质点动力学

合集下载

质点动力学

质点动力学
x2 y2 1
a2 b2
可见,质点的运动轨迹是以
a、b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
13
aaxy
x a 2 cost y b 2 sint
2x 2 y

a axi ay j 2r
将上式代入公式中,得力在直角坐标轴上的投影
FFxy
max may
m 2x m 2 y
dv dt
积分。
如力是位置的函数,需进行变量置换
d v v d v , 再分离变量积分。 dt ds
16
[例3] 质量为m的质点沿水平x轴运动,加于质点上的水平为
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
再积分一次
19
代入初始条件得 :
c1 v0 cos0 , c2 v0 sin 0 , c3 c4 0
则运动方程为:
则轨迹方程为:
xv0tcos0,yv0tsin0
y
xtg
0
1 2
g
v0
2
x02
c os2
0
1 2
gt
2
代入最高点A处值,得: d y dt
v0
sin 0
gt
0,

t v0 sin0
即 F Fxi Fy j m 2r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
大小与r的大小成正比,称之为向心力。
14
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。
已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的函数。 解题步骤如下: ① 正确选择研究对象。 ② 正确进行受力分析,画出受力图。判断力是什么性质的力

质点动力学优质获奖课件

质点动力学优质获奖课件

由此拟定力 F 旳方向与矢径 相反,即力 旳方向恒指向椭
圆中心 ,称之为有心力
理论力学
第十一章
第三节 质点运动微分方程
质点动力学基本方程
例题:摆动输送机由曲柄带动货架AB输送质量为m旳木箱。
已知两曲柄旳长度O1A O2B 1.5 m 、O1O2 AB;在 45 输 送机由静止开始开启,曲柄 O1A 旳初角加速度 0 = 5 rad/s 。 若开启时木箱与货架间没有相对滑动,试拟定木箱与货架间
静摩擦因数旳最小值。
O1
0
A
O2
m
B
理论力学
第十一章
第三节 质点运动微分方程
质点动力学基本方程
O1
0
an
m

A
O2
a
B
解:该问题属于第一类问题。
1、研究木箱,视为质点。进行运 动分析
在开启瞬时,点A旳加速度:
v2
an
l
0
at l0
故该瞬时木箱加速度旳大小 a at l0
理论力学
理论力学
第十一章
第三节 质点运动微分方程
质点动力学基本方程
例题:如图所示,从某处抛射一质量为m旳物体,已知初速度
为v0,抛射角即初速度对水平线旳夹角为α, 若不考虑空气阻 力旳影响,试求物体旳运动方程和轨迹方程。
y
v0
x
理论力学
第十一章
第三节 质点运动微分方程
质点动力学基本方程
解:本题属于动力学第二类问题,即已知力求运动。
第十一章
第三节 质点运动微分方程
质点动力学基本方程
解:2、对木箱进行受力分析
O1
0
an

大学物理第2章质点动力学

大学物理第2章质点动力学

第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。

二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。

表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。

⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。

p mv动量是矢量,方向与速度方向相同。

由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。

此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。

物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。

四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。

力的基本类型:引力相互作用、电磁相互作用和核力相互作用。

按力的性质来分,常见的力可分为引力、弹性力和摩擦力。

六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。

建立坐标,列方程。

求解方程。

当力是变力时,用牛顿第二定律得微分方程形式求解。

例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。

解分别取叶和m2为研究对象,受力分析如上图。

利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

质点动力学的三个基本定律

质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。

牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。

第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。

第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。

物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。

该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。

角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。

角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

《大学物理》第2章 质点动力学

《大学物理》第2章 质点动力学

TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

笫二章质点动力学

笫二章质点动力学

F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静摩擦力:决定于物体受到其它外力的合力。
滑动摩擦力:fk k N
第13页/共124页
第14页/共124页
自行车在粗糙的水平面上起动时,前轮 和后轮所受的摩擦力方向如何?
第15页/共124页
2.2 四种基本力 万有引力 电磁力 强力 弱力
➢ 宏观世界里除了重力来源于万有引力外,其它的 力几乎都源于电磁力
第3页/共124页
第4页/共124页
1.2 牛顿第二定律
物体受到外力作用时,物体所获得的加速度的
大小与合外力的大小成正比,并与物体的质量成反
比,加速度的方向与合外力的方向相同,即
a
k
F
m
国际单位制:k=1,则
F ma
第5页/共124页
➢ 加速度与力的关系: a F
kF
m
F
m
a
ka
➢ 加速度与质量的关系: a 1/ m
a F m2 g m1 g sin t 3t 2 (m / s 2 )
m1 m2
a dv dv adt
v
dv
t
adt
dt
0
0
v
t
(t
3t 2 )dt
1
t2
t 3 (m /
s)
0
2
第20页/共124页
例 2-2 一质量为 m 的质点 t=0 时自坐标原点以零
初速下落,运动过程中受到空气阻力 f mkv ,
P G mM mg R2
g
G
M R2
——重力加速度与物体质量无关
第10页/共124页
比萨铁塔落体实验
第11页/共124页
➢ 重力随物体所处高度和纬度而微小变化
惯性离心力 万引有力引力 重力
第12页/共124页
弹力:物体由于形变而对引起形变的物体产生的 作用力,在弹性范围内,
N kx
摩擦力:相互接触的物体间产生的一对阻止相对运 动或相对运动趋势的力。
dt k
0
0k
y
g k
t
g k2
(1 ekt )
第22页/共124页
讨论:
(1) k 0 , v gt , y 1 gt 2 ——理想自由落体运动 2
(2) t , v g / k ,
y g t g ——匀速直线运动 k k2
第23页/共124页
例:一质量为 m 的物体,以 v0 的初速度沿与水平方向成
k
y
1 k2
(g
kv0
sin)(1
e kt
)
gt k
第26页/共124页
*4.惯性系与非惯性系
第27页/共124页
第28页/共124页
第29页/共124页
4.1 惯性系与非惯性系
T
???
a0
F
mg
惯性参照系:牛顿定律成立的参考系。一切相对于 惯性系作匀速直线运动的参考系也是惯性参照系。
kmv
由(2)
v y v sin 0
g
dv y kvy
0t dt
mg
vy
1 [( g k
kv0 sin )ekt
g]
dy dt
0y
dy
1 k
0t [( g
kv0
sin
)e kt
g]dt
y
1 k2
(g
kv0
sin)(1
e kt
)
gt k
第25页/共124页
x v0 cos (1 ekt )
§2-1 牛顿运动定律 §2-2 动量定理 动量守恒定律 §2-3 角动量定理 角动量守恒定律 §2-4 动能定理 机械能守恒定律
第1页/共124页
第2页/共124页
1.牛顿运动三定律
1.1 牛顿第一定律 任何物体都保持静止状态或匀速直线运动状态,
直到其它物体的作用迫使它改变这种状态止。 ➢ 物体的惯性:物体具有保持运动状态不变的性质。 ➢ 力与运动的关系:力的作用是改变物体的运动状 态(运动速度),而不是维持物体的运动状态(运 动速度);力是使物体运动状态发生变化的物体间 的相互作用。
求:
(1) t 时刻质点的速度;
O
(2) 质点的运动方程。
f
mg y
第21页/共124页
解:
(1)
mg
f
ma
mg mkv m dv dt
g kv dv
t
v
(k)dt
dv
dt 0
0 vg/k
v g (1 ekt ) k
(2) v dy g (1 ekt )
y
dy
t g (1 ekt )dt
第18页/共124页
例 2-1 如图,已知 F 9.8 5t 15t 2 ,m1 4kg ,
m2 1kg , 300 , t 0 时系统保持静止,求 t 时
刻 m1(m2)的加速度和速度。
m1
B m2 F
第19页/共124页
解:
F T
m2 g T
m1 g sin
m2a m1a
m d2z dt 2
Fn
man
m
v2
Ft
mat
m
dv dt
第17页/共124页
3.2 用牛顿第二定律解质点动力学问题 1) 已知运动,求受力:求导过程 2) 已知受力,求运动:积分过程
解题要点: (1)受力分析,画出示力图(隔离法) (2)对各隔离体建立牛顿运动方程的矢量式 (3)建立坐标系,化矢量式为分量式 (4)解方程
第7页/共124页
2.力
2.1 几种常见的力
万有引力:
M
任何物体之间都存 在的相互吸引力:
mM F G r 2 er
G 6.6726 1011 N m2 kg-2
第8页/共124页
m F
r
第9页/共124页
重力:使物体产生重力加速度的力。
➢ 重力来源于地球对物体的引力,若忽略地球的 惯性离心力,则
角的方向抛出,空气的阻力与物体的动量成正比,比例
系数为 k ,求物体的运动轨迹。
解:建立坐标系如图
研究对象“m”受力: mg, kmv
运动方程:
mg kmv
m
dv
运动方程的分量式: dt
kmv
kmv x
m dvx dt
mg
mg
kmv y
m dv y t(2) g kv y
第16页/共124页
3.牛顿第二定律的应用
3.1 牛顿第二定律的数学表达式
矢量式: F
ma
m
dv
m
d
2
r
分量式:
dt dt2
直角坐标系:
自然坐标系:
Fx
max
m dvx dt
m d2x dt 2
Fy
ma y
m dv y dt
d2y m
dt 2
Fz
maz
m dvz dt
km
m
F mmm
F
a
a/k
——惯性质量:物体惯性大小的量度。
➢ 加速度、力和质量三者的关系:a F / m
第6页/共124页
1.3 牛顿第三定律 两物体间的相互作用力总是大小相等而方向相反:
F12 F21
➢ 反映了力的来源:力来自物体与物体间的相互作用 ➢ 作用力和反作用力同时存在 ➢ 分别作用于两个物体上,不能抵消 ➢ 属于同一种性质的力
相关文档
最新文档