超声波流量计与空调冷冻水的计量
空调工程常用计算公式

序名称单位计算公式总热量Q T =Q S +Q TQ T 空气冷却:QT=0.24*∝*L*(h 1-h 2)显热量空气冷却:Q S Q S =Cp*∝*L*(T 1-T 2)潜热量空气冷却:Q LQ L =600*∝*L*(W 1-W 2)冷冻水量V 1V 2=Q 2/(4.187△T 2)=(3.516+KW/TR)TR 其中Q 2=Q 1+N =TR*3.516+KW/TR*TR=(3.516+KW/TR)*TR EER=制冷能力(Mbtu/h )/耗电量(KW )COP=制冷能力(KW )/耗电量(KW )部分冷负荷性能NPLV 满载电流(三相)FLA新风量L 送风量空气冷却:L L=Qs/〔Cp*∝*(T 1-T 2)〕风机功率N 1水泵功率N 2风管面积F13m 2F=a*b*L 1/(1000u)10CMH 11KW N 1=L 1*H 1/(102*n 1*n 2)12KW N2= L 2*H 2*r/(102*n 3*n 4)8A FLA=N/√3 UCOS φ9CMH Lo=nV6制冷效率—7KW /TRNPLV=1/(0.01/A +0.42/B +0.45/C +0.12/D )4L/s V 1= Q 1/(4.187△T 1)5冷却水量L/s空气调节常用计算计算单位1Kcal/h QT—空气的总热量QS—空气的显热量QL—空气的潜热量h1—空气的最初热焓 kJ/kgh2—空气的最终热焓 kJ/kgT1—空气的最初干球温度 ℃T2—空气的最终干球温度 ℃W1—空气的最初水份含量 kg/kgW2—空气的最终水份含量 kg/kg L—室内总送风量 CMHQ1—制冷量 KW△T1—冷冻水出入水温差 ℃△T2—冷却水出入水温差 ℃Q2—冷凝热量 KWEER—制冷机组能源效率 Mbtu/h/KWCOP—制冷机组性能参数A—100%负荷时单位能耗 KW/TRB—75%负荷时单位能耗 KW/TR C—50%负荷时单位能耗 KW/TR D—25%负荷时单位能耗 KW/TRN—制冷机组耗电功率 KW U—机组电压 KVCOS φ—功率因数 0.85~0.92N—房间换气次数 次/h V—房间体积 m3Cp—空气比热(0.24kcal/kg℃)∝—空气比重(1.25kg/m3)@20℃L1—风机风量 L/sH1—风机风压 mH2OV—水流速 m/sn1—风机效率n2—传动效率(直连时n2=1,皮带传动n2=0.9)L2—水流量(L/s)H2—水泵压头(mH2O)r—比重(水或所用液体)n3—水泵效率=0.7~0.85n4—传动效率=0.9~1.0a— 风管宽度 mQT—空气的总热量QS—空气的显热量QL—空气的潜热量h1—空气的最初热焓 kJ/kg h2—空气的最终热焓 kJ/kg T1—空气的最初干球温度 ℃T2—空气的最终干球温度 ℃W1—空气的最初水份含量 kg/kg W2—空气的最终水份含量 kg/kgL—室内总送风量 CMHQ1—制冷量 KW△T1—冷冻水出入水温差 ℃△T2—冷却水出入水温差 ℃Q2—冷凝热量 KWEER—制冷机组能源效率 Mbtu/h/KW COP—制冷机组性能参数A—100%负荷时单位能耗 KW/TR B—75%负荷时单位能耗 KW/TR C—50%负荷时单位能耗 KW/TRD—25%负荷时单位能耗 KW/TR 2Kcal/h 3Kcal/h△T2—冷却水出入水温差 ℃Q2—冷凝热量 KWEER—制冷机组能源效率 Mbtu/h/KWCOP—制冷机组性能参数A—100%负荷时单位能耗 KW/TRB—75%负荷时单位能耗 KW/TRC—50%负荷时单位能耗 KW/TRD—25%负荷时单位能耗 KW/TR14mm水管管径D=√4*1000L2/(π*v)。
手持式超声波流量计在中央空调水系统中的应用

水流量下工作 , 避免空调主机发生故障,目 前逐渐 使用 免 维护 的压 差 式 流 量 开 关 代 替经 常 疲 劳 破 坏
的靶 式 流量 开 关 ,大大 降低用 户 以后 的 维护成 本 。 在 整个 中 央空 调系 统 的安装 调试 过程 中, 于 对 整 个 水 系统 的 水力 平 衡 及 冷 水 机 组 通过 的水 流 量 和 水 泵流量 的测 量 显得 非常 重要 , 条件 的项 目还 有
[ s at ntel t f ie ai f rbe i e a sdb apo r t t - o i e o re fntl t n Abt c] g aw d r t o po l whc a ue yi p rp ae e f w t us is l i , r h i o h v e y ms h rc n i wa r l nh c o a ao
[ y r s cn a r o dt n g f w nrl hn -e lao i o Kewod ] e t l n io i ; l c t ; adh l ut snc wme r r a c i i n o o o d r l f t e
1 、前 言
目前 冷 水 型 中 央 空 调在 整 个 中央 空 调 市 场 上 所 占的份 额 比较 大 , 水机 组 的冷凝 器和 蒸 发器 的 冷 其 中一个 或两 个 都是 以水作 为二 次换热 的介质 , 合 适 的水流 量是 主 机可 靠 工作 的必 要保证 , 不适 当的 水 流 量 可 能导 致 冷 水 主 机 蒸 发器 结冰 、冷 凝 压 力 高 、能耗大 、压缩 机“ 机” 故障 ,这 些故 障 的维 跳 等 护修 理 费用 非常 高 。 于冷 水 机组 水流 检测 的重 要 鉴
各种流量计计算公式修订版

各种流量计计算公式修订版流量计是工业生产中常用的一种仪表,用于测量液体、气体等介质的流量。
根据介质的不同,流量计分为多种类型,如涡轮流量计、电磁流量计、超声波流量计等。
这些流量计的计算公式也有所不同,下面将对各种流量计的计算公式进行修订。
1.涡轮流量计计算公式:涡轮流量计是利用介质通过涡轮转子时产生的动能来测量流量的仪表。
其计算公式为:Q=K*N*C其中,Q为流量,K为流量系数,N为涡轮转子转速,C为容积单位转换系数。
修订版:在修订版中,我们可以将流量系数K拆分为一个修正系数和标定系数的乘积:Q=K'*K**N*C即流量等于修正系数与标定系数的乘积,再乘以涡轮转子转速和容积单位转换系数。
2.电磁流量计计算公式:电磁流量计是利用法拉第电磁感应定律来测量导电液体流量的仪表。
其计算公式为:Q=A*B*V其中,Q为流量,A为电磁流量计内管的横截面积,B为磁感应强度,V为液体的平均速度。
修订版:在修订版中,我们可以将电磁流量计内管的横截面积A拆分为一个修正系数和实际横截面积的乘积:Q=K'*A'*B*V即流量等于修正系数与实际横截面积的乘积,再乘以磁感应强度和液体的平均速度。
3.超声波流量计计算公式:超声波流量计是利用超声波在流体中的传播特性来测量流量的仪表。
其计算公式为:Q=A*V其中,Q为流量,A为超声波流量计传感器的测量面积,V为液体的平均速度。
修订版:在修订版中,我们可以将超声波流量计传感器的测量面积A拆分为一个修正系数和实际面积的乘积:Q=K'*A'*V即流量等于修正系数与实际面积的乘积,再乘以液体的平均速度。
需要注意的是,以上修订版的公式仅为示意,实际应用中需要考虑更多因素,如介质的密度、温度对流量的影响等。
因此,在使用流量计进行实际测量时,应根据具体情况进行修正和校准,以获得更准确的结果。
总结起来,各种流量计的计算公式修订版主要是在原有公式的基础上引入修正系数,以提高测量结果的准确性。
冷冻水流量计算

冷冻水流量计算 Prepared on 22 November 2020标准冷冻水流量=制冷量(KW)*5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(~5)℃]X~2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。
如果考虑了同时使用率,建议用如下公式进行计算。
公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。
L(m3/h)= Q(kW)/(~5)℃3、冷却水补水量一般1为冷却水循环水量的1~%.1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。
认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。
随着控制技术的发展,冷水机组的控制系统越来越先进。
目前,不同类型的冷水机组均能实现冷量的自动调节。
冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。
事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。
当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。
衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。
由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。
超声波流量计在空调行业的应用及操作规程

超声波流量计在空调行业的应用及操作规程超声波流量计在空调行业的应用超声波流量计操作简单、安装便捷、适用范围广、测量精准度高、价格实惠,超声波流量计为空调水系统的测量供应了有效的手段,对于空调工程测试、调试工作及空调循环水的测量中具有良好的使用效果,超声波流量计在空调工程测试、调试及检测维护和修理中的应用1.超声波流量计空调行业中的应用特点:超声波流量计操作简单、安装便捷、适用范围广、测量精准度高、价格实惠,超声波流量计为空调水系统的测量供应了有效的手段,对于空调工程测试、调试工作及空调循环水的测量中具有良好的使用效果,得到了广阔空调用户的广泛好评,已成为中央空调工程测试、调试及检测维护和修理的便捷工具。
2.超声波流量计适用的中央空调机型超声波流量计在冷水机组和水冷机组都可应用,如风冷冷水机组、水源热泵、水冷柜机、水冷冷水机组等。
3.超声波流量计在空调循环水测量中的紧要应用:◆检测户式风冷冷水机组水流量1. 检测现场水流量,对是否充分冷水机组运行的最低限进行对比,一般不小于机组额定水流量的70%。
2. 对每个风机盘管的水流量进行测试,搭配使用管路阀门调整水力平衡。
可以显示机组的瞬时流量、累积流量、流速,避开由于安装引起水量不足造成的制冷时换热器冻坏或制热时压缩机故障。
通过流量数值的比照查找管路故障。
◆检测模块式冷水机组水流量检测每个模块的水流量是否与额定流量相当。
对水泵的流量进行检测,判定水泵是否在正常范围内工作。
◆检测中大型冷水机组水流量对冷却水和冷冻水流量的测量。
冷冻水流量的大小直接影响蒸发器是否结冰。
冷却水流量的大小直接影响冷水机组的运行效率和机组的使用寿命。
可用于调整压差式流量开关的安全流量设定值。
中央空调系统节能的需要。
◆在中央空调整能改造上的应用中央空调系统中水泵的能耗占比重相当大,目前,有很多用户接受大温差小流量的方法来降低水泵的能耗。
利用超声波流量计测得精准的系统水流量,削减无效果的多余流量,大幅度降低能耗。
各种分户计量的分类

中央空调能量计量装置分类1.1、中央空调当量能量计量装置中央空调当量能量计量装置是指在符合一定设置条件下通过间接计量,并按间接计量值的计算能量在总计算能量中所占的比例分摊集中空调的总耗能量的装置。
根据间接计量方式不同,可分为有效果计时型、定流量温差型和定风量温差型三大类。
1.2、中央空调直接量能量计量装置中央空调当量能量计量装置是指基于能量守恒原理设计制造的,有配对温度传感器、流量计和能量积算仪(或能量计算器)三部分组成的能量计量装置。
根据流量计类型主要有三大类:机械式、电磁式和超声波式。
现场能量计量仪表2.1、中央空调当量能量计量表当量能量计量表主要用于央空调风机盘管的能量计量。
其原理是通过计量中央空调末端设备(风机盘管)的“有效果”使用时间与该末端的换热功率之乘积作为当量能量,对中央空调末端用户进行计量收费的方法。
2.2、中央空调直接能量计量表直接能量计量表主要用于中央空调的分区计量,其原理简单的说就是流量乘温差按时间积分,所以直接能量计量装置是由流量计、配对温度传感器和能量积算仪三部分组成的复合仪表。
2.3、直读式抄表装置直读式抄表装置是利用电子识别技术,直接读取水、电、气等非电子仪表的表盘数值并将其转换成数字信号用于远程传输的设备。
★中央空调当量能量计量仪表中央空调当量能量计量表(equivalent energy metering meters)是通过监测空调系统的特定参数,按设定的计算模型求出所有空调单元的能耗计算值,并按比例分摊集中空调的实际总耗能量的计量仪表,简称当量空调表。
可分为流量型、电量型、时间型、有效温度计时型、定流量温差型、定风量温差等等。
当量能量计量仪表的误差要求用于集中空调计量的当量空调表,其耗能计算值应与计量对象的实际耗能成正向关系,并将明显偏离部分进行插值处理,其计量原始值准确度应符合以下要求:计时误差限:≤0.1%配对温度传感器误差限:±0.2℃直接测量温度传感器误差限:±0.5℃流量传感器误差限:≤5%当量能量计量仪表显示或输出的能量值是按设定的计算模型计算出的,对申报产品的计算模型,应由行业主管部门组织专家进行审查。
空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法Ξλρv 2放入大气.水系统管路水力计算是系统正确设计和优化的基础.糙度有关 ,即λ = f ( Re , K/ d)式中 : Re —雷诺数, Re = vd/ν =ρvd/μ;ν—水的运动粘滞系数 , m 2/ s ; 1 空调水循环管路水力计算的原理水管路将流量和管径不变的一段管路称为一个l ρv p y =λ = R (1可采用柯列勃洛克公式3和阿里特苏里公式中 :p y —计算管段沿程阻力损失 , Pa ;λ—沿程阻力系数 ,无因次量 ; 1 2 51 l —直管段长度 , m ;供吸压冷第 20卷第 3期 2004年 9月北京建筑工程学院学报Journal of B eijing Institu te of Civil Eng. and ArchitectureVol. 20 No. 3 Sep . 2004文章编号 :1004 - 6011 (2004) 03 - 0001 - 07空调冷冻水和冷却水循环系统水力计算简便方法许淑惠 , 罗文斌(城市建设工程系 ,北京 100044)摘要:根据空调水系统的计算原理,在不同管径下按不同流量把空调冷冻水和冷却水管路水力计算中的比摩阻绘制成计算表 ,应用该计算表能快速、准确、方便进行空调水系统管路水力计算;采用具体实例,说明空调水系统管路水力计算简便方法. 关键词:冷冻水;冷却水;水力计算中图分类号 : TU83 文献标识码 :A一个完整的中央空调系统有三大部分组成 , 即ρ—水密度 , kg/ m 3 ;冷热源、热与供冷管网、空调用户系统.空调水系 v —水速度 , m/ s ;统包括冷冻水系统和冷却水系统.冷冻水系统是把 R —单位长度沿程阻力损失,又称比摩阻, 冷热源产生的冷或热量通过管网输送到空调用户的 Pa/ m .冷水管采用钢管或镀锌管时 ,比摩阻一系统 ;冷却水系统是整个空调系统的重要组成部分 , 般为 100 Pa/ m ~ 400 Pa/ m ,最常用的为他以水作为冷却剂将冷凝器、收器、压缩机放出的 250 Pa/ m . 热量转移到冷却设备 (冷却塔、却水池等)中 ,最后 R = (2)d 2沿程阻力系数λ与流体的流态和管壁的相对粗空调水系统的管路水力计算是在已知水流量和推荐流速下,确定水管管径,计算水在管路中流动的沿程阻力损失和局部阻力损失 ,确定水泵的扬程和流量.μ—水的动力粘滞系数 , Pa ?s ; K —管壁的当量糙粒高度 , m ;空调冷冻水闭式系统管路 K = 0. 2 mm ,开式系统管路 K = 0. 5 mm ;空调冷却水系统管路 K = 0. 5 mm.空调水循环管路 ,管道设计中采用较低水流速 , 计算管段 ,计算管段沿程阻力损失 ,即流动状态一般处于紊流过渡区内 ,沿程阻力系数λ 2d 2进行计算 ,即= - 2 lg ( + ) (3) λ 3. 7 d Re λd —管道直径, m ;λ = 0. 11 ( K + 68 ) 0. 25 (4)d Re收稿日期 :2004 - 09 - 22基金项目 :建设部计划科技项目 (032111)作者简介 :许淑惠 (1966年—) ,女 ,工学硕士 ,副教授 ,热工流体教研室.112 沿程阻力损失计算表3 600ρπd 900ρπd 2式中 : q m —管段中的水质量流量 , kg/ h ;详见表 1和表 2.λ q m R = 6. 25×10(6)流不不 2北京建筑工程学院学报第 20卷在给定水状态参数及其流动状态的条件下,λ管道内的流速、量和管径的关系表达式为和ρ值均为已知 ,则式 (6)就表示为 R = f ( d , q m )的 4 q m q m 函数式.v = 2 = (5)利用公式 (4) , (5) , (6) ,计算出冷却水和冷冻水在不同水流量、不同管径、不同速度的沿程比摩阻 , 将式 (5)的流速 v 代入式 (2) ,整理成更方便的计算公式2- 8ρ d 5表 1 冷却水管不同流量、同管径、同流速的沿程比摩阻管径DN50/ mm 管径DN70/ mm 管径DN80/ mm 管径DN100/ mm 管径 DN125/ mm内径 53. 0/ mm 内径 68. 0/ mm 内径 80. 5/ mm 内径 106. 0/ mm 内径 131. 0/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 62 70. 2 0. 46 8. 05 92. 5 0. 62 16. 09 151. 0 0. 88 35. 20 169. 5 1. 11 56. 32 142. 6 1. 16 3. 82 78. 0 0. 48 8. 55 104. 3 0. 65 17. 10 170. 2 0. 93 36. 21 179. 2 1. 14 59. 34 158. 1 1. 22 4. 02 86. 2 0. 51 9. 05 116. 7 0. 69 18. 10 190. 6 0. 99 37. 21 189. 2 1. 17 62. 36 174. 5 1. 29 4. 53 108. 6 0. 57 9. 55 129. 8 0. 73 19. 11 212. 1 1. 04 38. 22 199. 5 1. 20 65. 37 191. 6 1. 35 5. 03 133. 6 0. 63 10. 06 143. 6 0. 77 20. 11 234. 7 1. 10 39. 22 210. 0 1. 24 68. 39 209. 5 1. 41 5. 53 161. 2 0.70 11. 06 173. 3 0. 85 21. 12 258. 5 1. 15 40. 23 220. 8 1. 27 71. 41 228. 3 1. 476. 03 191. 3 0. 76 12. 07 205. 8 0. 92 22. 13 283. 5 1. 21 42. 24 243. 2 1. 33 74. 42 247. 8 1. 53 6. 54 224. 0 0. 82 13. 07 241. 0 1. 00 23. 13 309. 6 1.26 44. 25 266. 7 1. 39 77. 44 268. 2 1. 60 7. 04 259. 3 0. 89 14. 08 279. 1 1. 08 24. 14 336. 8 1. 32 46. 26 291. 3 1. 46 80. 46 289. 3 1. 66 7. 54 297. 2 0. 95 15. 09 319. 9 1. 15 25.14 365. 2 1. 37 48. 28 317. 0 1. 52 83. 48 311. 2 1. 72 8. 05 337. 6 1. 01 16. 09 363. 5 1. 23 26. 15 394. 8 1. 43 50. 29 343. 7 1. 58 86.49 334. 0 1. 78 8. 55 380. 6 1. 08 17. 10 409. 9 1. 31 27. 15 425. 5 1. 48 53. 30 385. 9 1. 68 89. 51 357. 5 1. 85 9. 05 426. 2 1. 14 18.10 459. 1 1. 39 28. 16 457. 3 1. 54 56. 32 430. 5 1. 77 92. 53 381.9 1. 91 9. 55 474. 4 1. 20 19. 11 511. 1 1. 46 29. 17 490. 3 1. 59 59.34 477. 5 1. 87 96. 55 415. 6 1. 99 10. 06 525. 2 1. 27 20. 11 565.9 1. 54 30. 17 524. 5 1. 65 62. 36 433. 6 1. 96 100. 57 450. 7 2. 07管径DN150/ mm 管径DN200/ mm 管径DN250/ mm 管径DN300/ mm 管径 DN400/ mm 内径 156/ mm 内径 207/ mm 内径259/ mm 内径 309/ mm 内径 408/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 51 143. 7 1. 28 135. 77 75. 1 1. 12 241. 38 73. 0 1. 27 502.87 124. 7 1. 86 834. 76 79. 9 1. 77 92. 53 153. 5 1. 33 140. 80 80.7 1. 16 261. 49 85. 5 1. 38 522. 98 134. 8 1. 94 864. 93 85. 8 1. 84 96. 55 167. 0 1. 39 150. 86 92. 5 1. 25 281. 61 99. 1 1. 49 543. 10145. 3 2. 01 895. 10 91. 8 1. 90 100. 57 181. 1 1. 44 160. 92 105. 1 1. 33 301. 72 113. 6 1. 59 563. 21 156. 2 2. 09 925. 27 98. 1 1. 97 105. 60 199. 5 1. 52 170. 97 118. 6 1. 41 321. 83 129. 2 1. 70 583.32 167. 5 2. 16 955. 45 104. 5 2. 03 110. 63 218. 8 1. 59 181. 03 132. 8 1. 50 341. 95 145. 7 1. 80 603. 44 179. 2 2. 24 985. 62 111.2 2. 10 115. 66 239. 0 1. 66 191. 09 147. 9 1. 58 362. 06 163. 2 1.91 623. 55 191. 2 2. 31 1 015. 79 118. 1 2. 16 120. 69 260. 0 1. 73 201. 15 163. 7 1. 66 382. 18 181. 8 2. 02 643. 67 203. 7 2. 39 1 045.96 125. 1 2. 22 125. 72 282. 0 1. 80 221. 26 197. 8 1. 83 402. 29 201. 3 2. 12 663. 78 216. 6 2. 46 1 076. 13 132. 4 2. 29 130. 75 304.9 1. 88 241. 38 235. 2 1. 99 422. 41 221. 8 2. 23 683. 90 229. 8 2.53 1 106. 31 139. 9 2. 35 135. 77 328. 6 1. 95 261. 49 275. 7 2. 16 442. 52 243. 3 2. 33 704. 01 243. 5 2. 61 1 136. 48 147. 6 2. 42 140.80 353. 3 2. 02 281. 61 319. 6 2. 33 462. 64 265. 8 2. 44 724. 13 257. 5 2. 68 1 166. 65 155. 5 2. 48 150. 86 405. 2 2. 17 301. 72 366.6 2. 49 482. 75 289. 3 2. 55 744. 24 272. 0 2. 76 1 196. 82 163. 6 2. 54 160. 92 460.7 2. 31 321. 83 416.8 2. 66 502. 87 313. 8 2. 65 764. 36 286. 8 2. 83 1 226. 99 171. 9 2. 61 170. 97 519. 8 2. 45 341.95 470. 3 2. 82 522. 98 339. 3 2. 76 784. 47 302. 0 2. 91 1 257. 17 180. 4 2. 67注 :表中冷却水温度为34. 5℃( (32℃+ 37℃) / 2) ,密度 994. 3 kg/ m 3 ,运动粘滞系数0. 735×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 5 mm.不不第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法表 2 冷冻水管不同流量、同管径、同流速的沿程比摩阻3管径 DN15/ mm 内径 15. 8/ mm 管径 DN20/ mm内径 20. 3/ mm 管径 DN27/ mm内径 27. 0/ mm 管径 DN32/ mm内径 35. 8/ mm 管径 DN40/ mm内径 41. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 35 0. 4054. 8 62. 7 71. 2 80. 1 89. 5 99. 5 109. 9 120. 8 144. 1 169. 3 196. 5 225. 6 256. 7 342. 8 440. 90. 19 0. 20 0. 21 0. 23 0. 24 0. 26 0. 27 0. 29 0. 31 0. 34 0. 37 0. 40 0. 43 0. 50 0. 570. 26 0. 28 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 9044. 8 51. 3 58. 2 77. 2 98. 9 123. 0 149. 7 178. 9 210. 6 244. 8 281. 5 320. 7 362. 3 406. 5 453. 10. 20 0. 22 0. 24 0. 27 0. 31 0. 35 0. 39 0. 43 0. 47 0. 51 0. 55 0. 59 0. 63 0. 67 0. 710. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 90 1. 001. 20 1. 40 1. 60 1. 8037. 7 45. 7 54. 5 64. 0 74. 2 85. 1 96. 8 109. 1 122. 2 136. 0 165. 7 233. 7 313. 0 403. 6 505. 60. 22 0. 24 0. 27 0. 29 0. 32 0. 34 0. 36 0. 39 0. 41 0. 44 0. 490. 58 0. 68 0. 78 0. 871. 00 1. 20 1. 40 1. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 8041. 0 57. 5 76. 6 98. 3 122. 6 49. 5 179. 1 211. 2 245. 9 283. 2 323. 1 365. 6 410. 6 458. 3 508. 50. 28 0. 33 0. 39 0. 44 0. 50 0. 55 0. 61 0. 66 0. 72 0. 78 0. 830. 89 0. 94 1. 00 1. 051. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 804. 00 4. 505. 0049. 7 61. 8 75. 3 90. 0 106. 0 123. 3 141. 8 161. 6 182. 6 204.9 228. 5 253. 3 279. 4 350. 2 428. 80. 34 0. 38 0. 42 0. 46 0. 51 0. 55 0. 59 0. 63 0. 67 0. 72 0. 76 0. 80 0. 84 0. 95 1. 05管径 DN50/ mm内径 53. 0/ mm 管径 DN70/ mm内径 68. 0/ mm 管径 DN80/ mm内径 80. 5/ mm 管径 DN100/ mm内径 106. 0/ mm 管径 DN125/ mm内径 131. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 60 3. 804. 00 4. 505. 00 5. 506. 00 6. 507. 00 7. 508. 00 8. 509. 00 9. 50 10. 0062. 8 69. 5 76. 5 95. 6 116. 6 139. 8 165. 0 192. 2 221. 5 252.8 286. 1 321. 5 359. 0 398. 5 440. 00. 45 0. 48 0. 50 0. 57 0. 63 0. 69 0. 76 0. 82 0. 88 0. 95 1. 011. 07 1. 13 1. 20 1. 268. 00 8. 50 9. 00 9. 50 10. 00 11. 00 12. 00 13. 00 14. 00 15. 00 16. 00 17. 00 18. 00 19. 00 20. 0180. 9 90. 8 101. 2 112. 2 123. 7 148. 4 175. 3 204. 4 235. 7 269.3 305. 0 342. 9 383. 1 425. 5 470. 00. 61 0. 65 0. 69 0. 73 0. 77 0. 84 0. 92 1. 00 1. 07 1. 15 1. 221. 30 1. 38 1. 45 1. 5316. 00 17. 00 18. 00 19. 00 20. 01 21. 01 22. 01 23. 01 24. 01 25. 01 26. 01 27. 01 28. 01 29. 01 16. 00129. 0 144. 9 161. 7 179. 5 198. 1 217. 6 238. 1 259. 4 281. 7 304. 9 329. 0 354. 0 379. 9 406. 7 434. 40. 87 0. 93 0. 98 1. 04 1. 09 1. 15 1. 20 1. 26 1. 31 1. 37 1. 421. 47 1. 53 1. 58 1. 6435. 01 36. 01 37. 01 38. 01 39. 01 40. 01 42. 01 44. 01 46. 01 48. 01 50. 01 53. 01 56. 01 59. 01 62. 02143. 0 150. 9 159. 1 167. 5 176. 2 185. 0 203. 3 222. 5 242. 5 263. 4 285. 2 319. 4 355. 6 393. 7 433. 71. 10 1. 13 1. 17 1. 20 1. 23 1. 26 1. 32 1. 39 1. 45 1. 51 1. 58 1. 67 1. 76 1. 86 1. 9556. 01 59. 01 62. 02 65. 02 68. 02 71. 02 74. 02 77. 02 80. 02 83. 02 86. 02 89. 02 92. 02 96. 02 100. 03120. 0 132. 7 146. 1 160. 1 174. 7 190. 0 205. 9 222. 4 239. 6 257. 4 275. 8 294. 9 314. 6 341. 8 370. 21. 15 1. 22 1. 28 1. 34 1. 40 1. 46 1. 53 1. 59 1. 65 1. 71 1. 771. 84 1. 90 1. 982. 06管径 DN150/ mm内径 156/ mm 管径 DN200/ mm内径 207/ mm 管径 DN250/ mm内径 259/ mm 管径 DN300/ mm内径 309/ mm 管径 DN350/ mm内径 359/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 02 92. 02 96. 02 100. 03 105. 03 110. 03 115. 03 120. 03 125. 03 130. 03 135. 03 140. 04 150. 04 160. 04 170. 04 120. 3 128. 3 139. 3 150. 8 165. 8 181. 5 197. 9 215. 0 232. 8 251. 3 270. 5 290. 4 332. 3 377. 1 424. 71. 28 1. 32 1. 38 1. 44 1. 51 1. 58 1. 65 1. 72 1. 79 1. 87 1. 942. 01 2. 15 2. 30 2. 44135. 03 140. 04 150. 04 160. 04 170. 04 180. 05 190. 05 200.05 220. 06 240. 06 260. 07 280. 07 300. 08 320. 08 340. 0963. 3 67. 9 77. 6 87. 9 98. 9 110. 4 122. 7 135. 6 163. 2 193. 4 226. 2 261. 5 299. 4 339. 8 382. 81. 12 1. 16 1. 24 1. 32 1. 40 1. 49 1. 57 1. 65 1. 82 1. 982. 15 2. 31 2. 48 2. 64 2. 81240. 06 260. 07 280. 07 300. 08 320. 08 340. 09 360. 09 380.10 400. 10 420. 11 440. 11 460. 12 480. 12 500. 13 520. 1361. 1 71. 4 82. 4 94. 3 106. 9 120. 3 134. 5 149. 4 165. 2 181.7 199. 1 217. 2 236. 1 255. 8 276. 31. 27 1. 37 1. 48 1. 58 1. 69 1. 79 1. 902. 01 2. 11 2. 22 2. 32 2. 43 2. 53 2. 64 2. 74500. 13 520. 13 540. 14 560. 14 580. 15 600. 15 620. 16 640.16 660. 17 680. 17 700. 18 720. 18 740. 19 760. 19 780. 20102. 8 111. 0 119. 5 128. 3 137. 4 146. 8 156. 5 166. 6 176. 9 187. 6 198. 6 209. 9 221. 5 233. 4 245. 61. 85 1. 932. 00 2. 08 2. 15 2. 22 2. 30 2. 37 2. 45 2. 52 2. 59 2. 67 2. 74 2. 82 2. 89600. 15 620. 16 640. 16 660. 17 680. 17 700. 18 720. 18 740.19 760. 19 780. 20 800. 20 830. 21 860. 22 890. 22 920. 2367. 8 72. 2 76. 8 81. 6 86. 5 91. 5 96. 7 102. 0 107. 5 113. 1 118. 8 127. 7 136. 9 146. 4 156. 31. 65 1. 70 1. 76 1. 81 1. 87 1. 92 1. 982. 03 2. 09 2. 14 2. 20 2. 28 2. 36 2. 44 2. 53注 :表中冷冻水温度9. 5℃( (7℃+ 12℃) / 2) ,密度 999. 75 kg/ m 3 ,运动粘滞系数1. 329×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 2 mm.113 局部阻力损失ρv∑ζ 2 c t212 空调冷却水系统水力计算方法c t ′盘产管阀 ( ( 局产管阀 ( ( 4北京建筑工程学院学报第 20卷当流体通过管道的一些附件如阀门、弯头、三通、管等时 ,产生局部阻力损失 ,管段的局部阻力损失表示为2p j = (7) 式中 :p j —计算管段的总局部阻力损失 , Pa ;∑ζ—计算管段局部阻力系数之和 ,无因次.2 空调水系统水力计算方法空调冷冻水循环系统一般采用闭式系统,系统的供水温度通常为7℃,回水温度为12℃,温差为5℃,泵的流量按空调系统夏季最大计算冷负荷确定 ,即Φq m = (8)式中 : q m —系统环路总流量 , kg/ s ;Φ—系统环路的计算冷负荷 ,W ; t —冷冻水供回水温差,℃;c —冷冻水比热容 ,通常取c = 4. 187×103J / ( kg ?K) .若空调冷冻水循环系统采用一次泵循环管路 , 则水泵的扬程应能克服冷冻水系统最不利环路的用冷设备、冷设备、道、门附件等总阻力要求.即 p =∑py +p j +p m ) (9) 式中 : p —水泵扬程 , Pa ;∑py+p j+p m )—最不利环路各计算管段沿程、部和设备阻力损失之和 , Pa ; p y —各计算管段沿程阻力损失 , Pa ; p j —各计算管段总局部阻力损失 , Pa ;p m —各计算管段总设备阻力损失 , Pa.若空调冷冻水循环系统采用二次泵循环管路 , 则1)一次泵的选择a)泵的流量应等于冷水机组蒸发器的额定流量 ;b)泵的扬程为克服一次环路的阻力损失 ,其中包括一次环路的管道阻力和设备阻力 ;c)一次泵的数量与冷水机组台数相同.2)二次泵的选择a)泵的流量按分区夏季最大计算冷负荷确定 ; b)二次泵的扬程应能克服所管分区的二次最不利环路中用冷设备、管道、阀门附件等总阻力要求.无论采用一次泵冷冻水系统,还是采用二次泵冷冻水系统,选择水泵时 ,流量附加 10 %的余量 ,扬程也附加 10 %的余量 [2 ] .空调冷却水循环系统一般采用开式系统 ,水力计算是确定冷却水流量后 ,确定冷却水泵的扬程.冷却塔冷却水量可按下式计算 [3 ]Φq m = (10)式中 : q m —冷却塔冷却水量 , kg/ s ;Φ—冷却塔排走热量 , W ,压缩式制冷机 ,取制冷机负荷的 1. 3倍左右 ,吸收式制冷机 ,取制冷机负荷的 2. 5倍左右 ;t ′—冷却塔的进出水温差,℃;压缩式制冷机 ,取4℃~5℃;吸收式制冷机 ,取6℃~9 ℃;c —水的比热容 ,J / ( kg ?K) .冷却水泵所需扬程应能克服冷却水系统环路的用冷设备、冷设备、道、门附件等总阻力要求 , 即p =∑py +p j +p m ) +p 0 +ph (11)式中 : p —冷却水泵的扬程 , Pa ;∑p y+p j+pm )—冷却水循环管路总阻力损失之和 , Pa ;p y —冷却水各计算管段的沿程阻力损失 ; Pa ;p j —冷却水各计算管段的总局部阻力损失 , Pa ;p m —冷却水各计算管段中总设备阻力损失 ,Pa ;p 0—冷却塔喷嘴喷雾压力 , Pa ,约等于 49 kPa ;p h —冷却塔中水提升高度 (从冷却塔盛水213 管径的确定3 工程应用c t 4. 187×103×(12 - 7) 0 01 0 02 4 2 6 4 89 8 8 8 8 8 7 1 8 7 1 8 1 7第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法5池到喷嘴的高差)所需的压力 , Pa .空调水系统中管内水流速按表3中的推荐值选用,或按表4根据流量确定管径 [1 ] .表 3 管内水流速推荐值/ m/ s管径/ mm 15 20 25 32 40 50 65 80 闭式系统 0. 4~0. 5 0. 5~0. 6 0. 6~0. 7 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 1. 2~1. 6 开式系统 0. 3~0. 4 0. 4~0. 5 0. 5~0. 6 0. 6~0. 8 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 管径/ mm 100 125 150 200 250 300 350 400 闭式系统 1. 3~1. 8 1. 5~2. 0 1. 6~2. 2 1. 8~2. 5 1. 8~2. 6 1. 9~2. 9 1. 6~2. 5 1. 8~2. 6 开式系统 1. 2~1. 6 1. 4~1. 8 1. 5~2.0 1. 6~2. 3 1. 7~2. 4 1. 7~2. 4 1. 6~2. 1 1. 8~2. 3表 4 水系统的管径和单位长度阻力损失闭式水系统开式水系统钢管直径/ mm流量/ (m 3/ h) kPa/ 100m 流量/ (m 3/ h) kPa/ 100m15 ~0. 5 ~60 —— 20 0. 5~1. 0 10~60 ——25 ~2 10~60 ~1. 3 ~43 32 ~4 10~60 1. 3~2. 0 10~4040 ~6 10~60 ~4 10~40 50 ~11 10~60 ~8 —65 11~18 10~60 ~14 — 80 18~32 10~60 14~22 — 100 32~65 10~60 22~45 — 125 65~115 10~60 45~82 10~40 150 115~185 10~47 82~130 10~43 200 185~380 10~37 130~200 10~24 250 380~560 ~26 200~340 10~18300 560~820 ~23 340~470 ~15 350 820~950 ~18 470~610 ~13 400 950~1 250 ~17 610~750 ~12 450 250~1 590 ~15 750~1 000 ~12 500 590~2 000 ~13 000~1 230 ~11的环路.根据各管段的流量 ,由表 5确定各管段直径.由表 2可查出比摩阻 R ,查各管件的局部阻力系数表 ,确定各管段的总阻力损失见表5.如图 1所示的空调冷冻水二次泵循环系统 (一级循环略去) ,此系统计算冷负荷为 48. 8 kW ,冷冻水供水温度为7℃,回水温度为1 2℃,空调机组表冷器水侧阻力为 50 kPa ,各管段的长度见表 5 ,求各管段的管径及二次水泵的流量和扬程.计算系统所需的冷冻水流量 ,为Φ 48. 8×103q m = = ( ) kg/ s = 2. 33 kg/ s = 8. 39 m 3/ h此系统最不利环路为 1 - 2 - 3 - 4 - 5 - 6组成图 1 冷冻水系统图q V / (m / h) (ρv / 2 ) / Pa c t ′ 4. 187×103×(37 - 32)ρπd 2 994. 1×3. 14×0. 152 p j =∑ζ994. 1×1. 612出止闸 6北京建筑工程学院学报第 20卷此水系统为闭式水系统,水泵的扬程为最不利环路的总阻力损失,加上表冷器的阻力损失 ,即p =∑(py +p j +p m ) = 74. 48 kPa选用水泵,流量和扬程皆考虑10 %的余量,则选用水泵的参数为流量1. 1×8. 39 m 3/ h = 9. 23 m 3/ h ,扬程1. 1×7. 59 m = 8. 35 mH 2O.= 7. 59 mH 2O表 5 冷冻水管段水力计算表管段1- 22- 3 3- 4 4- 5 5- 6 管长l /m 10 5 10 5 10 流量38. 39 4. 196 4. 196 4. 196 8. 39 管径d / mm DN50 DN40 DN40 DN40 DN50 流速v / (m/ s) 1. 06 0. 88 0. 88 0. 88 1. 06 比摩阻R / ( Pa/ m) 313. 7 307. 2 307. 2 307. 2 313. 7 局部阻力系数∑ζ14 0. 4 5. 3 0. 1 3. 5 动压2 561. 66 387. 10 387. 10 387. 10 561. 66 设备阻力 p m / kPa0 0 0 50 0 管段总损失 p / kPa11. 00 1. 69 5. 12 51. 57 5. 10 最不利环路的总阻力损失为 74. 48/ kPa 2- 5104. 196DN400. 88307. 28. 4387. 105056. 32管段 2 - 5与管段 2 - 3 - 4 - 5并联 ,不平衡率为 x = p 2 - 3 - 4 - 5 -p 2 - 5p 2 - 3 - 4 - 5=58 . 38 - 56. 3258 . 38= 3. 53 % < 15 % ,满足要求.某建筑建筑面积为 4 000 m 2 ,选用冷水机组一台 ,制冷量为 455 KW.冷凝器侧水阻力为4. 9×104 Pa ,进、冷凝器的水温分别为32℃和37℃,水处理器的阻力为2. 0×104 Pa ,冷却水管总长 48 m ,冷却塔盛水池到喷嘴的高差为 2. 5 m ,确定各管段的管径和水泵的选择参数.冷却水循环管路 ,由于管径没有沿程变化 ,认为是一个计算管段 ,则计算管段的冷却水流量为Φ 1. 3×455×103q m = = ( ) kg/ s= 28. 25 k g/ s = 1. 02×105 kg/ h = 102. 3 m 3/ h 根据冷却水流量 102. 3 m 3/ h ,查表 4 ,选用管道公称直径 DN150 mm ,管道水流速为4 q m 4×28. 25v = = ( ) m/ s= 1. 61 m/ s查表 1得比摩阻 R = 187. 43 Pa/ m ,管道长度为 48 m ,沿程压力损失为p y = Rl = (187. 43×48) Pa = 9. 0×103 Pa 弯头、回阀、阀等管件等的局部阻力系数总和∑ζ = 12. 46 ,总局部阻力为ρv 2 2= (12. 46× ) Pa2= 1. 61×104 Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失 ,为p m = (4. 9×104 + 2×104) Pa= 6. 9×104 Pa冷却塔喷雾所需压力p 0 = 4. 9×104 Pa 冷却水提升高度为 2. 5m ,所需的提升压力为p h = 2. 5 m ×9 807 N/ m 3 = 2. 45×104 Pa 故冷却水泵的扬程为p =∑(py +p j +p m ) +p 0 +ph = (9. 0×103 + 1. 61×104 + 6. 9×104) Pa+ 4. 9×104 Pa + 2. 45×104 Pa = 16. 76×104 Pa = 17. 1 mH 2O选用水泵,流量和扬程皆考虑10 %的余量;则选用水泵的参数为流量1. 1×102. 3 m 3/ h = 112. 5 m 3/ h ,扬程1. 1×17. 1 m = 18.81 mH 2O.参考文献 :社 ,2003出版社 ,1993第3期许淑惠罗文斌:空调冷冻水和冷却水循环系统水力计算简便方法7Simple Hydraulic Calculation of the Air Conditioning Chilled Waterand Cooling Water SystemsXu Shuhui Luo Wenbin(Dept . of Urban Construction Engineering , Beijing100044) Abstract : :Base on the theory of hydrodynamic calculation of air conditioning water systems , the ratio frictional resistance locity. The table makes the calculation quick , accurate and convenient . The application of the table is illustrated by practical examples.Key words :chilled water ; cooling water ; hydrauliccalculation。
空调水系统管道冷量、流量及管径计算方法和选取表

空调水系统管道冷量、流量及管径计算方法和选取表经过计算,冷冻水及冷却水管道所需的水量可以用公式R=Q×A×K×860÷△T=Q×197.8=?Kg/h来计算。
其中,R表示所需冷(热)水量,Q表示所需冷量(热量)Kw,△T表示进回水温差,一般取5℃,A表示空调设计使用系数,K表示安全系数,一般取1.1~1.2.根据计算结果,可以制作出冷冻水管径流量选取表。
表中列出了不同管径的流速、流量和冷量,方便用户根据需要进行选择。
例如,DN20管径的流速在0.5~0.6之间,流量在0.64~0.77之间,冷量在3.24~3.89之间。
DN25管径的流速在0.6~0.7之间,流量在1.26~1.48之间,冷量在6.37-7.48之间。
DN65管径的流速在1.1~1.4之间,流量在14.42~18.36之间,冷量在73-93之间。
DN80管径的流速在1.2~1.6之间,流量在22.21~29.61之间,冷量在112-150之间。
DN200管径的流速在1.8~2.5之间,流量在214.09~297.35之间,冷量在1082-1503之间。
DN250管径的流速在1.8~2.6之间,流量在338.77~489.33之间,冷量在1712-2519之间。
DN300管径的流速在1.9~2.9之间,流量在504.34~769.78之间,冷量在2550-3891之间。
DN350管径的流速在1.6~2.5之间,流量在515.61~805.63之间,冷量在2606-4073之间。
DN400管径的流速在1.8~2.6之间,流量在766.57~1107.27之间,冷量在3875-5598之间。
DN100管径的流速在1.3~1.8之间,流量在41.53~57.51之间,冷量在210-290之间。
DN125管径的流速在1.5~2.0之间,流量在73.56~98.08之间,冷量在371-496之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮安嘉可自动化仪表有限公司
超声波流量计与空调冷冻水的计量
空调用的冷冻水,水温等级一般为5~6℃,冷媒体为淡水。
低于5℃的供冷,则用盐水或其它冷媒体。
淡水冷冻水的冷量计量方法多采用基于质量流量的方法,暂时还不能采用基于体积流量的方法是因为热系数表中流体温度尚未覆盖冷冻水温度。
近年来随着科学技术的迅速发展,超声波流量计由于体积小、测量范围大、安装维护简单、零压损等优点,广泛应用在各行各业。
超声波流量计是通过超声波在流动流体中的传播,承载流体流速信息,将信号进行处理,转换成流量信息。
超声波流量计从原理分有多普勒法和时差法,时差式超声波流量计是目前应用最广泛的,气体的流速与声速无关,只与超声波的声程长度、流体流动方向与超声波传播方向的夹角和超声波在气体中传播的时间有关。
超声波流量计有很高的计量精度。
有些测量对象一年四季没有机会停下来开口装表,这时只能用加装式超声波流量计测量冷冻水的流量。
空调系统中的冷冻水由于较洁净,应选用时差法超声波流量计,经合理安装调试能达到1%~3%的精确度。
超声波流量计的传感器防护等级有高有低,用来测量冷冻水流量的传感器,由于传感器连同电缆插头都有可能被包在保温层里面,所以电缆插头处结露在所难免,解决方法是选用IP68(潜水型)防护等级。