电大离散数学作业3答案(集合论部分)
离散数学概论习题答案第3章

第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
离散数学及其应用集合论部分课后习题答案

34、设A,B为集合,证明:如果 ,则 。
证明:(反证法)
设 ,则 ,
所以 ;
所以
但是 。
与 矛盾。
37、设A,B,C为任意集合,证明: 。
证明:
对任意 ,由于 ,所以 且 所以
因此, 。
P121:习题七
5、设A,B为任意集合,证明
若 ,则 。
证明:
所以有
9、设 ,列出下列关系R
(2)
(3)
解答:
(2)不是,由于 集合较小,
①自反性:
②对称性,
但是传递性不满足, ,但是 。
(3)不是,满足对称性、传递性,但是不满足自反性
取 ,但是 不为奇数,所以 。
(5)满足
①自反性:
②对称性:
③传递性:
下面证明
若 ,则 ,所以
若 ,则 ,所以
所以 ,同理可证,
所以
所以 。因此满足传递性。
27、设 A上的等价关系
(2)不存在反函数,因为不是双射函数;
(3)
22、对于以下集合A和B,构造从A到B的双射函数。
(1)
(2)
(3)
(4)
解答:
(1)
(2)
(3)
(4)
作业答案:集合论部分
P90:习题六
5、确定下列命题是否为真。
(2)
(4)
(6)
解答:(2)假(4)真(6)真
8、求下列集合的幂集。
(5)
(6)
解答:
(5)集合的元素彼此互不相同,所以 ,所以该题的结论应该为
(6)
9、设 , , , ,求下列集合。
(1)
(2)
解答:
(1)
离散数学作业3[答案]
![离散数学作业3[答案]](https://img.taocdn.com/s3/m/08f8c23043323968011c920a.png)
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3},{1,3},{2,3},A B{1,2,3}} ,A⨯ B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024.3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈R⋂x∈>y且=且∈<{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈x,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素{<c,b>,<d,c>},则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >}或{<1, b >, <2, a >} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1)错误。
2020年国家开放大学电大《离散数学》形成性考核三次

电大离散数学作业答案3-7合集离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次.内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习.基本上是按照考试的题型(除单项选择题外)安排练习题目.目的是通过综合性书面作业.使同学自己检验学习成果.找出掌握的薄弱知识点.重点复习.争取尽快掌握。
本次形考书面作业是第一次作业.大家要认真及时地完成集合论部分的综合练习作业。
一、填空题1.设集合{1,2,3},{1,2}A B==.则P(A)-P(B )={{3}.{1,3}.{2,3}.{1,2,3}} .A⨯ B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素.那么A的幂集合P(A)的元素个数为 1024.3.设集合A={0, 1, 2, 3}.B={2, 3, 4, 5}.R是A到B的二元关系.},,{BAyxByAxyxR⋂∈∈∈><=且且则R的有序对集合为 {<2, 2>.<2, 3>.<3, 2>}.<3,3> .4.设集合A={1, 2, 3, 4 }.B={6, 8, 12}. A到B的二元关系R=},,2,{ByAxxyyx∈∈=><那么R-1= {<6,3>,<8,4>}5.设集合A={a, b, c, d}.A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}.则R具有的性质是没有任何性质.6.设集合A={a, b, c, d}.A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>}.若在R中再增加两个元素{<c,b>,<d,c>} .则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系.则R1∪R2.R1∩R2.R1-R2中自反关系有 2个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A.y∈A, x+y =10}.则R的自反闭包为 {<1,1>,<2,2>} .9.设R是集合A上的等价关系.且1 , 2 , 3是A中的元素.则R中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A={1.2}.B={a.b}.C={3.4.5}.从A到B的函数f ={<1, a>, <2, b>}.从B 到C 的函数g ={< a .4>, < b .3>}.则Ran(g ︒ f )= {3,4} .二、判断说明题(判断下列各题.并说明理由.)1.若集合A = {1.2.3}上的二元关系R={<1, 1>.<2, 2>.<1, 2>}.则(1) R 是自反的关系; (2) R 是对称的关系.(1) 错误。
离散数学课后习题答案(第三章)(doc)

a) 用矩阵运算和作图方法求出 R 的自反、对称、传递闭包; b) 用 Warshall 算法,求出 R 的传递闭包。
解 a) 0 1 00
MR= 1 0 1 0 0 0 01
0 0 00
R 的关系图如图所示。
a
b
d
c
MR+MIA=
0 1 00 1 0 10
反之,若 S∩ScIX,设<x,y>∈S 且 <y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc <x,y>∈S∩Sc <x,y>∈IX 故 x=y,即 S 是反对称的。
3-7.3 设 S 为 X 上的关系,证明若 S 是自反和传递的,则 S○S=S,其逆为真 吗?
证明 若 S 是 X 上传递关系,由习题 3-7.2a)可知(S○S)S, 令<x,y>∈S,根据自反性,必有< x,x> ∈S, 因此有< x,y >∈S○S, 即 SS○S。得到 S=S○S.
自反的; b)若 R1 和 R2 是反自反的,则 R1○R2 也
是反自反的; c)若 R1 和 R2 是对称的,则 R1○R2 也是
对称的; d)若 R1 和 R2 是传递的,则 R1○R2 也是
传递的。
证明 a)对任意 a∈A,设 R1 和 R2 是自 反的,则<a,a>∈R1,<a,a>∈R2 所以,<a,a>∈R1○R2,即 R1○R2 也是 自反的。
解:L= {<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>, <2,6>,<3,6>,<1, 1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>, <2,2>,<3,3>,<6,6>}
离散数学形考任务3集合论部分概念及性质

离散数学形考任务3集合论部分概念及性质本文档将介绍离散数学形考任务3中集合论部分的概念及性质。
以下是相关内容:集合的定义集合是由一些确定的、互不相同的元素组成的整体。
集合中的元素可以是任何事物,如数字、字母、符号等。
一般使用大写字母表示集合,元素用小写字母表示,并用大括号{}将元素括起来。
集合的性质1. 互异性:集合中的元素是互不相同的,即集合中的每个元素只出现一次。
2. 无序性:集合中的元素没有先后之分,元素的排列顺序不影响集合本身。
3. 确定性:一个元素要么属于集合,要么不属于集合,不存在中间状态。
4. 外延性:两个集合中的元素完全相同,则这两个集合相等。
5. 空集:不包含任何元素的集合称为空集,用符号{}或∅表示。
集合的运算1. 并集:将两个集合中的所有元素合并在一起,形成一个新的集合。
用符号∪表示。
例如,A∪B表示集合A和集合B的并集。
2. 交集:两个集合中共同拥有的元素组成的集合。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3. 差集:从一个集合中排除掉与另一个集合中相同的元素,得到的新集合。
用符号-表示。
例如,A-B表示集合A和集合B的差集。
4. 补集:相对于全集U,集合A在全集U中未包含的元素组成的集合。
用符号A'表示。
例如,A'表示集合A的补集。
应用举例1. 假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},则A∪B = {1, 2, 3, 4},A∩B = {2, 3},A-B = {1}。
2. 如果全集U是整数集,A = {x | x > 0}表示大于0的整数集合,补集A' = {x | x ≤ 0}。
以上是离散数学形考任务3集合论部分的概念及性质。
希望本文档能对您有所帮助!。
离散数学答案3
第一章集合论基础1.设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
中央电大形成性测评系统离散数学作业3答案(集合论部分)
精选离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{1,2},{2,3},{1,3},{1,2,3}} ,A B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 . 3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 {<2,2>,<2,3>,<3,2>,<3,3>} .4.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1= {<6,3>,<8,4>}5.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 反自反性 .6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c ,d >},若在R 中再增加两个元素 <c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x A ,y A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是姓 名: 学 号: 得 分: 教师签名:{<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:结论成立.因为R 1和R 2是A 上的自反关系,即I A R 1,I A R 2. 由逆关系定义和I A R 1,得I A R 1-1; 由I A R 1,I A R 2,得I A R 1∪R 2,I AR 1R 2.所以,R 1-1、R 1∪R 2、R 1R 2是自反的.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元。
国家开放大学电大本科《离散数学》网络课形考任务3作业及答案
国家开放大学电大本科《离散数学》网络课形考任务3作业及答案屐任务3 g选择题题目1 命题公式T。
的主合取范式是()、选择一项:• A、1 PVO^ B、(PVp)A(PVn p)A(i O D n p/\O 题目2 设P:我将去打球,Q:我有时间、命题“我将去打球,仅当我有时间时”符号化为()、选择一项: A、1 PV-1 Q B、 0 —P • C Pt* D、 P — Q 题目3 命题公式 ~ 的主析取范式是()、选择一项: A、 n PVO B pAq C、 PV-i O Di B(x))B (Vx)(、4(x)AB(x))C n (3xX、4(、v)A5(x))D i (Vx)(“Dz 题目6 前提条件FT“1 Q,P的有效结论是()、选择一项: A、 Q B、i P 题目7 命题公式(PVQ)-R的析取范式是()、选择一项: A、 (PVQ)VR B、1 PAn Q)VR 题目8 下列等价公式成立的为()、选择一项: B、“v(PaQ)OQ C、 Qt(PvQ)5Q 人(PvQ)D、 i P人i 题目9 下列等价公式成立的为()、选择一项:A、“八 B、 C、 iQtFQP—Q 下列公式中()为永真式、选择一项: A、i AA-i B —AVB C、B(x)前提引入⑵ A(y)-B(y)US (1)选择一项:对错题目14 含有三个命题变项P,Q,R的命题公式PAQ的主析取范式(PAQAR)V(PAQAnR)、()选择一项:对错题目15 命题公式P-(QVP)的真值是T、() 选择一项:对题目16 命题公式“iPAP的真值是T、()选择一项:对错题目17 谓词公式1 (Vx)P(x)U»Gx)iP(x)成立、()选择一项:对错题目18 命题公式1 (P~Q)的主析取范式是PV-iQ、()选择一项:对错题目19 设个体域D={a, b},则谓词公式(Vx)(A(x)AB(x))消去量词后的等值式为(A(a)/\B(a))/\(A(b)/\B(b))、()选择一项:对错题目20 设个体域D={a, b},那么谓词公式Ox)A(x)V(Vy)B(y)消去量词后的等值式为A(a)VB(b)、() 选择一项:对错。
电大 离散数学 形考作业问题详解3-5-7合集
电大离散数学作业答案3-7合集离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}A B ==,则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}} ,A ⨯ B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A 有10个元素,那么A 的幂集合P(A)的元素个数为 1024.3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且 则R 的有序对集合为 {<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=>< 那么R -1= {<6,3>,<8,4>}5.设集合A={a, b, c, d },A 上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R 具有的性质是 没有任何性质 .6.设集合A={a, b, c, d },A 上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R 中再增加两个元素 {<c,b>,<d,c>} ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x ∈A ,y ∈A, x+y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.姓 名: 学 号: 得 分: 教师签名:10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.(1) 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )=A B{{3},{2,3},{1,3},{1,2,3}},A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈R⋂x∈>y且=且∈<{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈x,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>}.9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1,a>,<2,b>}或{<1,b>,<2,a>}.二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>.(2) 结论不成立.因为关系R 中缺少元素<2, 1>.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:结论成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2.由逆关系定义和I A ⊆R 1,得I A ⊆ R 1-1;由I A ⊆R 1,I A ⊆R 2,得I A ⊆ R 1∪R 2,I A ⊆ R 1⋂R 2.所以,R 1-1、R 1∪R 2、R 1⋂R 2是自反的.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在. 错误,按照定义,图中不存在最大元和最小元。
4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2)f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.(1) 不构成函数,因为它的定义域Dom(f)≠A(2) 也不构成函数,因为它的定义域Dom(f)≠A(3) 构成函数,首先它的定义域Dom(f) ={1, 2, 3, 4}= A ,其次对于A 中的每一个元素a ,在B 中都有一个唯一的元素b ,使<a,b>∈f三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (A ⋂B )⋃~C ; (2) (A ⋃B )- (B ⋂A ) (3) P (A )-P (C ); (4) A ⊕B . 解:ο ο ο ο a b c d 图一 ο ο ο ge f h ο(1) (A⋂B)⋃~C={1}⋃{1,3,5}={1,3,5}(2) (A⋃B)-(B⋂A)={1,2,4,5}-{1}={2,4,5}(3) P(A) ={Φ,{1},{4},{1,4}}P(C)={Φ,{2},{4},{2,4}}P(A)-P(C)={{1},{1,4}}(4) A⊕B= (A⋃B)-(B⋂A)= {2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)(A-B)={{1},{2}}(2)(A∩B)={1,2}(3) A×B{<{1},1>,<{1},2>,<{1},{1,2 }>,<{2},1>,<{2},2>,<{2},{1,2 }>,<1,1>,<1,2>,<1,{1,2 }>,<2,1>,<2,2>,<2,{1,2 }>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=ΦR•S=ΦS•R=ΦR-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}S-1=Φr(S)= {<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3, 3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)7关系R的哈斯图(3) 集合B没有最大元,最小元是2四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证:设,若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A或x∈C.即x∈A⋃B且x∈A⋃C,即x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此T=S.3.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A≠∅,则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得A=B.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.R1和R2是自反的,∀x∈A,<x, x> ∈R1,<x, x> ∈R2,则<x, x> ∈R1∩R2,所以R1∩R2是自反的.。