第二章 2.2.3平面向量乘法
平面向量的运算与性质总结

平面向量的运算与性质总结平面向量是解决平面几何问题的重要数学工具之一,它具有一些基本的运算和性质。
本文将总结平面向量的运算法则以及相关的性质。
一、平面向量的定义与表示方法平面向量即有大小又有方向的量。
通常用一条有向线段来表示平面向量,线段的长度表示向量的大小,箭头指向表示向量的方向。
平面向量常用大写字母表示,如A、B等。
二、平面向量的加法与减法1. 加法定义:设有平面向量A和B,它们的和A + B定义为一个新的向量C,C的起点与A的起点相同,终点与B的终点相同。
2. 减法定义:设有平面向量A和B,它们的差A - B定义为向量A 与向量-B(即B的反向向量)的和。
三、平面向量的数量乘法1. 数量乘法定义:对一个平面向量A和实数k,将向量A的大小乘以k,得到的新的向量kA,其方向与A的方向相同(若k > 0),或者相反(若k < 0),大小为|k|与|A|的乘积。
2. 数量乘法的性质:a) 0向量的数量乘法:0A = 0,其中0表示零向量。
b) 负向量的数量乘法:(-k)A = -(kA),其中k为实数。
c) 数量乘法的分配律:(k + l)A = kA + lA,其中k、l为实数。
d) 数量乘法的结合律:k(lA) = (kl)A,其中k、l为实数。
四、平面向量的数量倍分点和向量积1. 数量倍分点定义:设有平面向量A和B,以及实数m、n,将向量A乘以m,向量B乘以n,再将它们的和(mA + nB)表示为另一个向量D,则称D为向量A和向量B的数量倍分点。
2. 向量积的性质:a) 数量倍分点的交换律:mA + nB = nB + mA。
b) 数量倍分点的结合律:(m + n)A + kB = mA + nA + kB。
c) 特殊情况:若m + n = 1,则(mA + nB)称为向量A和向量B的某一点到原点所确定的位置矢量。
五、平面向量的性质1. 零向量的性质:a) 零向量与任意向量的和为该向量本身。
平面向量运算

平面向量运算平面向量运算是指二维空间中的向量表示及其运算,它是数学中重要的分支学科,与空间向量和三维向量运算相比,平面向量运算更加简单。
它是一种基本的数学运算,能够用来研究物理量的空间表示,也能用于解决各种实际问题。
一、平面向量的概念平面向量运算的基本概念是平面向量。
平面向量是一种二维向量,它有两个分量:一个是平面上的横坐标,一个是平面上的纵坐标,其构成可以表示为a=(a1,a2)。
横坐标代表着向量的横向距离,纵坐标代表着向量的纵向距离,它们可以组合成一个平行四边形,即向量的模式。
二、平面向量的运算平面向量的运算包括加法、减法、数乘和点积。
1、加法:两个向量的加法,即把它们的横坐标和纵坐标相加,即可得到新的向量。
例如:若A=(a1,a2)和B=(b1,b2),则A+B=(a1+b1,a2+b2)2、减法:两个向量的减法,即把它们的横坐标和纵坐标相减,即可得到新的向量。
例如:若A=(a1,a2)和B=(b1,b2),则A-B=(a1-b1,a2-b2)3、数乘:也叫标量乘法,即用一个数乘以一个向量,即可得到新的向量。
例如:若A=(a1,a2),k为一个实数,则ka=(ka1,ka2)4、点积:若A=(a1,a2),B=(b1,b2),则AB=a1b1+a2b2,结果为一个实数,它代表两个向量之间的夹角的余弦值。
三、平面向量的应用1、地图测量:平面向量可用于计算地图上两点之间的距离,最早的应用就是地图测量,可用于计算实际路线所经历的距离、方位角及其他量。
2、航空航天:由于它能够计算出一个物体在太空中的实际位置,因此平面向量运算在航空航天技术中有着重要的应用。
3、机器人技术:机器人技术中也有着平面向量的应用,机器人能够利用平面向量来定位自己,掌握自己的运动状态,并实现正确的运动方向。
4、图形学:平面向量运算在图形学中的应用也是现实中的常用技术,它使我们能够用二维图形建模,来更加清晰地表示物体的形状和外观,从而制作出更加精细、逼真的图像。
平面向量的向量积和矩阵运算

平面向量的向量积和矩阵运算平面向量是数学中的一个重要概念,在许多数学和物理问题中都得到了广泛应用。
在平面向量的运算中,向量积和矩阵运算是两个重要的操作。
一、向量积向量积,也称为叉乘或叉积,可以用来计算两个向量之间的乘积。
向量积的结果是一个新的向量,该向量垂直于原来的两个向量。
向量积的定义如下:设有向量A(x1, y1)和向量B(x2, y2),则向量A和向量B的向量积为C(x3, y3),且有:x3 = y1 * z2 - y2 * z1y3 = z1 * x2 - x1 * z2z3 = x1 * y2 - x2 * y1其中,z1 = z2 = 0,因为向量积只能在三维空间中使用。
向量积的计算可以用来求解许多几何和物理问题,例如计算两个向量之间的夹角、判断两个向量是否平行、计算三角形的面积等等。
此外,向量积还可用于计算力的矢量合成等问题。
二、矩阵运算矩阵是一种方阵,也可以看作是向量的扩展。
矩阵运算是对矩阵进行各种运算操作的过程,包括加法、减法、乘法等。
1. 加法:两个矩阵相加时,要求两个矩阵的行数和列数相等,然后将对应位置上的元素相加得到新的矩阵。
2. 减法:两个矩阵相减时,要求两个矩阵的行数和列数相等,然后将对应位置上的元素相减得到新的矩阵。
3. 乘法:两个矩阵相乘时,要求第一个矩阵的列数与第二个矩阵的行数相等,然后按照一定的规则计算得到新的矩阵。
具体的计算规则可以参考矩阵乘法的定义。
矩阵运算在线性代数和线性方程组的求解中起着重要的作用。
矩阵运算还可以用于处理图像、信号处理等领域。
总结:通过向量积和矩阵运算,我们可以对平面向量进行一系列的操作和运算。
向量积可以用来计算两个向量之间的乘积,而矩阵运算则可以用来对矩阵进行加法、减法和乘法等操作。
这些操作在数学和物理问题中都具有广泛的应用,对于深入理解和解决相关问题具有重要的作用。
通过本文的介绍,我们对平面向量的向量积和矩阵运算有了初步的了解,希望可以为读者提供一定的帮助和指导。
(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。
平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。
平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。
本文将介绍平面向量的基本概念和运算规则。
一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。
可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。
二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。
具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。
三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。
对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。
四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。
设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。
五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。
设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。
平面向量的基本运算知识点总结

平面向量的基本运算知识点总结平面向量是数学中一个重要的概念,它是具有大小和方向的量。
在代数表示中,可以使用向量的分量或坐标表示。
平面向量的基本运算包括向量的加法、减法、数量乘法和数量除法。
本文将对这些运算进行总结并给出相应的示例。
一、向量的加法向量的加法是指将两个向量的对应分量相加得到一个新的向量。
向量的加法满足交换律和结合律。
设 A 和 B 分别为两个向量,则它们的和向量 C 的分量满足以下关系:Cₓ = Aₓ + BₓCᵧ = Aᵧ + Bᵧ示例:已知向量 A = (2, 3) 和 B = (4, -1),求其和向量 C = A + B。
解:Cₓ = 2 + 4 = 6Cᵧ = 3 + (-1) = 2因此,C = (6, 2)。
二、向量的减法向量的减法是指将两个向量的对应分量相减得到一个新的向量。
向量的减法可以视为向量加法的逆运算。
设 A 和 B 分别为两个向量,则它们的差向量 C 的分量满足以下关系:Cₓ = Aₓ - BₓCᵧ = Aᵧ - Bᵧ示例:已知向量 A = (2, 3) 和 B = (4, -1),求其差向量 C = A - B。
解:Cₓ = 2 - 4 = -2Cᵧ = 3 - (-1) = 4因此,C = (-2, 4)。
三、数量乘法数量乘法指的是将一个向量的每个分量都乘以一个实数得到一个新的向量。
设向量 A 为一个向量,k 为一个实数,则数量乘法的结果向量 B 的分量满足以下关系:Bₓ = k * AₓBᵧ = k * Aᵧ示例:已知向量 A = (2, 3),求其数量乘法的结果向量 B = 2A。
解:Bₓ = 2 * 2 = 4Bᵧ = 2 * 3 = 6因此,B = (4, 6)。
四、数量除法数量除法指的是将一个向量的每个分量都除以一个实数得到一个新的向量。
设向量 A 为一个向量,k 为一个非零实数,则数量除法的结果向量 B 的分量满足以下关系:Bₓ = Aₓ / kBᵧ = Aᵧ / k示例:已知向量 A = (4, 6),求其数量除法的结果向量 B = A / 2。
高中数学必修4第二章:平面向量2.2平面向量的线性运算

向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)
高中数学 第二章 平面向量 2.2 平面向量的线性运算教学案数学教学案

2.2 平面向量的线性运算第1课时向量加法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P80~P83的内容,回答下列问题.(1)观察教材P80图2.2-1,思考:某对象从A点经B点到C 点,两次位移的结果是什么?与从A点直接到C点的位移有什么关系?提示:从A点经B点到C点,两次位移的结果是位移,与从A点直接到C点的位移相等.(2)观察教材P80“探究”的内容,思考:①力F对橡皮条产生的效果,与力F1与F2共同产生的效果相同吗?提示:产生的效果相同.②力F与力F1、F2有怎样的关系?提示:力F是F1与F2的合力.力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.(3)数的加法启发我们,从运算的角度看,F可以认为是F1与F2的什么运算?提示:F可以认为是F1与F2的和,即位移、力的合成可看作向量的加法.2.归纳总结,核心必记(1)向量加法的定义求两个向量和的运算,叫做向量的加法.(2)向量加法的运算法则向量求和的法则三角形法则已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=_.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任一向量a的和有a+0=0+a=a.平行四边形法则以同一点O为起点的两个已知向量a、b为邻边作▱OACB,则以O为起点的对角线_就是a与b的和.我们把这种作向量和的方法叫做向量加法的平行四边形法则.①交换律:a+b=b+a;②结合律:a+b+c=(a+b)+c=a+(b+c).[问题思考](1)两个向量相加就是两个向量的模相加吗?提示:因为向量既有大小,又有方向,所以两个向量相加不是模的相加.两个向量相加应满足三角形法则或平行四边形法则.(2)当两非零向量a,b共线时,向量加法的平行四边形法则还能用吗?三角形法则呢?提示:平行四边形法则不能用,但三角形法则可用.(3)式子=0正确吗?[课前反思](1)向量加法的定义:;(2)求向量和的三角形法则:;(3)求向量和的平行四边形法则:;(4)向量加法的交换律:;(5)向量加法的结合律:.[思考1] 求作两个向量和的方法有哪些?提示:三角形法则和平行四边形法则.[思考2] 三角形法则和平行四边形法则的适用条件有什么不同?名师指津:(1)三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)当两个向量不共线时,两个法则是一致的.如图所示, (平行四边形法则),(3)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量的起点相同.讲一讲1.(1)如图①,利用向量加法的三角形法则作出a+b;(2)如图②,利用向量加法的平行四边形法则作出a+b.[尝试解答] (1)如图ⓐ所示,设=a,∵a与b有公共点A,故过A点作=b,连接即为a+b.(2)如图ⓑ,设=a,过O点作=b,则以OA、OB为邻边作▱OACB,连接OC,则=a+b.应用三角形法则和平行四边形法则应注意的问题(1)三角形法则可以推广到n个向量求和,作图时要求“首尾相连”,即n个首尾相连的向量的和对应的向量是第一个向量的起点指向第n个向量的终点的向量.(2)平行四边形法则只适用于不共线的向量求和,作图时要求两个向量的起点重合.(3)求作三个或三个以上的向量的和时,用三角形法则更简单.练一练1.如图,已知a、b、c,求作向量a+b+c.解:作法:在平面内任取一点O,如图所示.作=a+b+c.[思考] 向量加法有哪些运算律?名师指津:向量加法的交换律:a+b=b+a;向量加法的结合律:(a+b)+c=a+(b+c).讲一讲2.化简下列各式:解决向量加法运算时应关注两点(1)可以利用向量的几何表示,画出图形进行化简或计算.(2)要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母的排列顺序,特别注意勿将0写成0.练一练2.如图,在△ABC中,O为重心,D、E、F分别是BC、AC、AB 的中点,化简下列三式:讲一讲3.在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到达B地接到受伤人员,然后又从B地按南偏东55°的方向飞行800 km送往C地医院,求这架飞机飞行的路程及两次位移的和.[尝试解答] 如图所示,设分别表示飞机从A地按北偏东35°方向飞行800 km,从B地按南偏东55°的方向飞行800 km.则飞机飞行的路程指的是;两次飞行的位移的和指的是依题意,有=800+800=1 600 (km).又α=35°,β=55°,∠ABC=35°+55°=90°.=8002+8002=8002(km).其中∠BAC=45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是 1 600 km,两次飞行的位移和的大小为800 2 km,方向为北偏东80°.利用向量的加法解决实际应用题的三个步骤练一练3.轮船从A港沿东偏北30°方向行驶了40 km到达B处,再由B处沿正北方向行驶40 km到达C处,求此时轮船与A港的相对位置.解:如图所示,设分别是轮船的两次位移,则表示最终位移,且=+.∠CAD=60°,即此时轮船位于A港东偏北60°,且距离A港40 3 km处.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是向量和的作法以及向量和的运算,难点是向量和的应用.2.要掌握向量加法的三个问题(1)求作向量的和,见讲1;(2)向量加法运算,见讲2;(3)向量加法的应用,见讲3.3.求作向量时应注意以下两点(1)利用三角形法则求和向量时,关键要抓住“首尾相接”,并且和向量是由第一个向量的起点指向最后一个向量的终点.(2)利用平行四边形法则求和向量时,应注意“共起点”.课下能力提升(十四)[学业水平达标练]题组1 求作向量的和1.如图,已知两个不共线的非零向量a,b,求作a+b.解:在平面内任取一点O,2.已知两非零向量a,b(如图所示)求作a+b.解:如图所示:在平面内任取一点O,作题组2 向量加法运算4.下列等式错误的是( )A.a+0=0+a=aA.2 5 B.45C.12 D.66.根据图示填空.解析:由三角形法则知7.已知正方形ABCD 的边长为1,=a ,=c ,=b ,则|a +b +c |为________.解析:|a +b +c |===2 2.答案:22 8.如图,O 为正六边形ABCDEF 的中心,根据图示计算: 解:(1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 为其对角线,所以题组3 向量加法的应用 9.若a 等于“向东走8 km ”,b 等于“向北走8 km ”则|a +b |=________,a +b 的方向是________. 解析:如图所示,设=a ,=b ,则=a +b ,且△ABC 为等腰直角三角形,则||=8 2 km ,∠BAC =45°.答案:8 2 km 北偏东45°10.雨滴在下落一定时间后的运动是匀速的,无风时雨滴下落的速度是4.0 m/s ,现在有风,风使雨滴以433m/s 的速度水平向东移动,求雨滴着地时的速度和方向.解:如图,用表示雨滴下落的速度,表示风使雨滴水平向东的速度.以,为邻边作平行四边形OACB ,就是雨滴下落的实际速度. 在Rt △OAC 中,||=4,||=433,∴∠AOC =30°. 故雨滴着地时的速度大小是833m/s ,方向与垂直方向成30°角向东.[能力提升综合练]1.设a =,b 是任一非零向量,则在下列结论中,正确的为( )①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |;⑤|a +b |=|a |+|b |.A .①②B .①③C .①③⑤D .③④⑤解析:选C a ==0,∴①③⑤是正确的.2.已知D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中不正确的是( )解析:选D 由向量加法的平行四边形法则可知,3.如图,四边形ABCD 是梯形,AD ∥BC ,则=( )4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足,则下列结论中正确的是( )A .P 在△ABC 的内部B .P 在△ABC 的边AB 上C .P 在AB 边所在的直线上D .P P 在△ABC 的外部解析:选D ,根据平行四边形法则,如图,则点P 在△ABC 外.答案:6.若P 为△ABC 的外心,且,则∠ACB =________. 解析:∵,则四边形APBC 是平行四边形. 又P 为△ABC 的外心,因此∠ACB =120°.答案:120°7.在四边形ABCD 中,对角线AC 、BD 交于点O 且||==0,cos ∠DAB =12.求 又cos ∠DAB =12,∠DAB ∈(0,π), ∴∠ DAB =60°,∴△ABD 为正三角形.8.已知船在静水中的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt△ACD中,=|v水|=10 m/min,∴α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°的角.第2课时向量减法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P85~P86的内容,回答下列问题.(1)一个数x的相反数是什么?一个向量a有相反向量吗?若有,如何表示?提示:一个数x的相反数是-x.一个向量a有相反向量,记为-a.(2)任何一个数x与它相反数的和为0,那么向量a与它的相反向量的和是什么?提示:a+(-a)=0.(3)根据前一节所学的内容,你能作出向量a与b的差a-b 吗?提示:可以,先作-b,再按向量加法的平形四边形法则或三角形法则作出a+(-b)即可.2.归纳总结,核心必记(1)相反向量与a长度相等,方向相反的向量,叫做a的相反向量,记作-a.①规定:零向量的相反向量仍是零向量;②-(-a)=a;③a+(-a)=(-a)+a=0;④若a与b互为相反向量,则a=-b,b=-a,a+b=0.(2)向量的减法①定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.②几何意义:以O为起点,作向量=a,=b,则_=a -b,如图所示,即a-b可以表示为从向量b的终点指向向量a的终点的向量.[问题思考](1)若两个非零向量a与b互为相反向量,则a与b应具备什么条件?提示:①长度相等;②方向相反.(2)相反向量与相反数一样吗?提示:不一样.相反数是两个数符号相反,绝对值相等,相反向量是指两个向量方向相反,模相等.(3)若a-b=c-d,则a+d=b+c成立吗?提示:成立.移项法则对向量的运算是成立的.[课前反思](1)相反向量的定义:;(2)向量减法的定义:;(3)向量减法的几何意义:.讲一讲(1)向量减法运算的常用方法(2)向量加减法化简的两种形式①首尾相连且为和;②起点相同且为差.做题时要注意观察是否有这两种形式,同时要注意逆向应用.练一练1.化简下列各式:[思考1] 已知两个非零向量a,b,如何作a-b?名师指津:求作两向量的差可以转化为两个向量的和,也可以直接用向量减法的三角形法则,即把两向量的始点重合,则差向量就是连接两个向量的终点,并指向被减向量.[思考2] a-b的几何意义是什么?名师指津:a-b的几何意义是:当向量a,b的始点相同时,从向量b的终点指向向量a的终点的向量.讲一讲2.(1)四边形ABCD中,若( )A.a-b+c B.b-(a+c)C.a+b+c D.b-a+c(2)如图,已知向量a,b,c不共线,求作向量a+b-c.[尝试解答] (1)=a+c-b.(2)法一:如图①所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,则=a+b-c.法二:如图②所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,连接OC,则=a+b-c.答案:(1)A求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a-b,可以先作-b,然后作a+(-b)即可.(2)也可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.练一练2.如图,O为△ABC内一点,=a,=b,=c.求作:(1)b+c-a;(2)a-b-c.如图所示.(2)由a-b-c=a-(b+c),如图,作▱OBEC,连接OE,连接AE,则=a-(b+c)=a-b-c.讲一讲3.如图,解答下列各题:利用已知向量表示其他向量的一个关键及三点注意(1)一个关键一个关键是确定已知向量与被表示向量的转化渠道.(2)三点注意①注意相等向量、相反向量、共线向量以及构成三角形三向量之间的关系;②注意应用向量加法、减法的几何意义以及它们的运算律;③注意在封闭图形中利用多边形法则.练一练—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是相反向量、向量减法的运算以及利用已知向量表示未知向量,难点是利用已知向量表示未知向量.2.要掌握向量减法的三个问题(1)向量的减法运算,见讲1;(2)向量减法及其几何意义,见讲2;(3)利用已知向量表示未知向量,见讲3.3.掌握用已知向量表示某向量的基本步骤第一步:观察各向量的位置;第二步:寻找(或作)相应的平行四边形或三角形;第三步:运用法则找关系;第四步:化简结果.课下能力提升(十五)[学业水平达标练]题组1 向量的减法运算1.已知非零向量a与b同向,则a-b( )A.必定与a同向B.必定与b同向C.必定与a是平行向量D.与b不可能是平行向量解析:选C 若|a|>|b|,则a-b与a同向,若|a|<|b|,则a-b与-b同向,若|a|=|b|,则a-b=0,方向任意,且与任意向量共线.故A,B,D皆错,故选C.3.给出下面四个式子,其中结果为0的是( )A.①② B.①③C.①③④ D.②③题组2 向量减法及其几何意义4.若O,E,F是不共线的任意三点,则以下各式中成立的是( )解析:选B 由减法法则知B正确.A.[3,8] B.(3,8)C.[3,13] D.(3,13)6.如图,在正六边形ABCDEF中,=( )7.已知菱形ABCD边长都是2,求向量的模.题组3 利用已知向量表示未知向量8.如图,向量,则向量可以表示为( ) A.a+b-c B.a-b+cC.b-a+c D.b-a-c解析:选C =b-a+c.故选C.9.已知一点O到▱ABCD的3个顶点A,B,C的向量分别是a,b,c,则向量等于( )A.a+b+c B.a-b+cC.a+b-c D.a-b-c解析:选B 如图,点O到平行四边形ABCD的三个顶点A,B,C的向量分别是a,b,c,结合图形有=a-b+c.10.如图,已知ABCDEF是一正六边形,O是它的中心,其中=b,=c,则等于________.解析:=b-c.答案:b-c11.如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且=a,=b,=c,试用a,b,c表示向量[能力提升综合练]1.有下列不等式或等式:①|a|-|b|<|a+b|<|a|+|b|;②|a|-|b|=|a+b|=|a|+|b|;③|a|-|b|=|a+b|<|a|+|b|;④|a|-|b|<|a+b|=|a|+|b|.其中,一定不成立的个数是( )A.0 B.1 C.2 D.3解析:选A ①当a与b不共线时成立;②当a=b=0,或b =0,a≠0时成立;③当a与b共线,方向相反,且|a|≥|b|时成立;④当a与b共线,且方向相同时成立.2.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( ) A.8 B.4 C.2 D.14.平面上有三点A,B,C,设若m,n 的长度恰好相等,则有( )A.A,B,C三点必在同一直线上B.△ABC必为等腰三角形且∠B为顶角C.△ABC必为直角三角形且∠B=90°D.△ABC必为等腰直角三角形解析:选C 由|m|=|n|,知A,B,C为一矩形的三顶点,且△ABC中∠B为直角.答案:6.设平面向量a1,a2,a3满足a1-a2+a3=0,如果平面向量b1,b2,b3满足|b i|=2|a i|,且a i顺时针旋转30°后与b i同向,其中i=1,2,3,则b1-b2+b3=________.解析:将a i顺时针旋转30°后得a i′,则a1′-a2′+a3′=0.又∵b i与a i′同向,且|b i|=2|a i|,∴b1-b2+b3=0.答案:07.设O是△ABC内一点,且,若以线段OA,OB为邻边作平行四边形,第四个顶点为D,再以OC,OD为邻边作平行四边形,其第四个顶点为H.试用a,b,c表示.解:由题意可知四边形OADB为平行四边形,又四边形ODHC为平行四边形,8.已知O为四边形ABCD所在平面外一点,且向量、满足等式.作图并观察四边形ABCD的形状,并证明.解:通过作图(如图)可以发现四边形ABCD为平行四边形.证明如下:∵,∴,∴,∴AB綊DC,∴四边形ABCD为平行四边形.第3课时向量数乘运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 87~P 90的内容,回答下列问题.(1)已知非零向量a ,根据向量的加法,作出a +a +a 和(-a )+(-a )+(-a ),你认为它们与a 有什么关系?提示:a +a +a =3a 的长度是a 长度的3倍,且方向相同;(-a )+(-a )+(-a )=-3a 的长度是a 长度的3倍,且方向相反.(2)λa 与a (λ≠0,a ≠0)的方向、长度之间有什么关系? 提示:当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反,且λa 的长度是a 长度的|λ|倍.(3)若a =λb ,则a 与b 共线吗?提示:共线.2.归纳总结,核心必记(1)向量数乘运算一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反W. 特别地,当λ=0或a =0时,0a =0或λ0=0.(2)向量数乘的运算律设λ,μ为实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.特别地,(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.(3)共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.(4)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.[问题思考](1)向量与实数可以求积,那么向量和实数可以进行加减运算吗?提示:不可以,向量与实数不能进行加减运算,如λ+a,λ-2b无法运算.(2)数乘向量与实数的乘积等同吗?提示:不等同.数乘向量的结果仍然是一个向量,既有大小又有方向.实数相乘运算的结果是一个实数,只有大小没有方向.(3)λ=0时,λa=0;a=0时,λa=0,这两种说法正确吗?提示:不正确,λa=0中的“0”应写为“0”.[课前反思](1)向量数乘的概念:;(2)向量数乘的运算律:;(3)共线向量定理:;(4)向量的线性运算:.[思考] 向量的线性运算与代数多项式的运算有什么类似之处?名师指津:向量的线性运算类似于多项式的运算,具有实数与多个向量和的乘积形式,计算时应先去括号.共线向量可以“合并同类项”“提取公因式”,这里的“同类项”“公因式”是指向量,实数看作是向量的系数.讲一讲1.化简下列各式:(1)3(6a +b )-9⎝⎛⎭⎪⎫a +13b ;(2)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a .[尝试解答] (1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .向量数乘运算的方法(1)向量的数乘运算类似于多项式的代数运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)向量也可以通过列方程来解,把所求向量当作未知数,利用解代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.练一练1.设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝⎛⎭⎪⎫a -23b +(2b -a ).解:原式=13a -b -a +23b +2b -a=⎝ ⎛⎭⎪⎫13-1-1a +⎝⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝⎛⎭⎪⎫-103-53j =-53i -5j . 讲一讲2.已知在▱ABCD 中,M ,N 分别是DC ,BC 的中点.若,试用e 1,e 2表示[尝试解答] ∵M ,N 分别是DC ,BC 的中点,∴MN 綊12BD . 用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示,其实质是向量线性运算的反复应用.练一练2.如图所示,四边形OADB 是以向量OA ―→=a ,OB ―→=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示 [思考1] 如何证明向量a 与b 共线?名师指津:要证向量a 与b 共线,只需证明存在实数λ,使得b =λa (a ≠0)即可.[思考2] 如何证明A ,B ,C 三点在同一条直线上?名师指津:讲一讲3.(1)已知e 1,e2是两个不共线的向量,若=2e1-8e2,=e1+3e2,=2e1-e2,求证:A,B,D三点共线.(2)已知A,B,P三点共线,O为直线外任意一点,若求x+y的值.∵AB与BD有交点B,∴A,B,D三点共线.(2)由于A,B,P三点共线,所以向量在同一直线上,由向量共线定理可知,必定存在实数λ使故x=1-λ,y=λ,即x+y=1.用向量共线的条件证明两条直线平行或重合的思路(1)若b=λa(a≠0),且b与a所在的直线无公共点,则这两条直线平行;(2)若b=λa(a≠0),且b与a所在的直线有公共点,则这两条直线重合.例如,若向量,则共线,又有公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.练一练3.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN,求证:M,A,N 三点共线.证明:∵D为MC的中点,且D为AB的中点,∴M,A,N三点共线.—————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是向量的数乘运算及共线向量定理,难点是共线向量定理的应用.2.掌握与向量数乘运算有关的三个问题(1)向量的线性运算,见讲1;(2)用已知向量表示未知向量,见讲2;(3)共线向量定理及应用,见讲3.3.本节课的易错点当A、B、C、D四点共线时,共线;反之不一定成立.4.要掌握用已知向量表示其他向量的两种方法(1)直接法.(2)方程法.当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.5.注意以下结论的运用(1)以AB,AD为邻边作▱ABCD,且则对角线所对应的向量=a+b,=a-b.课下能力提升(十六)[学业水平达标练]题组1 向量的线性运算1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( ) A .2a -b B .2b -aC .b -aD .a -b解析:选B 原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b =2b -a .2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④解析:选B ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.题组2 用已知向量表示未知向量A .r =-12p +32q B .r =-p +2qC .r =32p -12q D .r =-q +2p=-12p +32q .4.在△ABC 中,点P 是AB 上一点,且则t 的值为( )A.13B.23C.12D.535.如图所示,在▱ABCD 中,=a ,=b ,AN =3NC ,M 为BC 的中点,则=________.(用a ,b 表示)=12b -14(a +b )=14b -14a =14(b -a ). 答案:14(b -a ) 6.如图所示,已知▱ABCD 的边BC 、CD 的中点分别为K 、L,且=e 1,=e 2,试用e 1,e 2表示⎩⎪⎨⎪⎧-y +12x =e 1, ①x -12y =e 2. ②-2×②+①得12x -2x =e 1-2e 2, 解得x =23(2e 2-e 1),即=23(2e 2-e 1)=43e 2-23e 1, 同理得y =23(-2e 1+e 2), 即=-43e 1+23e 2.题组3 共线向量定理的应用7.对于向量a ,b 有下列表示:①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2;③a =4e 1-25e 2,b =e 1-110e 2; ④a =e 1+e 2,b =2e 1-2e 2.其中,向量a ,b 一定共线的有( )A .①②③B .②③④C .①③④D .①②③④解析:选A 对于①,a =-b ;对于②,a =-12b ;对于③,a =4b ;对于④,若a =λb (λ≠0),则e 1+e 2=λ(2e 1-2e 2),即(1-2λ)e 1+(1+2λ)e 2=0,所以1-2λ=1+2λ=0,矛盾,故④中a 与b 不共线.8.已知向量a ,b ,且=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,CC .B ,C ,D D .A ,C ,D解析:选A=(-5a +6b )+(7a -2b )=2a +4b =2,所以A ,B ,D 三点共线.9.已知e 1,e 2是两个不共线的向量,而a =k 2e 1+⎝⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个共线向量,则实数k =________.解析:由题设知k 22=1-52k 3, 所以3k 2+5k -2=0,解得k =-2或13. 答案:-2或1310.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,=a ,=b .(1)用a ,b 分别表示向量(2)求证:B ,E ,F 三点共线.[能力提升综合练]2.已知向量a ,b 是两个非零向量,在下列四个条件中,一定可以使a ,b 共线的是( )①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0;③x a +y b =0(其中实数x ,y 满足x +y =0);④已知梯形ABCD ,其中A .①②B .①③C .②D .③④解析:选A 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;λa -μb =0,λa =μb ,故②可以;x =y =0,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.解析:选B 如图,在△ABC 中,以BM ,CM 为邻边作平行四边形MBDC ,依据平行四边形法则可得两向量有公共点M ,则A ,M ,D 三点共线,设BC ∩MD =E ,结合MD 是平行四边形MBDC 的对角线可知,AE 是△ABC 的中线,同理可证BM ,CM 也在△ABC 的中线上,即M 是△ABC 的重心.以AB 、AC 为邻边作平行四边形ABFC ,依据向量加法的平行四边形法则可得4.如图所示,两射线OA 与OB 交于O ,则下列选项中哪些向量的终点落在阴影区域内(不含边界)( )A .①②B .①②④C .①②③D .③④到λx +(1-x )λ=λ>1;注意到1+2=3>1,34+13>34+14=1,12+13=56<1,34+15=1920<1,故选A. 答案:236.已知两个不共线向量e 1,e 2,且=e 1+λe 2,=3e 1+4e 2,=2e 1-7e 2,若A ,B ,D 三点共线,则λ的值为________.又=e 1+λe 2,且A ,B ,D 三点共线,所以存在实数μ,即e 1+λe 2=μ(5e 1-3e 2),又e 1,e 2不共线,所以⎩⎪⎨⎪⎧5μ=1,-3μ=λ,则λ=-35. 答案:-357.如图,已知在平行四边形ABCD 中,AH =HD ,BF =MC =14BC ,设=a ,=b ,试用a ,b 分别表示解:∵ABCD 是平行四边形,BF =MC =14BC , ∴FM =BC -BF -MC =12BC . ∴FM =12BC =12AD =AH . ∴FM 綊AH .∴四边形AHMF 也是平行四边形.8.已知O ,A ,M ,B 为平面上四点, (λ∈R ,λ≠0且λ≠1).(1)求证:A ,B ,M 三点共线;(2)若点B在线段AM上,求实数λ的范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ (2)在平行四边形 ABCD 中,M,N 分别是 DC,BC 的中点,已知AM=c, → → → AN=d,试用 c,d 表示AB和AD.
→ → 解 如图,设AB=a,AD=b.
→ 1 → 1 ∵M,N分别是DC,BC的中点, ∴BN= b,DM= a. 2 2 b+1a=c, → → → AD+DM=AM, 2 ∵在△ADM 和△ABN 中, 即 1 → → → AB + BN = AN , a+2b=d. 2 2 ①×2-②,得 b=3(2c-d). ②×2-①,得 a=3(2d-c). 2 → 4 → 4 2 ∴AB=3d-3c,AD=3c-3d.
1 x+y=________.
解 → → 由于 A,B,P 三点共线,则AB,AP在同一直线上,
→ → → → → → 由共线向量定理可知, 必存在实数 λ 使得AP=λAB即OP-OA=λ(OB-OA),
→ → → ∴OP=(1-λ)OA+λOB.
∴x=1-λ,y=λ,则x+y=1.
反思与感悟
解析答案
相反
;当a=0时,λa=0;
当λ=0时,λa=0. (3)λa几何意义就是将表示向量a的有向线段伸长或压缩. 当|λ|>1时,表示a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的 | λ| 倍 .
答案
知识点二 思考 答
向量数乘的运算律
类比实数的运算律,向量数乘有怎样的运算律? 结合律,分配律.
例2 (1)如图,在△ABC 中,D,E 为边 AB 的两个三
→ → → → 等分点,CA=3a,CB=2b,求CD,CE.
解
→ → → → → ∵CA=3a,CB=2b, ∴AB=CB-CA=2b-3a, → 1→ 2 所以AD=3AB=3b-a,
又D,E为边AB的两个三等分点,
2 2 2→ → → → → → → 所以CD=CA+AD=3a+3b-a=2a+3b, CE=CA+AE=3a+ AB 3 2 4 =3a+3(2b-3a)=a+3b.
① ②
反思与感悟
解析答案
跟踪训练 2
如图,在△OAB 中,延长 BA 到 C,使 AC=BA,在 OB 上取
1 → → 点 D,使 DB=3OB,DC 与 OA 交点为 E,设OA=a,OB=b,用 a,b 表 → → 示向量OC,DC.
解析答案
类型三 共线问题
例3 → → (1)已知非零向量 e1,e2 不共线,如果AB=e1+2e2,BC=-5e1+6e2,
11 2 5 11 5 =32a-12b=3a-18b.
解析答案
(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式3x- 2y=a,-4x+3y=b,求向量x,y.
解
3x-2y=a ①, 由 ①×3 + ②×2 得, x = 3a + 2b ,代入 ① 得 -4x+3y=b ②,
(1)λ(μa)=(λμ)a; (2)(λ+μ)a=λa+μa; (3)λ(a+b)=λa+λb.
答案
知识点三 思考
向量共线定理
若b=2a,b与a共线吗?
答
根据共线向量及向量数乘的意义可知,b与a共线.
如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b 与a(a≠0)是共线向量,那么有且只有一个实数λ,使得b=λa.
跟踪训练 3
→ → (1)设 e1,e2 是两个不共线的向量,已知AB=2e1+ke2,CB=
→ e1+3e2,CD=2e1-e2,若 A,B,D 三点共线,求 k 的值.
解 → → → BD=CD-CB=(2e1-e2)-2y=a,
所以x=3a+2b,y=4a+3b.
反思与感悟
解析答案
跟踪训练1
计算:
(1)(a+b)-3(a-b)-8a; 解 (a+b)-3(a-b)-8a=(a-3a)+(b+3b)-8a
=-2a+4b-8a=-10a+4b.
解析答案
(2)若
1 1 2y-3a-3(c+b-3y)+b=0,其中
a,b,c 为已知向量,则未知向
2 2 1 a-9b+9c 9 量 y=____________________. 解析
1 1 2y-3a-3(c+b-3y)+b=0,
2 2 1 2 2 1 3y-3a+3b-3c=0,所以 y=9a-9b+9c.
解析答案
类型二 向量的表示
→ A,B,D CD=7e1-2e2,则共线的三个点是______________. 解析 → =2AB. → → ∴AB,BD共线,且有公共点 B,∴A,B,D 三点共线. → → → → ∵AB=e1+2e2,BD=BC+CD=-5e1+6e2+7e1-2e2=2(e1+2e2)
解析答案
→ → → (2)已知 A,B,P 三点共线,O 为直线外任意一点,若OP=xOA+yOB,则
第二章
§ 2.2 平面向量的线性运算
2.2.3 向量数乘运算及其
几何意义
问题导学
知识点一
思考1
新知探究 点点落实
向量数乘的定义
向量3a,-3a与a从长度和方向上分析具有怎样的关系?
答
3a的长度是a的长度的3倍,它的方向与向量a的方向相同.
-3a的长度是a的长度的3倍,它的方向与向量a的方向相反.
答案
思考2
一般地,我们规定:实数λ与向量a的积是一个向量,这种运算叫做向
量的数乘.记作λa,该向量的长度与方向与向量a有什么关系?
一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向 相同 ; 当 λ < 0 时 , λa 的 方 向 与 a 的 方 向
答案
返回
题型探究
类型一
例1 解
重点难点 个个击破
向量数乘的基本运算
1 1 2 (1)化简34a-3b+3b-46a-7b;
1 3 7 2 原式=34a-3b+3b-2a+4b
3 1 7 2 =34-2a+-3+3+4b