专题10 立体几何(重难点突破)学生版
立体几何大题综合(学生版)--2024届新高考数学题型满分突破

立体几何大题综合冲刺秘籍1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行2.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面3.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)4.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).5.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).6.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).冲刺训练一、解答题1(2023·广东梅州·统考三模)如图所示,在几何体PABCD 中,AD ⊥平面PAB ,点C 在平面PAB 的投影在线段PB 上BC <PC ,BP =6,AB =AP =23,DC =2,CD ∥平面PAB .(1)证明:平面PCD ⊥平面PAD .(2)若二面角B -CD -P 的余弦值为-714,求线段AD 的长.2(2023·浙江·校联考模拟预测)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,侧面PAD是边长为2的正三角形,平面PAD⊥平面ABCD,AB⊥PD.(1)求证:平行四边形ABCD为矩形;(2)若E为侧棱PD的中点,且平面ACE与平面ABP所成角的余弦值为64,求点B到平面ACE的距离.3(2023·福建福州·福建省福州第一中学校考二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.4(2023·江苏扬州·统考模拟预测)如图,平行六面体ABCD-A1B1C1D1的体积为6,截面ACC1 A1的面积为6.(1)求点B到平面ACC1A1的距离;(2)若AB=AD=2,∠BAD=60°,AA1=6,求直线BD1与平面CC1D1D所成角的正弦值.5(2023·浙江温州·乐清市知临中学校考二模)在三棱锥O-ABC中,AB=BC=OB=2,∠ABC=120°,平面BCO⊥平面ABC,且OB⊥AB.(1)证明:OB⊥AC;(2)若F是直线OC上的一个动点,求直线AF与平面ABC所成的角的正切值最大值.6(2023·福建宁德·校考模拟预测)图1是由直角梯形ABCD和以CD为直径的半圆组成的平面图形,AD∥BC,AD⊥AB,AD=AB=12BC=1.E是半圆上的一个动点,当△CDE周长最大时,将半圆沿着CD折起,使平面PCD⊥平面ABCD,此时的点E到达点P的位置,如图2.(1)求证:BD⊥PD;(2)求平面PAB和平面PCD夹角的余弦值.7(2023·福建福州·福州四中校考模拟预测)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC =2,且BC=CC1=1,点D在线段BC1(含端点)上运动,设λ=BDBC1.(1)当AB⎳平面A1CD时,求实数λ的值;(2)当平面A1CD⊥平面A1C1D时,求平面A1CD与平面ABB1A1的夹角的正弦值.8(2023·福建三明·统考三模)如图,平面五边形ABCDE由等边三角形ADE与直角梯形ABCD 组成,其中AD∥BC,AD⊥DC,AD=2BC=2,CD=3,将△ADE沿AD折起,使点E到达点M 的位置,且BM=a.(1)当a=6时,证明AD⊥BM并求四棱锥M-ABCD的体积;(2)已知点P为棱CM上靠近点C的三等分点,当a=3时,求平面PBD与平面ABCD夹角的余弦值.9(2023·河北·统考模拟预测)在圆柱O 1O 2中,等腰梯形ABCD 为底面圆O 1的内接四边形,且AD =DC =BC =1,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,CG =1.(1)求证:平面O 1CG ∥平面ADE ;(2)设DP =λDE ,λ∈0,1 ,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值为10535.10(2023·河北衡水·衡水市第二中学校考三模)如图,在四棱锥P -ABCD 中,AB ∥CD ,CP ⊥CD ,CD =2AB =2,AP =AC =AD .(1)证明:平面PBC ⊥平面PCD ;(2)已知CP =2BC =2,DQ =λDP ,λ∈0,1 .若平面ABP 与平面ACQ 夹角的余弦值为36,求λ的值.11(2023·河北·校联考三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.12(2023·河北沧州·校考模拟预测)如图,在斜三棱柱ABC-A1B1C1中,AA1=AB,AB1⊥A1C,AB1的中点为O,BC的中点为D.(1)证明:OD∥平面ACC1A1;(2)若∠ACB=90°,AB1=B1C,AC=2BC=4,求平面ACC1A1与平面ABC所成角的大小.13(2023·山东济南·校考模拟预测)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF =60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.14(2023·山东·山东师范大学附中校考模拟预测)矩形ABCD所在平面与等腰梯形ACEF所在平面互相垂直,EF⎳AC,EF=12AC,直线AF与平面ABCD所成角为60°,EF=AB=2.(1)求平面BDE与平面ABCD夹角的余弦值;(2)线段AF上任意一点到平面BDE的距离是否为定值?如果是,则求出定值,否则说明理由.15(2023·山东菏泽·山东省鄄城县第一中学校考三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.16(2023·湖北武汉·统考模拟预测)已知图1是由等腰直角三角形ABE和菱形BCDE组成的一个平面图形,其中菱形边长为4,∠A=90°,∠D=60°.将三角形ABE沿BE折起,使得平面A1BE⊥平面BCDE(如图2).(1)求证:A1C⊥CD;(2)求二面角B-A1C-D的正弦值.17(2023·广东佛山·统考模拟预测)如图1,菱形ABCD的边长为23,∠ABC=π3,将△ABD沿BD向上翻折,得到如图2所示得三棱锥A -BCD.(1)证明:A C⊥BD;(2)若A C=3,在线段BD上是否存在点G,使得平面A CG与平面BCD所成角的余弦值为217若存在,求出BG;若不存在,请说明理由.18(2023·广东佛山·校考模拟预测)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,AB=4,PA=PD,E,F分别为BC,PD的中点.(1)求证:EF⎳平面PAB;(2)若PD⊥EF,求二面角F-BE-A的余弦值.19(2023·广东深圳·统考二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.20(2023·江苏徐州·校考模拟预测)在三棱台ABC-DEF中,G为AC中点,AC=2DF,AB⊥BC,BC⊥CF.(1)求证:BC⊥平面DEG;(2)若AB=BC=2,CF⊥AB,平面EFG与平面ACFD所成二面角大小为π3,求三棱锥E-DFG 的体积.21(2023·重庆·二模)如图,在圆台OO1中,A1B1,AB分别为上、下底面直径,且A1B1⎳AB,AB= 2A1B1,CC1为异于AA1,BB1的一条母线.(1)若M为AC的中点,证明:C1M⎳平面ABB1A1;(2)若OO1=3,AB=4,∠ABC=30°,求二面角A-C1C-O的正弦值.22(2023·广东汕头·金山中学校考模拟预测)如图,在三棱台ABC-A1B1C1中,面AA1C1C⊥面ABC,∠ACA1=∠ACB=45°,A1C=2BC=4(1)证明:B1C1⊥A1B;(2)若棱台的体积为79221,AC=728A1C,求二面角A1-BC-B1的余弦值.23(2023·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体ABCD-A1B1C1D1中,点P在对角线BD1上,AC∩BD=O,平面ACP∥平面A1C1D.(1)求证:O,P,B1三点共线;=3,求二面角P-AB (2)若四边形ABCD是边长为2的菱形,∠BAD=∠BAA1=∠DAA1=π3,AA1-C大小的余弦值.24(2023·湖北·统考二模)如图,在三棱柱ABC -A 1B 1C 1中,AC =2,AB =1,E ,F 分别为A 1C ,BB 1的中点,且EF ⊥平面AA 1C 1C .(1)求棱BC 的长度;(2)若BB 1⊥A 1B 1,且△A 1FC 的面积S △A 1FC =22,求二面角B 1-A 1F -C 的正弦值.25(2023·山东菏泽·统考二模)如图,在四棱锥P -ABCD 中,平面PDC ⊥平面ABCD ,PD =PC =22,CB =BA =12AD =2,AD ∥CB ,∠BAD =90°,E 为PD 中点.(1)求证:CE ∥面PAB ;(2)点Q 在棱PA 上,设PQ =λPA (0<λ<1),若二面角P -CD -Q 余弦值为1313,求λ.26(2023·江苏·统考三模)如图,三棱锥P-ABC的底面为等腰直角三角形,∠ABC=90°,AB= 2.D,E分别为AC,BC的中点,PD⊥平面ABC,点M在线段PE上.(1)再从条件①、②、③、④四个条件中选择两个作为已知,使得平面MBD⊥平面PBC,并给予证明;(2)在(1)的条件下,求直线BP与平面MBD所成的角的正弦值.条件①:PD=2;条件②:∠PED=60°;条件③:PM=3ME:条件④:PE=3ME.27(2023·安徽黄山·屯溪一中校考模拟预测)如图所示,在平行四边形ABCD中,AB=2BC=DE,若F为线段A C的中点.83,∠DAB=π3,E为边AB的中点,将△ADE沿直线DE翻折为△A在△ADE翻折过程中,(1)求证:BF⎳平面A DE;(2)若二面角A -DE-C=60°,求A C与面A ED所成角的正弦值.28(2023·湖南·校联考模拟预测)如图,四棱锥P -ABCD 内,PB ⊥平面ABCD ,四边形ABCD 为正方形,AB =2,BP =23.过P 的直线l 交平面ABCD 于正方形ABCD 内的点M ,且满足平面PAM ⊥平面PBM .(1)当∠ABM ∈π6,3π8 时,求点M 的轨迹长度;(2)当二面角M -PA -B 的余弦值为45时,求二面角P -MA -D 的余弦值.29(2023·山东潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD 为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:直线PO⎳平面BDE;(2)求证:平面BED⊥平面ABD;(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.30(2023·浙江·校联考模拟预测)在三棱锥P-ABC中,AB=22,BC=1,AB⊥BC,直线PA与平面ABC所成角为π6,直线PB与平面ABC所成角为π3.(1)求三棱锥体积的取值范围;(2)当直线PC与平面ABC所成角最小时,求二面角P-AB-C的平面角的余弦值.31。
专题10:立体几何中的体积问题(解析版)

专题10:立体几何中的体积问题(解析版)⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上 球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
1.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.【答案】(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算∆BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ⊂平面ABC ,∴1CC AC ⊥,∵在ABC ∆中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=︒,∴AC BC ⊥,∵1CC ⊂平面11CC B B ,CB ⊂平面11CC B B ,1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ⊂平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点, ∴111343222BCD ABC S S ∆∆==⨯⨯⨯=, ∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -∆=⋅=⨯⨯=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.2.如图所示:在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为,AB VA 的中点.(1)求证:平面MOC ⊥平面VAB ;(2)求三棱锥V ABC -的体积.【答案】(1)详见解答;(23. 【分析】(1)由已知可得OC AB ⊥,再由面面垂直定理可得OC ⊥平面VAB ,即可证明结论; (2)OC ⊥平面VAB ,用等体积法求三棱锥V ABC -的体积.【详解】(1),AC BC O =为AB 中点,OC AB ∴⊥,平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,OC ⊂平面ABC ,OC ∴⊥平面,VAB OC ∴⊂平面MOC ,平面MOC ⊥平面VAB ;(2)AC BC ⊥且2AC BC ==,O 分别为AB 的中点,11,2,2332VAB OC AB S ∆∴===⨯⨯=, OC ⊥平面VAB ,133V ABC C VAB VAB V V OC S --∆==⨯⨯=, 3V ABC V -∴=. 【点睛】本题考查面面垂直证明,注意空间垂直间的相互转化,考查椎体体积,意在考查直观想象、逻辑推理能力,属于基础题.3.如图所示,四棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M ,VM 是四棱锥的高.若4VM cm =,4cm AB =,5VC cm =,求四棱锥的体积.【答案】35(cm )3. 【分析】在Rt VMC ∆中求出3(cm),MC =在Rt ABC ∆中求出25(cm)BC =,再根据棱锥的体积公式可得结果.【详解】 VM 是棱锥的高,VM MC ∴⊥.在Rt VMC ∆中,2222543(cm),MC VC VM =-=-=.26cm AC MC ∴==,在Rt ABC ∆中,22226425(cm)BC AC AB =-=-=.242585(cm )S AB BC ∴=⨯=⨯=底,3 11325854(cm )333V S VM ∴=⋅=⨯⨯=四棱锥底. 【点睛】本题考查了求三棱锥的体积,属于基础题.4.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线PB 与平面ABCD 所成的角为45,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(243 【分析】 (1)通过AC ⊥BD 与PD ⊥AC 可得AC ⊥平面PBD ;(2)由题先得出∠PBD 是直线PB 与平面ABCD 所成的角,即∠PBD =45°,则可先求出菱形ABCD 的面积,进而可得四棱锥P - ABCD 的体积.【详解】解:(1)因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC ,又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角,于是∠PBD =45°,因此BD =PD =2.又AB = AD =2,所以菱形ABCD 的面积为sin 6023S AB AD ︒=⋅⋅=,故四棱锥P - ABCD 的体积1433V S PD =⋅=. 【点睛】本题主要考查空间线、面关系等基础知识,同时考查空间想象能力、推理论证能力以及运算求解能力,是基础题.5.如图,在边长为2的菱形ABCD 中,60ADC ∠=︒,现将ADC 沿AC 边折到APC △的位置.(1)求证:PB AC ⊥;(2)求三棱锥P ABC -体积的最大值.【答案】(1)见解析;(2)1【分析】(1)取AC 的中点为O ,连接PO OB 、,由线面垂直的判定定理即可证出.(2)由体积相等转化为P ABC ΔPOB 1V AC S 3-=⋅即可求出. 【详解】(1)如图所示,取AC 的中点为O ,连接PO OB 、,易得AC PO AC OB ⊥⊥,,PO OB O = AC POB ∴⊥平面,又PB ⊆ 面POB AC PB ∴⊥(2)由(1)知AC POB 260? AC 2PO OB ABCD ADC ⊥∠=︒===平面,且在边长为的菱形中,,所以,3 ,P ABC A POB C POB V V V ---=+体积转化为 ΔPOB 1AC S 3=⋅ =11233sin sin 32POB POB ⨯⨯⨯⨯∠=∠ ,当POB 90∠=︒时,P ABC V -的最大值为1. 【点睛】本题考查了线面垂直的判定定理和等体积转化思想,属于基础题.6.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2)23【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案. (2)计算得到2AD =,22PE =,再利用体积公式计算得到答案. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD , 平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故2AD =,22PE =. 故122223P ABCD V -=⨯⨯⨯=. 【点睛】 本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 7.如图所示,在长方体ABCD A B C D ''''-中,求棱锥D A CD ''-的体积与长方体的体积之比.【答案】1:6【解析】【分析】棱锥D A CD ''-可以看成棱锥C A DD ''-,然后结合棱锥与棱柱的体积公式求解即可.【详解】解:已知的长方体可以看成直四棱柱ADD A BCC B '''-,设它的底面ADD A ''面积为S ,高为h ,则长方体的体积为ADD A BCC B V Sh '''-=.因为棱锥D A CD ''-可以看成棱锥C A DD ''-,且A DD ''的面积为12S ,棱锥C A DD ''-的高是h ,所以111326D A CD C A DD V V Sh Sh ''''--==⨯=. 因此所求体积之比为1:6.【点睛】本题考查了棱锥及棱柱的体积公式,重点考查了转换顶点求棱锥的体积,属基础题 8.如图,过圆柱的两条母线1AA 和1BB 的截面11A ABB 的面积为S ,母线1AA 的长为l ,11190AO B ︒∠=,求此圆柱的体积.【答案】22S l π. 【分析】 根据已知易得AOB 是等腰直角三角形,根据截面11A ABB 的面积为S 求出AB 长,进而求得底面圆面积再求体积即可。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
空间几何重难点及考点总结精练

立体几何重难点及考点一、 几何体结构与三视图直观图1、有关直观图问题例1、已知ABC D 的直观图'''A B C 是边长为a 的正三角形,则原ABC D 的面积的面积变式、已知正三角形ABC 的边长为a ,那么ABC D 的平面直观图'''A B C D 的面积为面积为例2、一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是的等腰梯形,则这个平面图形的面积是 。
2、三视图例1、用单位立方体搭一个几何体,使其主视图和俯视图如下图所示,则几何体体积的最小值与最大值分别为(别为( )15101610107139与、与、与、与、D C BA例2、已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如下图所示,则该几何体的体积是例3、某几何体的一条棱长为7,在该几何体的正视图中,在该几何体的正视图中,这条棱的投影是长为这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为(的最大值为( ) A. 22 B. 32C. 4 D. 523、有关截面问题例1、如图,在直棱柱111ABC A B C -中,AC=BC=2,90ACB Ð=°,E 、F 分别为AB 、CB 中点,过直线EF 作棱柱的截面,若截面与平面ABC 所成的二面角的大小为60°,则截面的面积为,则截面的面积为例2、用一个平面截正方体,对于截面的边界,有以下图形:(1)钝角A B C C ’B ’F A ’E C A D x y B 三角形(2)直角三角形(3)菱形(4)正五边形(5)正六边形,则不可能的图形的选项是)正六边形,则不可能的图形的选项是 例3、如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分。
2023年高考数学真题题源解密(全国卷)专题10 空间向量与立体几何(解析版)

2023年高考数学真题题源解密(全国卷)专题10空间向量与立体几何目录一览①2023真题展现考向一空间几何体的表面积和体积考向二三视图考向三点线面的位置关系考向四空间中的夹角问题②真题考查解读近年真题对比⑤名校模拟探源⑥易错易混速记考向一空间几何体的表面积和体积30ABO ∠,3,232OC AB BC解得332PC,于是2PO PC OC 所以圆锥的体积211πV OA PO ABC ∵ 是边长为2的等边三角形,,PE AB CE AB ,又PE AB 平面PEC ,又3232PE CE,PC因为底面ABCD 为正方形,AB 又3PC PD ,PO OP ,所以又3PC PD ,42AC BD ,所以在PAC △中,3,42,PC AC 则由余弦定理可得22PA AC PC 故17PA ,则17PB ,故在PBC 中,7,3,1P PB C 所以22cos 2PC BC PB PCB PC BC 又0πPCB ,所以sin PCB 所以PBC 的面积为12S PC BC 法二:连结,AC BD 交于O ,连结PO ,则因为底面ABCD 为正方形,AB 在PAC △中,3,45PC PCA 则由余弦定理可得22PA AC PC 所以22cos 2PA PC AC APC PA PC cos 17PA PC PA PC APC 不妨记,PB m BPD ,因为 1122PO PA PC PB PD 即2222PA PC PA PC PB PD 则 217923923m 又在PBD △中,22BD PB PD 两式相加得22340m ,故PB 故在PBC 中,7,3,1P PB C 所以22cos 2PC BC PB PCB PC BC 又0πPCB ,所以sin PCB 所以PBC 的面积为12S PC BC二、填空题4.(2023·全国甲卷文数第16题)与球O 的球面有公共点,则球O 【答案】[22,23]【详解】设球的半径为R .分别取侧棱111,,,AA BB CC DD MNGH 的对角线交点,连接MG ,则42MG ,当球的一个大圆恰好是四边形小值为22.综上,[2R 三、解答题(1)求证:EF //平面ADO ;(2)若120POF ,求三棱锥 P 【答案】(1)证明见解析(2)263【详解】(1)连接,DE OF ,设AF6.(2023·全国甲卷文数第18题)(1)证明:平面11ACC A 平面(2)设11,2AB A B AA ,求四棱锥【答案】(1)证明见解析.(2)1【详解】(1)证明:因为A 过点1A 作11A O CC ,垂足为因为平面11ACC A 平面BCC 所以1A O 平面11BCC B ,所以四棱锥111A BB C C 的高为因为1A C 平面ABC ,,ACA .24B .26【答案】D【详解】如图所示,在长方体ABCD 点,,,H I J K 为所在棱上靠近点1,B C 则三视图所对应的几何体为长方体该几何体的表面积和原来的长方体的表面积相比少其表面积为: 222考向三点线面的位置关系显然,,CE DE E CE DE 因此平面CDE 平面ABC 直线CD 平面CDE ,则直线从而DCE 为直线CD 与平面222CD CE DE CE3.(2023·全国甲卷理数第直径的球的球面与该正方体的棱共有【答案】12【详解】不妨设正方体棱长为,,,,FG EG OM ON MN,如图,由题意可知,O为球心,在正方体中,R ,即2CC的距离为OM则球心O到1CC相切,球面与棱所以球O与棱1同理,根据正方体的对称性知,其余各棱和球面也只有所以以EF为直径的球面与正方体每条棱的交点总数为考向四空间中的夹角问题(1)证明://EF平面ADO;(2)证明:平面ADO 平面BEF(3)求二面角D AO C的正弦值【答案】(1)证明见解析;(2)证明见解析;(3)2.于是1//,,/2DE AB DE AB OF//,EF DO EF DO,又EF 所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O作//OH BF交由AO BF,得HO AO,且FH 又由(2)知,OD AO,则DOH因为,D E分别为,PB PA的中点,因此即有11,33DG AD GE BE,又(1)证明:1A C AC ;(2)已知1AA 与1BB 的距离为2,求【答案】(1)证明见解析(2)1313【详解】(1)如图,1AC ∵底面ABC ,BC 面ABC 1A C BC ,又BC AC ,AC BC 平面ACC1A1,又BC【命题意图】1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.3.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.【考查要点】高频考点:面面角,垂直关系的证明;中频考点:体积、球及球的切接,线线角、线面角;低频考点:平行关系的证明。
立体几何突破合集(大题突破+内外接球突破)

球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者外表积等相关问题.通过这三种类型可以觉察,解决正方体与球的组合问题,常用工具是截面图,即依据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题。
其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径2球与锥体规则的锥体,如正四面体、正棱锥、特别的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者外表积等相关问题.正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系。
球与三条侧棱相互垂直的三棱锥组合问题,主要是表达在球为三棱锥的外接球.解决的根本方法是补形法,即把三棱柱补形成正方体或者长方体。
常见两种形式:一是三棱锥的三条棱相互垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心。
球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,依据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,故可采纳等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.2.4 球与特别的棱锥球与一些特别的棱锥进行组合,肯定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解。
例如,四面体都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置。
3球与球对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如精确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.4球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,到达明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.综合上面的四种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特别的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须精确.高考立体几何的热点题型〔1〕立体几何是高考的重要内容,每年根本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采纳“论证与计算〞相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探究性的存在问题等;〔2〕思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(依据空间位置关系利用向量转化为代数运算).热点一:空间点、线、面关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制真题,主要考查公理 4 及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.例题选讲点石成金1. 证明面面垂直,将“面面垂直〞问题转化为“线面垂直〞问题,再将“线面垂直〞问题转化为“线线垂直〞问题.2. 计算几何体的体积时,能直接用公式时,关键是确定几何体的高,假设不能直接用公式时,注意进行体积的转化。
立体几何(学生版)--2025新高考数学新题型

立体几何题型01 空间几何体的有关计算题型02 点线面位置关系、空间角及距离题型03 内切球、外接球问题题型04 空间向量题型01 空间几何体的有关计算1(2024·山西晋城·统考一模)若一个正n棱台的棱数大于15,且各棱的长度构成的集合为{2,3},则n 的最小值为,该棱台各棱的长度之和的最小值为.2(2024·浙江·校联考一模)已知圆台的上下底面半径分别是1,4,且侧面积为10π,则该圆台的母线长为.3(2024·安徽合肥·合肥一六八中学校考一模)球O的半径与圆锥M的底面半径相等,且它们的表面积也相等,则圆锥M的侧面展开图的圆心角大小为,球O的体积与圆锥M的体积的比值为.4(2024·湖南长沙·雅礼中学校考一模)已知圆锥的母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.5(2024·广东深圳·校考一模)已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为3的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为.6(2024·辽宁沈阳·统考一模)正方体的8个顶点分别在4个互相平行的平面内,每个平面内至少有一个顶点,且相邻两个平面间的距离为1,则该正方体的棱长为()A.2B.3C.2D.57(2024·云南曲靖·统考一模)为努力推进“绿美校园”建设,营造更加优美的校园环境,某校准备开展校园绿化活动.已知栽种某绿色植物的花盆可近似看成圆台,圆台两底面直径分别为18厘米,9厘米,母线长约为7.5厘米.现有2000个该种花盆,假定每一个花盆装满营养土,请问共需要营养土约为( )(参考数据:π≈3.14)A.1.702立方米B.1.780立方米C.1.730立方米D.1.822立方米8(2024·新疆乌鲁木齐·统考一模)某广场设置了一些石凳供大家休息,这些石凳是由棱长为40cm的正方体截去八个一样的四面体得到的,则()A.该几何体的顶点数为12B.该几何体的棱数为24C.该几何体的表面积为(4800+8003)cm 2D.该几何体外接球的表面积是原正方体内切球、外接球表面积的等差中项9(2024·山西晋城·统考一模)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4,C 1 E =3EC,平面ABE 将该正四棱柱分为上、下两部分,记上部分对应的几何体为Ω上,下部分对应的几何体为Ω下,则()A.Ω下的体积为2B.Ω上的体积为12C.Ω下的外接球的表面积为9πD.平面ABE 截该正四棱柱所得截面的面积为25题型02 点线面位置关系、空间角及距离10(2024·河北·校联考一模)已知直线l 、m 、n 与平面α、β,下列命题正确的是()A.若α⎳β,l ⊂α,n ⊂β,则l ⎳nB.若α⊥β,l ⊂α,则l ⊥βC.若l ⊥n ,m ⊥n ,则l ⎳mD.若l ⊥α,l ⎳β,则α⊥β11(2024·浙江·校联考一模)已知直线a ,b 和平面α,a ⊄α,b ∥α,则“a ∥b ”是“a ∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12(2024·广东深圳·校考一模)已知α,β是两个不同的平面,m ,n 是两条不同的直线,则下列说法正确的是()A.若m ⊥n ,m ⊥α,n ⊥β,则α⊥βB.若m ⎳n ,m ⎳α,n ⎳β,则α⎳βC.若m ⊥n ,m ⎳α,α⊥β,则n ⊥βD.若m ⎳n ,m ⊥α,α⊥β,则n ⎳β13(2024·吉林白山·统考一模)正八面体可由连接正方体每个面的中心构成,如图所示,在棱长为2的正八面体中,则有()A.直线AE与CF是异面直线B.平面ABF⊥平面ABEC.该几何体的体积为432 D.平面ABE与平面DCF间的距离为26314(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,∠BAD=120°,AC⊥BD,△BCD是等边三角形.(1)证明:平面PAD⊥平面PCD.(2)求二面角B-PC-D的正弦值.15(2024·辽宁沈阳·统考一模)如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,且BC=BD= BA,∠CBA=∠CBD=120°,点P在线段AC上,点Q在线段CD上.(1)求证:AD⊥BC;(2)若AC⊥平面BPQ,求BPBQ的值;(3)在(2)的条件下,求平面ABD与平面PBQ所成角的余弦值.16(2024·重庆·统考一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB= AP,AB⊥AD,AB+AD=6,CD=2,∠CDA=45°.(1)若E为PB的中点,求证:平面PBC⊥平面ADE;(2)若平面PAB与平面PCD所成的角的余弦值为66.(ⅰ)求线段AB的长;(ⅱ)设G为△PAD内(含边界)的一点,且GB=2GA,求满足条件的所有点G组成的轨迹的长度.17(2024·云南曲靖·统考一模)在图1的直角梯形ABCD中,∠A=∠D=90°,AB=BC=2,DC=3,点E是DC边上靠近于点D的三等分点,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1= 6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得二面角P-EB-C1的大小为45°?若存在,求出线段DP的长度,若不存在说明理由.18(2024·云南曲靖·统考一模)如图所示,正方体ABCD -A B C D 的棱长为1,E ,F 分别是棱AA ,CC 的中点,过直线EF 的平面分别与棱BB ,DD 交于点M ,N ,以下四个命题中正确的是()A.四边形EMFN 一定为菱形B.四棱锥A -MENF 体积为13C.平面EMFN ⊥平面DBB DD.四边形EMFN 的周长最小值为419(2024·山东济南·山东省实验中学校考一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,∠ABC =∠BAD =π2,AD =2,PA =BC =1,点E 为棱PD 上一点,满足PE =λPD0≤λ≤1 ,下列结论正确的是()A.平面PAC ⊥平面PCD ;B.在棱PD 上不存在点E ,使得CE ⎳平面PABC.当λ=12时,异面直线CE 与AB 所成角的余弦值为255;D.点P 到直线CD 的距离3;20(2024·新疆乌鲁木齐·统考一模)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA =AB ,点E ,F 分别是棱PB ,BC 的中点.(1)求直线AF 与平面PBC 所成角的正弦值;(2)在截面AEF 内是否存在点G ,使DG ⊥平面AEF ,并说明理由.21(2024·山西晋城·统考一模)如图,P 是边长为2的正六边形ABCDEF 所在平面外一点,BF 的中点O 为P 在平面ABCDEF 内的射影,PM =2MF.(1)证明:ME ⎳平面PBD .(2)若PA =2,二面角A -PB -D 的大小为θ,求cos2θ.22(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是AD 1的中点,点Q 是直线CD 1上的动点,则下列说法正确的是()A.△PBD 是直角三角形B.异面直线PD 与CD 1所成的角为π3C.当AB 的长度为定值时,三棱锥D -PBQ 的体积为定值D.平面PBD ⊥平面ACD123(2024·浙江·校联考一模)在三棱柱ABC-A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.24(2024·广东深圳·校考一模)如图,在圆锥SO中,AB是圆O的直径,且△SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,E是SB的中点.(1)证明:DE⎳平面SAC;(2)求平面SAC与平面SBD所成锐二面角的余弦值.25(2024·广西南宁·南宁三中校联考一模)在如图所示的五面体ABCDEF中,ABEF共面,△ADF是正三角形,四边形ABCD为菱形,∠ABC=2π3,EF⎳平面ABCD,AB=2EF=2,点M为BC中点.(1)证明:EM∥平面BDF;(2)已知EM=2,求平面BDF与平面BEC所成二面角的正弦值.26(2024·安徽合肥·合肥一六八中学校考一模)如图,菱形ABCD的对角线AC与BD交于点O,AB =5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H,将△DEF沿EF折到△DEF 位置,OD =10.(1)证明:D H⊥平面ABCD;(2)求平面BAD 与平面ACD 的夹角的余弦值.27(2024·安徽合肥·合肥一六八中学校考一模)设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是()A.若b⎳α,c⊂α,则b⎳cB.若b⊂α,b⎳c,则c⊂αC.若c⎳α,α⊥β,则c⊥βD.若c⎳α,c⊥β,则α⊥β28(2024·吉林延边·统考一模)已知三棱柱ABC-A1B1C1,侧面AA1C1C是边长为2的菱形,∠CAA1 =πA1是矩形,且平面AA1C1C⊥平面ABB1A1,点D是棱A1B1的中点.3,侧面四边形ABB1(1)在棱AC上是否存在一点E,使得AD∥平面B1C1E,并说明理由;(2)当三棱锥B-A1DC1的体积为3时,求平面A1C1D与平面CC1D夹角的余弦值.29(2024·黑龙江齐齐哈尔·统考一模)如图1,在平面四边形PABC中,PA⊥AB,CD⎳AB,CD=2AB=2PD=2AD=4.点E是线段PC上靠近P端的三等分点,将△PDC沿CD折成四棱锥P-ABCD,且AP=22,连接PA,PB,BD,如图2.(1)在图2中,证明:PA⎳平面BDE;(2)求图2中,直线AP与平面PBC所成角的正弦值.30(2024·重庆·统考一模)如图,在边长为1的正方体ABCD-A1B1C1D1中,E是C1D1的中点,M是线段A1E上的一点,则下列说法正确的是()A.当M点与A1点重合时,直线AC1⊂平面ACMB.当点M移动时,点D到平面ACM的距离为定值C.当M点与E点重合时,平面ACM与平面CC1D1D夹角的正弦值为53D.当M点为线段A1E中点时,平面ACM截正方体ABCD-A1B1C1D1所得截面面积为73332 31(2024·福建厦门·统考一模)如图,在四棱锥E-ABCD中,AD⎳BC,2AD=BC=2,AB=2,AB⊥AD,EA⊥平面ABCD,过点B作平面α⊥BD.(1)证明:平面α⎳平面EAC;(2)已知点F为棱EC的中点,若EA=2,求直线AD与平面FBD所成角的正弦值.32(2024·吉林延边·统考一模)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,DE =BF =1,DE ∥BF ,DE ⊥平面ABCD ,动点P 在线段EF 上,则下列说法正确的是()A.AC ⊥DPB.存在点P ,使得DP ∥平面ACFC.三棱锥A -CDE 的外接球被平面ACF 所截取的截面面积是9π2D.当动点P 与点F 重合时,直线DP 与平面ACF 所成角的余弦值为3101033(2024·福建厦门·统考一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 题型03 内切球、外接球问题34(2024·黑龙江齐齐哈尔·统考一模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内任一点,且A ,B ,C ,D ,E 五点在同一个球面上,则()A.AB ⊥CDB.四面体ABCD 的体积为214C.当AE =23时,点E 的轨迹长度为4πD.当三棱锥E -ABC 的体积为146时,点E 的轨迹长度为32π35(2024·吉林白山·统考一模)在四面体A -BCD 中,BC =22,BD =23,且满足BC ⊥BD ,AC ⊥BC ,AD ⊥BD .若该三棱锥的体积为863,则该锥体的外接球的体积为.36(2024·吉林延边·统考一模)已知一个圆锥的侧面展开图是一个圆心角为25π5,半径为5的扇形.若该圆锥的顶点及底面圆周都在球O 的表面上,则球O 的体积为.37(2024·河南郑州·郑州市宇华实验学校校考一模)已知正三棱柱ABC-A1B1C1的底面边长为2,以A1为球心、3为半径的球面与底面ABC的交线长为3π6,则三棱柱ABC-A1B1C1的表面在球内部分的总面积为.38(2024·江西吉安·吉安一中校考一模)已知球O的直径PQ=4,A,B,C是球O球面上的三点,△ABC是等边三角形,且∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为( ).A.334B.934C.332D.273439(2024·湖南长沙·雅礼中学校考一模)如图所示,有一个棱长为4的正四面体P-ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是()A.直线AE与PB所成的角为π2B.△ABE的周长最小值为4+34C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为63D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为26-25 40(2024·江西吉安·吉安一中校考一模)如图,在正三棱锥P-ABC中,有一半径为1的半球,其底面圆O与正三棱锥的底面贴合,正三棱锥的三个侧面都和半球相切.设点D为BC的中点,∠ADP=α.(1)用α分别表示线段BC和PD长度;(2)当α∈0,π2时,求三棱锥的侧面积S的最小值.41(2024·江西吉安·吉安一中校考一模)地球仪是地理教学中的常用教具.如图1所示,地球仪的赤道面(与转轴垂直)与黄道面(与水平面平行)存在一个夹角,即黄赤交角,大小约为23.5°.为锻炼动手能力,某同学制作了一个半径为4cm 的地球仪(不含支架),并将其放入竖直放置的正三棱柱ABC -A 1B 1C 1中(姿态保持不变),使地球仪与该三棱柱的三个侧面相切,如图2所示.此时平面AB 1C 恰与地球仪的赤道面平行,则三棱柱ABC -A 1B 1C 1的外接球体积为.(参考数据:tan23.5°≈0.43)题型04 空间向量42(2024·福建厦门·统考一模)已知平面α的一个法向量为n=(1,0,1),且点A (1,2,3)在α内,则点B (1,1,1)到α的距离为.43(2024·广西南宁·南宁三中校联考一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB +yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为6344(2024·湖南长沙·雅礼中学校考一模)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠DAB =90°,cos <AA 1 ,AB >=22,cos <AA 1 ,AD >=12,点M 为BD 中点.(1)证明:B 1M ⎳平面A 1C 1D ;(2)求二面角B -AA 1-D 的正弦值.。
立体几何初步重难点例题

一、基础知识(理解去记) (一)空间几何体的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形底面为正方形 侧棱与底面边长相等 1.3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角 分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.5面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)侧面母线3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 立体几何
【重难点知识点网络】:
【重难点题型突破】:
一、证明直线、平面的平行与垂直
例1.(2020·海南高三一模)如图,三棱锥S ABC
-的底面ABC和侧面SBC都是等边三角形,且平面SBC⊥平面ABC.
(1)若P点是线段SA的中点,求证:SA⊥平面PBC;
(2)点Q在线段出上且满足
1
3
AQ AS
=,求BQ与平面SAC所成角的正弦值.
例2.(2020·全国高三其他模拟)如图,三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,ABC 和1A AC 都是正三角形,D 是AB 的中点.
(1)求证:1//BC 平面1A DC ;
(2)求二面角11A DC C --的余弦值.
二、体积问题
例3.(2020·四川省内江市第六中学高三其他模拟)在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,90ABC ∠=︒,且侧面11ABB A 为菱形.
(1)证明:1A B ⊥平面11AB C ;
(2)若160A AB ∠=︒,2AB =,直线1AC 与底面ABC 1C ABA -的体积.
例4.(2020·四川省眉山市高三二诊(文))如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.
(1)求证:平面;
(2)求三棱锥的体积;
(3)求直线与直线所成角的余弦值.
1111ABCD A B C D -1224AB BC AA ===E 11A D N BC M 11C D 11114
MC D C =F
MC //EF 1A DC 1C FCN -1A D CF
三、探索性问题
例5.(2020·全国高三其他模拟)如图,在四棱锥S ABCD -中,底面ABCD 为矩形,SAD 为等腰直角
三角形,SA SD ==,2AB =,F 是BC 的中点,二面角S AD B --的大小等于120°.
(1)在AD 上是否存在点E ,使得平面SEF ⊥平面ABCD ,若存在,求出点E 的位置;若不存在,请说明理由.
(2)求直线SA 与平面SBC 所成角的正弦值.
=,例6.(2020·海南高三期中)如图,在多面体ABCDP中,ABC是边长为4的等边三角形,PA AC
==,点E为BC的中点,平面BDC⊥平面ABC.==PC PB
BD CD
DE平面PAC
(1)求证://
--为直二面角?若存在,试指出点T的位置;若(2)线段BC上是否存在一点T,使得二面角T DA B
不存在,请说明理由.
四、二面角问题 例7.(2020·全国高三其他模拟)如图,在底面为菱形的四棱锥P ABCD -中,60BCD ∠=︒,
2
PA PD ==.
(1)证明:AD PB ⊥; (2)若PB AD =,点Q 在线段PB 上,且3PQ QB =,求二面角A CQ B --的余弦值.。