距离相等
C.到线段两端点距离相等的点在这条线段的垂直平分线上
D.全等三角形对应边相等,对应角相等
4.如图所示,BE∥DF,DE∥BC,图中相等的角共有()
A.5对 B.6对 C.7对 D.8对
5.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个
数为()
A.2个 B.3个 C.4个 D.5个
6.大于﹣2.5小于的整数有多少个()
A.4个 B.5个 C.6个 D.7个
7.如图,在数轴上有a,b两个实数,则下列结论中,正确的是()
A.a+b>0 B.ab>0 C.a<b D.a>b
8.下列语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④的立方根是2.⑤(﹣2)2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()
A.2个 B.3个 C.4个 D.5个
9.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个 B.3个 C.4个 D.5个
10.估算的值是在()
A.2与3之间B.3与4之间C.4与5之间D.5与6之间
11.在直角坐标系中,适合条件|x|=5,|x﹣y|=8的点P(x,y)的个数为()A.1 B.2 C.4 D.8
12.如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C的坐标为()
A.(3,1) B.(﹣1,1)C.(3,5) D.(﹣1,5)
13.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()
A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)
14.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(2,﹣2),“象”位于点(4,﹣2),则“炮”位于点()
A.(1,3) B.(0,1) C.(﹣1,2)D.(﹣2,2)
15.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()
①实验楼的坐标是3;
②实验楼的坐标是(3,3);
③实验楼的坐标为(4,4);
④实验楼在校门的东北方向上,距校门200米.
A.1个 B.2个 C.3个 D.4个
二.填空题(共15小题)
16.裁剪师傅将一块长方形布料ABCD沿着AE折叠,使D点落在BC边上的F
点处,若∠BAF=50°,则∠AEF=°.
17.如图,已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于度.
18.如图,直线l1∥l2,则∠1+∠2=.
19.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=度.
20.如果一个角的两边分别互相平行,已知其中一个角为27°,则另一角为.
21.实数的整数部分是.
22.我们规定:相等的实数看作同一个实数.有下列六种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③每个有理数都可以用数轴上唯一的点来表示;
④数轴上每一个点都表示唯一一个实数;
⑤没有最大的负实数,但有最小的正实数;
⑥没有最大的正整数,但有最小的正整数.
其中说法错误的有(注:填写出所有错误说法的编号)
23.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.
24.已知a,b为两个连续整数,且a<<b,则a+b=.
25.已知|a|=3,=2,且ab<0,则a﹣b=.
26.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0)、(3,0),现同时将点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD,在y轴上存在点P,使△PCD的面积为四边形ABCD面积的一半,则点P的坐标为.
27.已知点A(m﹣1,2),点B(3,2m),且AB∥y轴,则点B的坐标为.28.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B()、C()、D().
29.将点A(4,3)向左平移个单位长度后,其坐标为(﹣1,3).30.已知点A(1,0),B(0,﹣2),如果直线AB上有一点C在第一象限,且△BOC的面积等于2,则点C的坐标为.
三.解答题(共10小题)
31.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC
∴∠=°()
∵∠1=30°
∴∠BAD=∠+∠=°
又∵∠B=60°
∴∠BAD+∠B=°
∴AD∥BC()
32.如图,已知:AD∥BC,DE∥AB,点E在BC上,∠C=40°,∠CDE=60°,求∠A和∠B的度数.
33.如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.
34.如图,∠1=60°,∠ACD=120°,CB平分∠ACD.
(1)试说明AB与CD平行;
(2)AC与BD平行吗?若不一定平行,请再加上一个条件使它平行,并说明理由.
35.计算:
(1)+﹣|﹣2|;
(2)(+)2﹣(﹣)(1+2).
36.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求:3a﹣4b的平方根.
37.解方程:
(1)(x﹣1)3=27
(2)(x﹣3)2=4.
38.如图,在平面直角坐标系中画出以下各点:A(﹣2,0),B(﹣1,3),C(2,2),D(2,0),顺次连接A,B,C,D,计算所得到的四边形ABCD的面积.
39.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.
(1)求m的值;
(2)求AB的长.
40.已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)
(1)求△ABC的面积;
(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.
七年级数学下册期中考试模拟试题(二)
参考答案
一.选择题(共15小题)
1.C;2.B;3.A;4.D;5.C;6.A;7.C;8.B;9.A;10.C;11.C;12.C;13.A;14.B;15.B;
二.填空题(共15小题)
16.70;17.165;18.30°;19.40;20.27°或153°;21.2;22.⑤;23.;24.7;25.﹣7;26.(0,0)或(0,4);27.(3,8);28.7,8;9,3;3,4;29.5;30.(2,2);
三.解答题(共10小题)
31.ACB;90;垂直定义;BAC;1;120;180;同旁内角互补,两直线平行;32.;33.;34.;35.;36.;37.;38.;39.;40.;。