液位测量原理及其方法
主流液位计工作原理(图文详解)

液位计是工业生产中常用的一种仪表,用于测量和监控各种容器中的液位高度。
根据不同的原理,液位计可以分为许多不同的类型,其中主流的液位计包括浮球式、压力式、毛细管式、超声波式等。
本文将重点介绍这些主流液位计的工作原理及其特点,希望能为读者提供有价值的信息和参考。
1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。
原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。
2、浮球液位计原理:浮球液位计结构主要基于浮力和静磁场原理设计生产的。
带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。
浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。
也就是使磁性浮子位置的变化引起电学量的变化。
通过检测电学量的变化来反映容器内液位的情况。
3、钢带液位计原理:它是利用力学平衡原理设计制作的。
当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。
液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。
4、雷达液位计原理:雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。
探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
5、磁致伸缩液位计原理:磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。
在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。
液位计的原理及应用

液位计的原理及应用1. 介绍液位计是一种常用的仪器,用于测量容器中液体的高度或液位。
液位计的原理基于液压、电磁、超声波等技术,可以应用于各种工业过程中,如化工、石油、食品加工等行业。
2. 液位计的原理液位计的原理可以根据工作原理的不同分类。
以下是几种常见的液位计原理:2.1 压力式液位计压力式液位计利用容器中液体压力的变化来测量液位。
液位计通过测量液体和容器壁之间的压力差来确定液位的高度。
压力式液位计适用于非粘稠的液体介质。
2.2 浮子式液位计浮子式液位计通过测量一个浮子在液体中的浮力来确定液位的高度。
浮子式液位计的浮子会随着液位的变化而上下浮动,通过检测浮子的位置来确定液位。
2.3 电容式液位计电容式液位计利用电容传感器来测量液位的高度。
当液体进入容器中,电容传感器的电容值会发生变化,利用这个变化来确定液位的高度。
电容式液位计适用于液体介质的测量。
2.4 隔膜式液位计隔膜式液位计通过液位计中的流体来传递压力信号,利用压力信号来测量液体的高度。
液位计中的隔膜可以隔离液体与传感器之间的物理接触,防止传感器受到腐蚀。
3. 液位计的应用液位计广泛应用于各个行业,以下是几个常见的应用场景:3.1 石化行业在石化行业中,液位计用于监测储罐中的液位。
通过实时监测液位,可以及时了解储罐内液体的存储情况,并及时采取措施,避免液体溢出或储罐内液位过低。
3.2 食品加工行业在食品加工行业中,液位计被用于测量罐装液体的液位。
罐装液体的液位控制在一定范围内,能够保证商品的质量,同时也能提高生产效率。
3.3 污水处理行业液位计在污水处理行业中起着重要的作用。
通过监测污水处理设备中的液位,可以及时了解处理过程的进展情况,并采取相应的控制措施,确保污水处理过程的顺利进行。
3.4 制药行业在制药行业中,液位计被广泛应用于药品的生产和储存过程。
液位计可以监测药品的液位,确保药品生产过程的稳定性和质量。
4. 总结液位计是一种重要的仪器,在各个行业中都起着关键的作用。
液位检测原理

液位检测原理
液位检测原理是通过测量液体的高度来判断液位的位置。
常见的液位检测原理包括浮子式液位检测、电容式液位检测、阻抗式液位检测、压力式液位检测等。
其中,浮子式液位检测利用浮子的浮力原理,通过测量浮子的位置来确定液位的高度。
当液位上升或下降时,浮子也会随之相应地上升或下降,从而改变浮子与液位检测装置之间的传感器电路,完成液位监测。
电容式液位检测是利用电容变化来测量液位高度。
通过在液体中安装两个电极,液体的介电常数随着液位的变化而改变,从而导致电容变化。
测量电容的变化,就可以确定液位的高度。
阻抗式液位检测是利用电流通过液体时的阻抗变化来检测液位。
将电流通过液位上升或下降的位置,液体的阻抗值也会相应地改变。
通过测量电流与液体之间的阻抗,就可以判断液位的高度。
压力式液位检测利用液体的压力变化来测量液位高度。
通过在液体中安装一个压力传感器,液体的压力随着液位的变化而改变。
测量液体压力的变化,就可以确定液位的高度。
以上就是液位检测的一些常见原理,不同的液位检测原理适用于不同的场景和需求,可以根据实际情况选择合适的液位检测原理。
模拟量液位计原理

模拟量液位计原理解析1. 引言液位计是一种用于测量容器内液体或固体的水平高度的设备。
模拟量液位计是一种将液位高度转换为模拟电信号输出的液位计。
本文将详细解释模拟量液位计的基本原理,包括液位测量的原理、液位传感器的选择和工作原理,以及模拟电信号输出的原理。
2. 液位测量原理液位测量的原理有多种,常见的方法包括浮子式、压力式、超声波式、雷达式等。
不同的液位计使用不同的原理来实现液位测量。
2.1 浮子式液位计浮子式液位计是一种通过浮子的浮沉来测量液位高度的装置。
浮子通常由一个浮球和一个连接浮球和液位计的杆组成。
当液位上升时,浮球会随着液位的升高而上升,通过杆传递液位信息给液位计。
液位计可以根据浮子的位置来确定液位高度,并将其转换为相应的电信号输出。
2.2 压力式液位计压力式液位计利用液体的静压力来测量液位高度。
液体的静压力与液体的高度成正比,因此可以通过测量液体的静压力来确定液位高度。
压力式液位计通常包括一个压力传感器和一个液体容器。
压力传感器安装在液体容器底部,通过测量液体对传感器的压力来计算液位高度。
2.3 超声波式液位计超声波式液位计利用超声波在液体和空气之间的传播速度差来测量液位高度。
液面反射超声波,液位计通过测量超声波的传播时间来计算液位高度。
液位计通常包括一个超声波发射器和一个接收器,发射器将超声波发送到液面,接收器接收反射的超声波并测量传播时间。
2.4 雷达式液位计雷达式液位计利用雷达波在液体和空气之间的传播时间来测量液位高度。
液面反射雷达波,液位计通过测量雷达波的传播时间来计算液位高度。
雷达式液位计通常包括一个雷达发射器和一个接收器,发射器将雷达波发送到液面,接收器接收反射的雷达波并测量传播时间。
3. 液位传感器的选择和工作原理液位传感器是模拟量液位计的核心组件,用于将液位高度转换为电信号输出。
根据液位计的工作原理和应用需求,选择合适的液位传感器非常重要。
3.1 浮子式液位传感器浮子式液位传感器是与浮子式液位计配套使用的传感器。
超声波液位测量原理

超声波液位测量原理
超声波液位测量原理是通过利用高频振荡的超声波在介质中的传播和反射来确定液位高度的一种物理原理。
由于超声波的穿透性强,在介质中传播时会受到介质的反射和散射,同时也受到液位高度的影响。
超声波液位测量装置通常由超声波发射器、接收器和信号处理器组成。
超声波发射器通常是以固定的频率产生高频超声波,发射波通过液体向下传递并在液面受到反射,反射波向上穿过液体再次到达发射器,被接收器接收。
接收器接收到反射波后,将信号传递给信号处理器进行处理。
处理器首先计算发射波和反射波之间的时间差,通过速度和时间的乘积获得液位的高度。
当液位上升时,反射波的时间延迟会增加,计算得到的液位也会增大。
超声波液位测量原理的优点在于测量准确度高、响应速度快、适用范围广、维修成本低等。
因此在化工、石油、制药等各种行业中得到了广泛的应用。
在实际使用中,超声波液位测量仪的使用需要考虑环境条件和液位测量介质的物理特性,以保证测量的准确性和稳定性。
总之,超声波液位测量原理是将超声波在介质中的传播和反射来进行液位测量。
在具体使用中需要注意环境条件和液位介质的特性,以提高测量的准确性和稳定性。
液位测量的原理

液位测量的原理
液位测量是指测量容器或管道中液体的高度或深度。
液位测量的原理根据不同的情况和要求可以有多种方法,下面将介绍几种常见的液位测量原理。
1. 浮子法:浮子法利用浮力原理进行液位测量。
在测量容器中放置一个浮子,浮子质量较轻,可以浮在液体表面上。
通过固定在浮子上的测量装置,可以测量出浮子的位置,从而确定液体的高度。
2. 压力法:压力法通过测量液体对传感器的压力来确定液位。
常用的压力法有压力变送器和毛细管法两种。
压力变送器将液体的压力转换为电信号,通过测量这个电信号可以确定液位的高度。
毛细管法是利用毛细管内液体的静压力来测量液位,根据液体静压力和毛细管的长度,可以计算出液位高度。
3. 振荡法:振荡法利用液位的变化来改变振荡器的频率或振幅,通过测量振荡信号的变化来确定液位的高度。
常见的振荡法有声波法和电容法两种。
声波法是利用超声波的传播速度受液体密度和温度的影响,通过测量超声波的传播时间来确定液位的高度。
电容法是将液体和电容器构成一个电容系统,通过测量电容的变化来确定液位的高度。
4. 导纳法:导纳法是利用液体对电流的导电能力来测量液位。
常见的导纳法有电导法和电阻法两种。
电导法是通过测量液体的电导率来确定液位的高度,电阻法是通过测量液体对电阻的影响来确定液位的高度。
这些液位测量原理各有优劣,选择适合的方法要根据实际情况来决定。
液位的测量按原理分为

液位的测量按原理分为液位的测量可以按照不同的原理进行分类。
以下将介绍液位测量的几种常见的原理及其工作原理、优缺点以及应用领域。
1. 水银压力法水银压力法是一种传统的液位测量方法,基于水银的密度较大,当液位升高时,水银柱的高度也会相应增加。
液位计的构造包括一根与液体相接触的管子,另一端与气体相接触的管子,并通过两端之间的压力差来测量液位的高度。
该方法通常适用于高精度的液位测量,优点是测量精度高,能够测量多种液体,缺点是不适用于腐蚀性液体,且水银的环境污染问题不能忽视。
2. 浮子法浮子法利用浮力原理测量液位高度,浮子随着液面的升降而上下浮动。
液位计中通常有一个浮子,浮子通过浮子杆与指示器相连接,液位的升高会使得浮子上升,反之则下降。
液位测量通过观察浮子的位置确定液位高度。
该方法适用于低粘度和不易结垢的液体,而对于高粘度液体或易结垢的液体则不适用。
优点是结构简单,使用方便,缺点是受到浮子质量、浮力等因素的影响,测量精度相对较低。
3. 压阻法压阻法基于液体的压力与液位高度成正比的原理,通过测量液位下方的液体对压力传感器的压力来确定液位高度。
该方法适用于液体的密度和温度变化较小的情况,优点是测量范围广,且不受液体性质的限制,缺点是需要进行温度和密度的补偿,且测量精度有一定的误差。
4. 雷达测量法雷达测量法利用了电磁波在空气与介质界面上的反射特性,通过测量从介质表面反射回来的电磁波的时间来确定液位高度。
该方法适用于各种不同介质的液位测量,具有非接触、不受液体性质限制、测量精准等优点,但同时也存在影响的因素较多、价格较高等缺点。
5. 超声波测量法超声波测量法是利用超声波在液体中的传播速度与液体的密度和温度有关的原理,通过测量超声波从液体表面反射回来的时间来确定液位高度。
该方法适用于各种不同液体的液位测量,并且具有非接触、高精度的特点,但也存在受液体泡沫和杂质影响大的缺点。
6. 导电法导电法是在液体中引入电极,通过测量电极间的电阻或电容来确定液位高度。
液位的测量原理

液位的测量原理
液位的测量原理通常可以分为以下几种常用的方法:
1. 浮子法:利用浮子在液面上漂浮或下沉的原理来测量液位。
浮子通常与液位计相连,当液位升高时,浮子随之上升;当液位降低时,浮子相应下沉。
通过观察浮子所处的位置,可以确定液位的高低。
2. 压力法:利用液体的静压力与液面高度之间的关系来测量液位。
通过将一个管道的一端浸没于液体中,并将另一端接入压力传感器,液体的压力可以通过传感器转化为电信号,从而测量液位的高度。
3. 振动法:利用液面导致振动频率改变的原理来测量液位。
传感器通常会产生特定频率的振动,当振动波传播到液体时,液体的密度改变会导致振动频率的改变。
通过测量传感器接收到的反射信号的频率,可以确定液位的高低。
4. 电容法:利用液体与电极之间的电容变化来测量液位。
电极可安装在液体表面或容器壁上,当液位改变时,液体与电极之间的电容会发生变化。
通过测量电极之间的电容值,可以确定液位的高低。
以上是几种常见的液位测量原理,不同的应用场景会选择不同的测量方法来实现液位的准确测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
液位测量原理及其方法
钢带浮子式液位计
直读式钢带浮子式液位计,这是一种最简单的液 位计,一般只能就地显示。
9液位测量原理及其方法浮筒式液位计浮筒式液位计属于变浮力液 位计,当被测液面位置变化时, 浮筒浸没体积变化,所受浮力也 变化,通过测量浮力变化确定出 液位的变化量。
例如油罐液位测量控制不好,会出现抽空或溢油“冒顶”事故; 油气分离器液位偏高或偏低会出现“跑油”、“窜气”事故,严 重影响后序设备的生产和安全;
电脱水器中油水界面高了会破坏电场.低了会使放水中带油,影 响生产。
2
液位测量原理及其方法
物位的基本概念
物位——指容器中的液体介质的液位、固体的 料位或颗粒物的料位和两种不同液体介质分界 面的总称。
正、负压室的压力分别为
P P 气 H g h 1g
P P气
正、负压室的压差为
P P P H g h 1g
器输出信号为4mA 当H= Hmax时,差压ΔPmax=ρgHmax,
变送器的输出信号为20 mA,
14
液位测量原理及其方法
密封容器上层气体为可凝结蒸汽
负迁移
差压变送器的正、负压室的压力分别为
P P 气 H1gh 12g
PP气h22g
正、负压室的压差为
P P P H 1 g ( h 2 h 1 )2 g
油气储运自动化液位测量
1
液位测量原理及其方法
液位测量必要性
在油气储运过程中,精确测定储油大罐中的液位高度,是正确计 算储油量、确定库存、计算输量的重要措施。
在油气生产中,特别是在油气集输储运系统中,石油、天然气与 伴生污水要在各种生产设备和罐器中分离、存储与处理,物位的 测量与控制,对于保证正常生产和设备安全是至关重要的,否则 会产生重大的事故。
液位高度变化与弹簧变形量成 正比。弹簧变形量可用多种方法 测量,既可就地指示,也可用变 换器(如差动变压器)变换成电信号
进行远传控制。
图中: 1-浮筒;2-弹簧;3-差动变 压器 。
10
液位测量原理及其方法
静压式液位计
依据液体重量所产生的压力进行测量。由于液体对容器底面产生的静压 力与液位高度成正比,因此通过测容器中液体的压力即可测算出液位高 度。
检尺测量时,先对罐内液位高度进行测定,再根据罐的横截面积 或大罐容积表,计算罐内液体体积和质量。
检尺测量的工具是钢卷尺,其下端带有铜质重锤。为方便量油操 作,在罐顶设有量油口。量油口下装有量油管,管子底端钻有孔 眼与液体连通。设置量油管的目的是为了减小罐内液面波动对量 油的影响。
6
液位测量原理及其方法
p0
H 3
1
1—容 器 ;
2—差 压 传 感 器 ;
3—液 位 零 面
+- 2
PP0Hg
式中 P0、P+——分别是液面上部介质压力和液面以下H深度的液体压力。
PP P 0H g
13
液位测量原理及其方法
零点迁移
(1)压力表安装位置与容器底部不在同一高度 (2)导压管存在液柱
无迁移
特征:差压变送器的正压室取压口正好与 容器的最低液位(Hmin=0)处于同一水 平位置。作用于变送器正、负压室的差压 ΔP与液位高度H的关系为ΔP=Hρg。 当H =0时,正负压室的差压ΔP=0,变送
4
液位测量原理及其方法
直接测量法
直接测量是一种最为简单、直观的测量方法,它是利用连通器的原 理,将容器中的液体引入带有标尺的观察管中,通过标尺读出液 位高度。
玻璃管液位计。
5
液位测量原理及其方法
人工检尺液位测量
人工检尺液位测量是对各种储罐内的液体进行体积和质量测定的 种基本方法。
具有操作简单、计量准确、无须辅助设备的特点,仍是目前各油 田原油集输过程中的一种主要计量方法。
11
液位测量原理及其方法
敞口容器
多用直接测量容器底部压力的方法。如图所示,测压仪表通过导压 管与容器底部相连,由测压仪表的压力指示值,便可推知液位的高 度。
压力表测量液位原理
其关系为 PHg
式中 P—测压仪表指示值 H—液位的高度ρ—液体的密度g—重力加速度
12
液位测量原理及其方法
密闭容器
测量容器底部压力,除与液面高度有关外,还与液面上部介 质压力有关,其关系为
磁翻转液位计
磁翻转液位计结构牢固、工作可靠、显示醒目。 由于被测液体被完全密封,使用磁耦合传动,因而可以测量高温、
高压及不透明的粘性液体,如原油、污水等。 缺点是经长期使用后,磁钢磁性退化,翻板轴磨损易造成指示错
误.故应定期检查与校正。
7
液位测量原理及其方法
浮力法
浮力法测液位是依据力平衡原理,通常借助浮子 一类的悬浮物,浮子做成空心刚体,使它在平衡时能 够浮于液面。当液位高度发生变化时,浮子就会跟随 液面上下移动。因此测出浮子的位移就可知液位变化 量。
当被测液位H=0时,ΔP=-(h2-h1)ρ2g<0,使变送器在 H=0时输出电流小于4 mA;H=Hmax时,输出电流小于20
差压变送器高度改变,但只要正负取压点m位A置间距离(h2-h1)不变,其迁移量不变。
15
液位测量原理及其方法
变送器的安装位置与容器的最低液位(H=0)不
在同正一迁水移平位置
(或称沉筒)的浮力随液位高度变化而变化的原理来测量液位。前者称为恒 浮力式,后者称为变浮力式。 – (3) 差压式(静压式) 它根据液柱或物料堆积高度变化对某点上产生的静 (差)压力的变化的原理测量物位。 – (4) 电气式 它根据把物位变化转换成各种电量变化的原理来测量物位。 – (5) 核辐射式 它根据同位素射线的核辐射透过物料时,其强度随物质层的厚 度变化而变化的原理来测量液位。 – (6) 声学式 它根据物位变化引起声阻抗和反射距离变化来测量物位
液位——容器中的液体介质的高低 料位——容器中固体或颗粒状物质的堆积高度 界位——两种不溶液体介质的分界面的高低
3
液位测量原理及其方法
检测方法的分类
按测量方式可以分为连续测量和定点测量。 按其工作原理可分为下列几种类型:
– (1) 直读式 它根据流体的连通性原理来测量液位。 – (2) 浮力式 它根据浮子高度随液位高低而改变或液体对浸沉在液体中的浮筒