天线的电气特性详解及手持设备天线选用原则

合集下载

调频广播发射机的天线特性与天线阵列设计

调频广播发射机的天线特性与天线阵列设计

调频广播发射机的天线特性与天线阵列设计调频广播发射机是广播电台中最重要的设备之一,它的天线特性和天线阵列的设计对广播信号的传输质量和覆盖范围有着重要的影响。

在本文中,我们将会探讨调频广播发射机的天线特性以及天线阵列的设计原理和方法。

一、调频广播发射机的天线特性1. 频率特性:调频广播发射机的天线需要具备良好的频率特性,即能够在整个广播频率范围内保持较为稳定的增益和辐射特性。

为了实现这一点,天线的设计需要考虑到不同频率下的匹配问题,并采用合适的调谐技术来实现。

2. 电气特性:天线的电气特性包括阻抗匹配、驻波比、谐振频率等。

阻抗匹配是指天线输入阻抗与发射机输出阻抗之间的匹配程度,如果阻抗不匹配会导致信号反射和功率损失。

驻波比表示天线输入端的驻波情况,对于调频广播发射机来说,驻波比应该尽可能小,以减小信号反射和能量损失。

谐振频率是天线能够以最大功率向空间辐射的频率,需要与发射机的输出频率相匹配。

3. 辐射特性:调频广播发射机的天线需要具备较为均匀的辐射特性,即在水平和垂直方向上都能够实现比较均匀的辐射。

这样可以保证广播信号的覆盖范围更广,听众在不同地点都能够接收到清晰的信号。

二、天线阵列的设计天线阵列是由多个天线组成的系统,可以通过控制不同天线的相位和振幅来实现对信号的调制和辐射。

天线阵列能够通过束化效应来实现信号的定向传输和增强覆盖范围。

1. 阵列设计原理:天线阵列的设计原理是基于波束成形技术。

通过控制多个天线的相位和振幅,可以使得辐射波束的主瓣方向指向特定的区域,从而增强该区域的信号强度。

在调频广播发射机中,天线阵列设计的主要目标是增强信号的覆盖范围,并避免信号的干扰。

2. 阵元间距:天线阵列中的天线阵元之间的距离对于波束成形效果起着重要的影响。

较小的阵元间距可以实现更强的方向性,但也会带来较大的空间频率。

因此,在设计天线阵列时需要综合考虑空间频率和波束宽度之间的平衡。

3. 相位控制:通过控制每个天线的相位,可以形成具有特定方向的波束。

_华为-天线原理及选型

_华为-天线原理及选型

HUAWEI TECHNOLOGIES CO., LTD.Internal HUAWEI Confidentiall学习完此课程,您将会:[掌握天线的作用、基本原理、常见分类、主要技术指标,从而指导如何进行典型场景下的天线选型。

1.1天线的作用1.2天线工作原理1.3天线工作带宽1.4天线极化1.1天线作用l把从导线上传下来的电信号做为无线电波发射到空间l收集无线电波并产生电信号天线的位置和作用基站天馈系统示意图1.2天线工作原理1.3天线工作带宽1.4天线极化1.2天线工作原理l导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关;l当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。

通常将上述能产生显著辐射的直导线称为振子。

1.2天线工作原理l 两臂长度相等的振子叫做对称振子l 每臂长度为四分之一波长,称为半波振子l 全长与波长相等的振子,称为全波对称振子l 将振子折合起来的,称为折合振子1.2天线工作原理1.2天线工作原理1.3天线工作带宽1.4天线极化1.3天线工作带宽l无论是发射天线还是接收天线,它们总是在一定的频率范围内工作的。

通常,工作在中心频率时天线所能输送的功率最大,偏离中心频率时它所输送的功率都将减小,据此可定义天线的频率带宽。

l天线工作带宽有几种不同的定义:[一种是指天线增益下降3dB时的频带宽度;[一种是指在规定的驻波比下天线的工作频带宽度;l在移动通信系统中天线工作带宽是按后一种定义的。

具体的说,就是当天线的输入驻波比≤1.5时,天线的工作带宽。

1.2天线工作原理1.3天线工作带宽1.4天线极化1.4天线极化l天线的极化方向:天线辐射的电磁场的电场方向垂直极化水平极化+ 45度倾斜的极化- 45度倾斜的极化双极化天线l两个天线为一个整体l传输两个独立的波V/H (垂直/水平)倾斜 (+/- 45°)极化损失l当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失,例如:当用圆极化天线接收任一线极化波,或用线极化天线接收任一圆极化波时,都要产生3dB的极化损失,即只能接收到来波的一半能量;l当接收天线的极化方向与来波的极化方向完全正交时,接收天线也就完全接收不到来波的能量,这时称来波与接收天线极化是隔离的。

天线参数及选择

天线参数及选择

一、天线的几个重要参数1.天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用哪一个纯出于习惯。

在我们日常维护中,用得较多的是驻波比和回波损耗。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

2.天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。

天线的几种重要电气指标

天线的几种重要电气指标

天线的几种重要电气指标天线是无线通信系统中的重要组成部分,它负责将电信号转化为电磁波进行传输,同时也将接收到的电磁波转化为电信号进行处理。

在天线的设计与使用中,有几个重要的电气指标需要考虑和关注,包括增益、方向性、带宽和驻波比。

一、增益天线的增益是指天线在某一特定方向上将输入信号辐射出去的能力,也可以理解为天线信号输出功率与输入功率的比值。

增益通常用分贝(dB)来表示,分贝数值越大表示天线的增益越高。

增益的大小直接影响到天线的传输距离和覆盖范围,一般情况下,增益越高的天线传输距离越远。

二、方向性天线的方向性是指天线在某一特定方向上接收或辐射信号的能力。

方向性通常用指向性系数(dBi)来表示,指向性系数越大表示天线在特定方向上的能力越强。

方向性天线适用于需要有选择性地接收或辐射信号的场景,可以有效减少干扰和提高信号强度。

三、带宽天线的带宽是指天线在频率上能够工作的范围。

带宽的大小决定了天线能够接收和辐射的信号频率范围。

带宽越宽,天线能够适应的信号种类越多。

在实际应用中,常常需要根据具体的通信需求选择合适的天线带宽。

四、驻波比天线的驻波比是指天线输入端与输出端之间的驻波比,它反映了天线的匹配性能。

驻波比的大小表示天线输入端与输出端之间的匹配程度,驻波比越小表示天线的匹配性能越好。

当驻波比过大时,会导致信号的反射和损耗,降低通信质量。

除了以上几个重要的电气指标外,天线的极化、阻抗、工作频率等也是设计和选择天线时需要考虑的因素。

不同的应用场景和通信要求需要不同类型和性能的天线,因此在实际应用中,需要根据具体的情况选择合适的天线。

总结一下,天线的增益、方向性、带宽和驻波比是天线的重要电气指标,它们直接影响着天线的性能和适用场景。

在设计和选择天线时,需要综合考虑这些指标,以满足具体的通信需求。

同时,还需要注意天线的极化、阻抗、工作频率等因素,以确保天线在通信系统中的正常运行和良好的性能。

最全的天线知识---带你了解天线的特性..

最全的天线知识---带你了解天线的特性..

带你了解天线的特性今天给大家介绍一下天线方面的基本知识,使大家对天线有初步的了解。

下面先来了解几个概念。

共振:任何天线都谐振在一定的频率上,我们要接收哪个频率的信号,就希望天线谐振在那个频率上。

天线谐振是对天线最基本的要求,要不然,就没那么多讲究了,随便扔根线出去不也是天线嘛。

天线的谐振问题涉及到的主要数据是波长及其四分之一。

计算波长的公式很简单,300/f。

其中f的单位是MHz,而得到的结果的单位是米。

1/4波长是称作基本振子,如偶极天线是一对基本振子,垂直天线是一根基本振子。

不过天线中的振子的长度并不正好是1/4波长,因为电波在导线中行进的速度与在真空中的不同,一般都要短一些,所以有一个缩短因子。

这个因子取决于材料。

带宽:这也是一个重要但容易被忽略的问题。

天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。

这个范围就是带宽。

我们当然希望一付天线的带宽能覆盖一定的范围,最好是我们所收听的整个FM广播波段。

要不然换个台还要换天线或者调天线也太麻烦了。

天线的带宽和天线的型式、结构、材料都有关系。

一般来说,振子所用管、线越粗,带宽越宽;天线增益越高,带宽越窄。

阻抗:天线可以看做是一个谐振回路。

一个谐振回路当然有其阻抗。

我们对阻抗的要求就是匹配:和天线相连的电路必须有与天线一样的阻抗。

和天线相连的是馈线,馈线的阻抗是确定的,所以我们希望天线的阻抗和馈线一样。

一般生产的馈线,主要是300欧姆、75欧姆和50欧姆三种阻抗,国外过去还有450欧姆和600欧姆阻抗的馈线。

基本偶极天线的阻抗是75欧姆左右,V型偶极天线是50欧姆左右,基本垂直天线阻抗 50欧姆。

其他天线一般阻抗都不是50或75欧姆,那么在把它们与馈线连接之前,需要有一定的手段来做阻抗变换。

平衡:对称的天线是平衡的,如偶极天线、八木天线,而同轴电缆是不平衡的,把这两者连接起来,就需要解决平衡不平衡转换的问题。

简单介绍天线的选择方法

简单介绍天线的选择方法

简单介绍天线的选择方法近年来,随着无线通信产业的发展,天线选择越来越成为工程师们必须关注的问题之一。

一般来说,天线选择的目标是提高信号质量。

在选择天线时,有许多因素需要考虑。

下面就针对这些因素逐一介绍。

首先,天线的频率响应必须与信号频率匹配。

天线的固有频率必须与通信系统的频率相近,否则将会丧失信号强度和数据传输速率。

此外,还需要考虑天线的增益和方向性,以确保信号能够传播到所需的范围和方向。

其次,天线的形状和大小也影响性能。

天线大小越大,性能相对于天线质量更优。

例如,大型天线可能拥有更高的增益和方向性,从而使得信号能够传播到更远的距离并改善信号质量。

第三,天线材料是关键因素之一。

天线的材质决定了天线的性能和成本。

通常,天线材料应具有轻量化、耐久性和便于加工等特点。

天线的材料可以是金属、塑料、陶瓷等等,选择不同材料类型应考虑具体应用场景。

第四,环境因素需要考虑。

天线的性能还取决于周围环境条件。

例如,考虑信号穿透或反射的性质。

这意味着,天线的方向性和天线的形状必须适应周围的建筑物和地形等。

最后,需要考虑芯片级别的设计特性。

与天线相关的特征包括射频接口和芯片设计。

天线芯片的设计必须符合技术规格,以保证最佳性能,例如稳定性、抗干扰、高吞吐量和功率渐进性等方面。

此外,天线的供应链管理和可靠性测试也很重要。

总的来说,选择天线时,需要考虑信号频率、增益、方向性、形状、大小、材料、环境、射频接口和芯片设计等因素。

综合考虑上述因素,确定适合于具体应用场景的天线方案,以达到优化信号质量的目的。

基站天线选型

基站天线选型

基站天线选型基站天线选型⼀.天线概念在⽆线通信系统中,天线是收发信机与外界传播介质之间的接⼝。

同⼀副天线既可以辐射⼜可以接收⽆线电波:发射时,把⾼频电流转换为电磁波;接收时把电磁波转换为⾼频电流。

在选择基站天线时,需要考虑其电⽓和机械性能。

电⽓性能主要包括:⼯作频段、增益、极化⽅式、波瓣宽度、预置倾⾓、下倾⽅式、下倾⾓调整范围、前后抑制⽐、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。

机械性能主要包括:尺⼨、重量、天线输⼊接⼝、风载荷等。

基站所⽤天线类型按辐射⽅向来分主要有:全向天线、定向天线。

按极化⽅式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。

上述两种极化⽅式都为线极化⽅式。

圆极化和椭圆极化天线⼀般不采⽤。

按外形来区分主要有:鞭状天线、平板天线、帽形天线等。

在继续论述天线相关理论之前必须⾸先介绍各向同性(Isotropic)天线。

各向同性天线是⼀种理论模型,实际中并不存在,它把天线假设为⼀个辐射点源,能量以该点为中⼼以电磁场的形式向四周均匀辐射,为⼀球⾯波。

另外全向天线并不是没有⽅向性,它只是在⽔平⽅向为全向,但在垂直⽅向是有⽅向性的。

它与各向同性天线是两个不同的概念。

半波振⼦是基站主⽤天线的基本单元,半波振⼦的优点是能量转换效率⾼。

1.天线增益天线作为⼀种⽆源器件,其增益的概念与⼀般功率放⼤器增益的概念不同。

功率放⼤器具有能量放⼤作⽤,但天线本⾝并没有增加所辐射信号的能量,它只是通过天线振⼦的组合并改变其馈电⽅式把能量集中到某⼀⽅向。

增益是天线的重要指标之⼀,它表⽰天线在某⼀⽅向能量集中的能⼒。

表⽰天线增益的单位通常有两个:dBi、dBd。

两者之间的关系为:dBi=dBd+2.17dBi定义为实际的⽅向性天线(包括全向天线)相对于各向同性天线能量集中的相对能⼒,“i”即表⽰各向同性——Isotropic。

dBd定义为实际的⽅向性天线(包括全向天线)相对于半波振⼦天线能量集中的相对能⼒,“d”即表⽰偶极⼦——Dipole。

浅谈八木天线的特点、原理与制作调整

浅谈八木天线的特点、原理与制作调整

作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。

作为一款经典的定向天线,八木天线在、以及波段应用十分广泛,它全称为“八木/宇田天线”,英文名,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。

相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。

通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图所示。

主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ整数倍的导线呈电感性,长度略短于λ整数倍的导线呈电容性。

由于主振子采用长约λ的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器比主振子略长,呈现感性,假设两者间距为λ,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子并产生感应电动势ε和感应电流,再经λ的距离后电磁波方到达反射器,产生感应电动势ε和感应电流,因空间上相差λ的路程,故ε比ε滞后°,又因反射器呈感性比ε滞后°,所以比ε滞后°,反射器感应电流产生辐射到达主振子形成的磁场又比滞后°,根据电磁感应定律在主振子上产生的感应电动势ε比滞后°,也就是ε比ε滞后°,即反射器在主振子产生的感应电动势ε与电磁信号源直接产生的感应电动势ε是同相的,天线输出电压为两者之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线的电气特性详解及手持设备天线选用原则
 天线是影响所有无线通信系统可靠性和性能的众多因素中很关键的一个。

选择能完全满足系统性能指标的天线是非常重要的。

 然而,现今的小型手持设备也给天线设计工程师带来了挑战,天线要尽量薄、结构要紧凑、性能要高,而且还要满足各种各样的技术标准。

面市时间
和成本也是制造商要考虑的两个重要因素。

 为系统选择最好的天线的两个主要条件是天线的电气和机械特性。

这些指标受设备的设计和机械结构所限制。

 基本的电气特性
 应该考虑的基本电气特性是天线的工作频率、带宽、最大增益、平均增益、效率、回波损耗,或者电压驻波比(VSWR),以及极化方向、指向性、副瓣和后瓣辐射强度、前后比、相位方向图、阻抗和额定功率。

天线的构成材料和
实际的射频RF设计也决定了天线的最终电气性能。

天线的构成材料应该有
很低的损耗和很好的传导率。

相关文档
最新文档