图论讲义第4章-欧拉图与hamilton图

合集下载

欧拉图与哈密顿图

欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的

图论讲义第4章-欧拉图与hamilton图

图论讲义第4章-欧拉图与hamilton图
第四章 Euler 图和 Hamilton 图
§4.1 Euler 图
一、基本概念
通常认为,图论见诸于文献的起始研究之一是瑞士数学家欧拉关于七桥问题的研究。在 18 世纪普鲁士的哥尼斯堡城(Königsberg),普雷格尔(Pregel)河穿城流过,河中有两个河 心岛,有七座桥将小岛与河岸连接起来(如下图)。有市民尝试从河岸或岛屿的任一陆地点 出发,经过每座桥一次且仅一次回到出发点,但一直未能获得成功。人们怀疑,这样的走法 是否存在?这便是七桥问题。

哥尼斯堡七桥
图1
1741 年,欧拉经过对七桥问题的研究,发表了第一篇有关图论的论文,从而使七桥问 题闻名于世。欧拉将四块陆地用平面上四个点来表示,两块陆地间有一座桥相连,就在两个 相应的点间连一条边,最终获得如图 1 所示的一个图 G。于是七桥问题转化为一个图论问题: 图 G 中从任一顶点出发,经过每条边恰好一次回到出发点,是否可能?
若Wn 不是 G 的 Euler 闭迹,设 S = { Gn 中度>0 的所有顶点}。则 S ≠ φ (因Wn 不是 G 的 Euler 闭迹,有边不在Wn 上),且Wn 上有 S 中的点(否则 Gn 中Wn 上的点都是 Gn 的孤立 点,这与 G 是 Euler 图(从而连通)矛盾),但 vn ∈ S = V (G) \ S 。设 m 是Wn 上使得 vm ∈ S 而 vm+1 ∈ S 的最大整数。因Wn 终止于 S = V (G) \ S ,故 em+1 = vmvm+1 是 Gm 中 [S, S ] 的仅 有的一条边,因而是 Gm 的一条割边。
充分性:设 G 的每条边含在奇数个圈上,希望证明 G 的每个顶点都是偶数度的。任取
顶点 v, 设 v 关联的边共有 k 条,分别为 e1, e2 , , ek 。与这些边相应,构造一个有重边的 图 H 如下:顶点集 H = {u1, u2 , , uk } ,对于每个 ui ,相应于每个既含有 ei 也含有某个 e j 的 圈,在 ui 和 u j 之间连一条边。

欧拉图和汉密尔顿图

欧拉图和汉密尔顿图

(5) (6) 图2 易知,图 2 中, (1) 、 (4)为欧拉图, (2) , (5)为半欧拉图, (3) , (6) 既不是欧拉图,也不是半欧拉图. 在(3) , (6)中各至少加几条边才能 成为欧拉图?
(4)
练习:
(1) 判定下图中的图形是否能一笔画。
(2) 确定n取怎样的值,完全图Kn有一 条欧拉回路。
在一条汉密尔顿路。
例2 某地有5个风景点,若每个景点均有两条道路与 其他景点相通,问是否可经过每个景点一次而游完 这5处。
解 将景点作为结点,道路作为边,则得到一个有5
个结点的无向图。
由题意,对每个结点vi(i=1,2,3,4,5)有
deg(vi)=2。 则对任两点和均有 deg(vi) + deg(vj)=2 + 2 =4 = 5 – 1 所以此图有一条汉密尔顿路。即经过每个景点
——新华网 2006.1.10
2、汉密尔顿图
(1)定义4.2.1 给定图G,若存在一条路经过 图中的每个结点恰好一次,这条路称作汉密尔 顿路。若存在一条回路,经过图中的每个结点 恰好一次,这条回路称作汉密尔顿回路。 具有汉密尔顿回路的图称作汉密尔顿图。
下图存在一条汉密尔顿回路,它是汉密尔顿图
(2)定理4.2.1 若图G=<V,E>具有汉密尔顿 回路,则对于结点集V的每个非空子集S均有W(GS)≤|S|,其中W(G-S)是G-S的连通分支数。
解: 完全图Kn每个结点的度数为n-1,要使 n-1为偶数,必须n为奇数。故当n为奇数时, 完全图Kn有欧拉回路。
可以将欧拉路和欧拉回路的概念推广到有向图中。
(5)定义4.1.2 给定有向图G,通过图中每边一次
且仅一次的一条单向路(回路),称作单向欧拉路

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图
欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。具 有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次且仅 一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈密尔 顿图。
f:说法语、日语和俄语;
g:说法语和德语.
c f
g
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边
(即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为
G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以
G是连通图. 因此, 上述7个人中任意两个人能交谈.
解二
c


e
a

半哈密尔顿图
哈密尔顿图 哈密尔顿图
N
周游世界的游戏——的解
哈密顿图
哈密顿图
无哈密顿 通路
哈密顿图
存在哈密 顿通路
实例
在上图中, (1),(2) 是哈密顿图;
实例
已知有关人员a, b, c, d, e, f, g 的有关信息
a:说英语;
b:说英语或西班牙语;
c;说英语,意大利语和俄语;
a:说英语; b:说英语或西班牙语;


c;说英语,意大利 语和俄语;
b
g
d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
西
d


f
如果题目改为:试问这7个人应如何安排座位, 才能使每个人都能与
他身边的人交谈?
解:用结点表示人,用边表示连接的两个人能说讲一种语言,够造

4.4 欧拉图与汉密尔顿图

4.4 欧拉图与汉密尔顿图

(1)既无欧拉回路,也无欧拉通路. (2)中存在欧拉通路,但无欧拉回路. (3)中存在欧拉回路.

图a)存在一条欧拉通路:v3v1v2v3v4v1; 图(b)中存在欧拉回路v1v2v3v4v1v3v1,因而(b)是欧拉 图; 图(c)中有欧拉回路v1v2v3v4v5v6v7v8v2v4v6v8v1因而(c) 是欧拉图。
定理
G有n个顶点,m条边,如果
1 2 ,则G是Hamilton图。 m (n -3n+6) 2
证明.任取不相邻的两个顶点u,v∈G, G中去掉u,v后导出子图G’,G’有n-2个 (n-2)(n -3) 顶点,至多 C = 条边.U,v到G’ 2 n -3n+6 (n -2)(n -3) m- C - =n 的边数有 2 2 D(u)+D(v)≥n. 由充分条件1得,G是Hamilton图。
定理(充分条件1)设G=<V,E>是简单无向 图。如果对任意两个不相邻的结点u, vV,均有: deg(u)+deg(v)|V|-1, 则G中存在哈密尔顿路;
如果对任意两个不相邻的结点u, vV,均有:deg(u)+deg(v)|V|, 则G中存在哈密尔顿回路,即G和为4,结点 数为6,即有46,,但它仍然是哈密尔顿图。
哈密尔顿图的判定
定理(必要条件1) 设无向图G=<V,E>是 哈密尔顿图,V1是V的任意的非空子集,
p(G-V1)≤V1.
其中, p(G-V1)为从G中删除V1(删除V1中 各顶点及关联的边)后所得图的连通分支 数.
证明:设C为G中的一条哈密尔顿回路. (1)若V1中的顶点在C上彼此相邻,则 p(C-V1)=1≤ V1 (2)设V1中的顶点在C上存在r(2≤r≤ V1) 个互不相邻,则 p(C-V1)= r≤V1

图论4-4欧拉图和汉PPT课件

图论4-4欧拉图和汉PPT课件

此定理是必要条件,可以用来证明一个图不是 汉密尔顿图。
如右图,取S={v1,v4}, 则G-S有3个连通分支,
不满足W(G-S)≤|S|,故 该图不是汉密尔顿图。
说明:此定理是必要条件而不是充分条件。有的图满足此必 要条件,但也是非汉密尔顿图。
所以用此定理来证明某一特定图是非汉密尔顿图并不是 总是有效的。例如,著名的彼得森(Petersen)图,在图中删 去任一个结点或任意两个结点,不能使它不连通;删去3个结 点,最多只能得到有两个连通分支的子图;删去4个结点,只 能得到最多三个连通分支的子图;删去5个或5个以上的结点, 余下子图的结点数都不大于6,故必不能有5个以上的连通分 支数。所以该图满足W(G-S)≤|S|,但是可以证明它是非汉密 尔顿图。
1 1
11 0 1
0
0
0
1
0
1
0
0
10
1d 0c 1b 1a
设有一个八个结点的有向图,如下图所示。其结点分别记为 三位二进制数{000,001,……,111}, 设ai{0,1},从结点a1 a2 a3可引出两条有向边,其终点分别是a2 a30以及a2 a31。该两条边分别记为a1 a2 a30和a1 a2 a31。 按照上述方法,对于八个结点的有向图共有16条边,在这种图的 任一条路中,其邻接的边必是a1 a2 a3a4和a2 a3a4a5的形式,即是第 一条边标号的后三位数与第二条边的头三位数相同。
4-4 欧拉图
[教学重点] 无向欧拉图的定义、判定定 理和实际应用
[教学难点] 欧拉图判定定理的证明
1、哥尼斯堡七桥问题
哥尼斯堡城有 一条横贯全城 的普雷格尔河, 城的各部分用 七桥联结,每 逢节假日,有 些城市居民进 行环城周游, 于是便产生了 能否“从某地 出发,通过每 桥恰好一次, 在走遍了七桥 后又返回到原 处”的问题。

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图图论是数学的一个分支,研究图的性质及其应用。

在图论中,哈密顿图和欧拉图是两个重要的概念。

本文将介绍哈密顿图和欧拉图的定义、性质和应用,并探讨它们在现实生活中的实际应用。

一、哈密顿图的定义与性质哈密顿图是指一种包含了图中所有顶点的路径的图。

具体来说,哈密顿图是一个简单图,其中任意两个不同的顶点之间都存在一条路径,使得该路径经过图中的每个顶点且不重复。

哈密顿图具有以下的性质:1. 哈密顿图是一个连通图,即图中的每两个顶点之间都存在通路。

2. 图中每个顶点都是度数大于等于2的点,即每个顶点都至少连接着两条边。

二、欧拉图的定义与性质欧拉图是指一种可以通过图中每条边恰好一次的路径来穿越图的图。

具体来说,欧拉图是一个简单图,其中经过图中每条边且路径不重复的路径称为欧拉路径,而形成闭合回路的欧拉路径称为欧拉回路。

欧拉图具有以下的性质:1. 每个顶点的度数都是偶数,即每个顶点都连接着偶数条边。

2. 欧拉图中至少有两个连通分量,即图中有至少两个不同的部分可以从一部分通过路径到达另一部分。

三、哈密顿图与欧拉图的应用哈密顿图和欧拉图在实际生活中有广泛的应用,下面将分别介绍它们的应用领域。

1. 哈密顿图的应用:哈密顿图在旅行商问题中有着重要的应用。

旅行商问题是指一个旅行商要依次拜访若干个城市,然后返回起始城市,而要求找到一条最短的路径使得每个城市都被访问一次。

哈密顿图可以解决这个问题,通过寻找一条哈密顿路径来确定最短的路径。

2. 欧拉图的应用:欧拉图在电路设计和网络规划中发挥着重要的作用。

在电路设计中,欧拉图可以帮助我们确定如何安排电线的布线以最大程度地减少电线的长度和复杂度。

在网络规划中,欧拉图可以用于确定如何正确地连接不同的网络节点以实现高效的信息传输。

四、结论哈密顿图和欧拉图是图论中的两个重要概念。

哈密顿图是一种包含了图中所有顶点的路径的图,而欧拉图是一种可以通过图中每条边恰好一次的路径来穿越图的图。

欧拉图及哈密顿

欧拉图及哈密顿
哈密顿路径是指一条遍历图的所有顶 点的路径,这条路径的起点和终点是 同一点,但路径上的边可以重复。
哈密顿图的性质
哈密顿图具有连通性,即任意两 个顶点之间都存在一条路径。
哈密顿图的顶点数必须大于等于 3,因为至少需要3个顶点才能 形成一条遍历所有顶点的路径。
哈密顿图的边数必须为奇数,因 为只有奇数条边才能形成一条闭
欧拉图及哈密顿
• 欧拉图 • 哈密顿图 • 欧拉图与哈密顿图的应用 • 欧拉回路与哈密顿回路 • 欧拉路径与哈密顿路径
目录
01
欧拉图
欧拉图的定义
总结词
欧拉图是指一个图中存在一条路径,这条路径可以遍历图中的每条边且每条边 只遍历一次。
详细描述
欧拉图是由数学家欧拉提出的一种特殊的图,它满足特定的连通性质。在欧拉 图中,存在一条路径,这条路径从图的一个顶点出发,经过每条边一次且仅一 次,最后回到起始顶点。
互作用网络的研究。
04
欧拉回路与哈密顿回路
欧拉回路的概念与性质
概念
欧拉回路是指一个图形中,从一点出 发,沿着一条路径,可以回到起始点 的路径。
性质
欧拉回路必须是连续的,不能中断, 也不能重复经过同一条边。此外,欧 拉回路必须是闭合的,起始点和终点 必须是同一点。
哈密顿回路的概念与性质
概念
哈密顿回路是指一个图形中,存在一 条路径,该路径经过了图中的每一条 边且每条边只经过一次。
随机构造法
通过随机选择边和顶点,不断扩展图,直到满足哈密顿图的条件。这种方法需要大量的计 算和随机性,但可以用于构造大规模的哈密顿图。
03
欧拉图与哈密顿图的应用
欧拉图在计算机科学中的应用
算法设计
欧拉图理论是算法设计的重要基础,特别是在图算法和动态规划 中,用于解决诸如最短路径、最小生成树等问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了进一步的讨论,我们需要定义如下术语。 Euler 闭迹(closed trail, tour, circuit):经过图 G 的每条边恰好一次的闭迹。 Euler 迹(trail):经过每条边恰好一次的迹。 Euler 图:有 Euler 闭迹的图。
利用这些术语,七桥问题可叙述为:图 1 中的图 G 是否为 Euler 图?欧拉对此做出了否 定的回答。事实上,欧拉研究了更一般的情况,获得了任意一个图是否为欧拉图的判定条件。
[1] E. Lucas,Récréations Mathématiques IV, Paris, 1921.
Fleury 算法的步骤如下:
输入:欧拉图 G 输出:G 的欧拉闭迹。
step1. 任取 v0 ∈V (G) ,令 w0 := v0 , i := 0 。 step2. 设迹 wi = v0e1v1 eivi 已取定。从 E \ {e1, e2 , , ei }中选取一条边 ei+1 ,使得 (1) ei+1 和 vi 相关联; (2) ei+1 不选 Gi = G \ {e1, e2 , , ei }的割边,除非没有别的选择。
假设图 G 无奇度顶点,但它不是 Euler 图。令 S={G|G 至少有一条边,无奇度顶点,且不是 Euler 图}
1
则 S ≠ φ 。取 S 中边数最少的一个,记为 G′ 。因δ (G′) ≥ 2 ,故 G′ 含有圈,因而含有闭迹。 设 C 是 G′ 中一条最长的闭迹。由假设,C 不是 G′ 的 Euler 闭迹。因此 G′ \ E(C) 必有一个 连通分支至少含有一条边。记这个连通分支为 G0 。由于 C 是闭迹,故 G0 中没有奇度顶点, 且 ε (G0 ) < ε (G′) 。由 G′ 的选择可知,G0 必有 Euler 闭迹 C0 。由于 G′ 连通,故 C 必经过 G0 中 至 少 一 个 顶 点 , 从 而 V (C) ∩ V (C0 ) ≠ φ 。 因 此 C + C0 是 G′ 的 一 条 闭 迹 , 且 ε (C + C0 ) > ε (C) ,这与 C 的选取矛盾。证毕。
定理 4.1.3 一个非平凡连通图 G 是欧拉图的充分必要条件是 G 的每条边含在奇数个圈上。
证明:必要性:设 G 是欧拉图, 则 G 的所有顶点都是偶数度的。任取 G 的一条边 e = uv,
因 G 有欧拉闭迹,故 G′ = G − e 是连通图。令 M 表示 G′ 中所有使顶点 u 恰好出现一次的
不同的 u−v 迹组成的集合,这里两条迹相同是指两条迹的边数相同且每一步使用的边相同, 因此两条迹不同要么至少其中一条迹上有另一条迹所没有的边,要么两条迹使用边的次序不 同。我们先来证明 M 含有奇数条迹。
从顶点 v 出发有奇数条边可作为迹的始边。一旦始边被确定,则这条迹就要继续到下一 个顶点 w。由于除 vw 外 w 关联的边有奇数条,所以迹的第二条边有奇数种选择。如此继续, 直至到达迹的另一个端点 u。这表明始边使用 vw 的 u−v 迹有奇数条。对每一条始边都是如 此,因此不同的 u−v 迹有奇数条。这里需要说明的是,如果迹中途重复经过某个顶点,上述 递推过程仍然成立。
个顶点都是偶度顶点。从而 G +e 有 Euler 闭迹。故 G 有 Euler 迹。证毕。
一个图 G 如果有一条欧拉迹或欧拉闭迹,则我们可以沿着欧拉迹或欧拉闭迹连续而不 重复地把 G 的边画完。因此存在欧拉迹或欧拉闭迹的图通常称为可一笔画的图,或者说它 可一笔画成。如果图 G 可分解为两条迹或闭迹的并,则 G 的边可用两笔不重复地画完。同 样地,如果图 G 可分解为 k 条迹或闭迹的并,则 G 可 k 笔画成。
S
e vm em+1
v0 = vn
S
vm+1
设 e 是 Gm 中和 vm 关联的另一条边(因 dGn (vm ) > 0 ,这样的边 e 一定存在),则由算 法第二步知:e 必定也是 Gm 的一条割边(否则,按算法应选 e 而不选 em+1 ),因而 e 是 Gm [S ]
的割边。
4
但由于Wn 是闭迹, v0 = vn ∈ S ,且对 ∀v ∈ S , dG (v) 是偶数。故 Gm [S ]= Gn [S] 中 每个顶点都是偶数度顶点,由此又推出 Gm [S ]无割边(第二章习题 11)。
假设 T 是 G′ 中一条包含 u 恰好一次的 u−v 迹,但不是一条 u−v 路,则 T 必定重复经过
了某些顶点,如果重复经过了顶点 v1,意味着 T 包含一条 v1 −v1 闭迹 C,此时将 C“逆向” 使用,T 上其它边不变,便得到另一条 u−v 迹,我们称其为与 T 同类的 u−v 迹。可见,如果 一条 u−v 迹重复经过 k 个点(多次经过的同一点的计重复经过次数),则经这种逆向变换可
3
三、求 Euler 图中的 Euler 闭迹-Fleury 算法
对于复杂一些的图,即使判定出它有欧拉闭迹,也未必能很快地找出一条欧拉闭迹。在 许多大规模应用中,需要借助于算法来找欧拉闭迹。Fleury 给出了一个在欧拉图中找欧拉闭 迹的多项式时间算法[1]。其基本思想是,从图中一个顶点出发,用深度优先方法找图的迹, 在任何一步,尽可能不使用剩余图的割边,除非没有别的选择。
由于 ei 含在奇数个圈上,且每个经过 ei 的圈必经过 e1, e2 , , ek 中某条其它边,因此 H
k
∑ 中顶点 ui 的度为奇数。由 ui 的任意性,H 中每个点的都是奇数。由公式 2ε (H) = d (ui ) 知, i =1
H 的顶点个数 k 必须是偶数,从而可知在 G 中顶点 v 关联偶数条边。由 v 的任意性,G 中 所有点都是偶数度顶点,故为欧拉图。证毕。
显然获得 G 的一条 Euler 闭迹。证毕。 定理 4.1.2 一个连通图有 Euler 迹当且仅当它最多有两个奇度顶点。 证明 必要性:设连通图 G 有 Euler 迹 T,其起点和终点分别为 u, v。
若 uv ∈ E(G) ,则 G 有 Euler 闭迹,由定理 4.1.1,G 无奇度顶点。
若Wn 不是 G 的 Euler 闭迹,设 S = { Gn 中度>0 的所有顶点}。则 S ≠ φ (因Wn 不是 G 的 Euler 闭迹,有边不在Wn 上),且Wn 上有 S 中的点(否则 Gn 中Wn 上的点都是 Gn 的孤立 点,这与 G 是 Euler 图(从而连通)矛盾),但 vn ∈ S = V (G) \ S 。设 m 是Wn 上使得 vm ∈ S 而 vm+1 ∈ S 的最大整数。因Wn 终止于 S = V (G) \ S ,故 em+1 = vmvm+1 是 Gm 中 [S, S ] 的仅 有的一条边,因而是 Gm 的一条割边。
2
定理 4.1.1 和定理 4.1.2 表明,一个图 G 可一笔画成的充分必要条件是 G 至多有 2 个奇 度顶点。一般地,有下述推论。
推论 4.1.1 一个连通图可 k 笔画成当且仅当它最多有 2k 个奇度顶点。
证明留作习题。
Toida 于 1973 年发现,在一个欧拉图中,对任何一条边,经过它的圈的个数都是奇数。 1984 年,Mckee 又证明这个条件是充分的。这样便形成了对欧拉图的另一种刻画。
充分性的另一种证法(数学归纳法):
无妨设ν (G) > 1 。因 G 连通且无奇度顶点,故δ (G) ≥ 2 ,因而必含有圈。 当ν (G) = 2 时,设仅有的两点为 u,v,则 u,v 间必有偶数条边,它们显然构成 Euler 回
路。
假设ν (G) = k 时,结论成立。 当ν (G) = k + 1 时,任取 v ∈V (G) 。令 S = {v 的所有关联边}。记 S 中的边为 e1, e2 , em ,其中 m = d (v) 为偶数。记 G′ = G \ v 。对 G′ 作如下操作: (1) 任取 ei , e j ∈ S ,设 ei = viv , e j = v jv ; (2) G′ := G′ + viv j , S := S \ {ei , e j } ; (3) 若 S = φ ,则令 G′ := G′ − v ,停止;否则转(1)继续。 这个过程最终得到的 G′ 有 k 个顶点,且每个顶点在 G′ 中的度与在 G 中完全一样。由归 纳假设,G′ 中有 Euler 闭迹,设为 P。将 P 中上述添加边 viv j 都用对应的两条边 ei , e j 代替,
第四章 Euler 图和 Hamilton 图
§4.1 Euler 图
一基本概念
通常认为,图论见诸于文献的起始研究之一是瑞士数学家欧拉关于七桥问题的研究。在 18 世纪普鲁士的哥尼斯堡城(Königsberg),普雷格尔(Pregel)河穿城流过,河中有两个河 心岛,有七座桥将小岛与河岸连接起来(如下图)。有市民尝试从河岸或岛屿的任一陆地点 出发,经过每座桥一次且仅一次回到出发点,但一直未能获得成功。人们怀疑,这样的走法 是否存在?这便是七桥问题。
若 uv ∉ G ,则 G + uv 有 Euler 闭迹。由定理 4.1.1,图 G + uv 无奇度顶点。故 G 最多
只可能有两个奇度顶点。
充分性:若 G 无奇度顶点,则由定理 4.1.1,G 有 Euler 闭迹,自然有 Euler 迹。
若 G 只有两个奇度顶点,设其为 u,v,则给 G 添加一条新边 e = uv 所得的图 G +e 的每
二、Euler 图的判定
定理 4.1.1 一个非空连通图是 Euler 图当且仅当它没有奇度顶点。
证明 必要性:设图 G 是 Euler 图,C 是 G 中一个 Euler 闭迹。对 ∀v ∈V (G) ,v 必在 C 上 出现。因 C 每经过 v 一次,就有两条与 v 关联的边被使用。设 C 经过 v 共 k 次,则 d (v) = 2k 。 充分性:无妨设ν (G) > 1 。因 G 连通,故至少有一条边。下面用反证法证明充分性结论。
相关文档
最新文档