数学初高中衔接之分式方程和无理方程
新高一数学初升高数学衔接——学法指导

新高一数学初升高数学衔 接——学法指导
高中数学的特点是:注重抽象思维,内容 庞杂、知识难度大。高中教材不再像初中教材那 样贴近生活,生动形象,知识容量也更为紧密。 客观的说,初高中知识之间存在断层,正是由于 这种断层造成很多同学难以在较短时间内适应高 中数学的学习。那么,如何做好初高中数学学习 的衔接过渡,使得同学们对高中数学学习有一个 正确的认识,并迅速适应新的教学模式呢?
比如这样一个实际问题:把一个物体放在天平的一个盘 子上,在另一个盘子上放砝码使天平平衡,称得物体的 质量为a,如果天平制造得不够精确,天平的两臂长短略 有不同(其他因素不计),那么a并非物体的实际质量。 不过我们可以做第二次测量:把物体调换到另外一个盘 子上,此时称得的物体的质量为b,如何合理地表示物体 的质量呢?
(一)高中数学教材分析
高中数学课程分为必修和选修。必修课程由5个模 块(5本书)构成;选修课程有4个系列,其中系 列1、系列2由若干模块构成(系列1两本书、系列 2三本书),系列3、系列4由若干专题组成。内容 涉及初等函数、数列、概率与统计、算法、平面 解析几何、立体几何等等。进入高中,我们首先 学习的是《必修1》模块,我们应先对这一模块有 一个大体的了解。
向理论型抽象思维过渡,最后还需初步形成辩证型思维。
比如在二次函数求最小值问题。
(二)初ห้องสมุดไป่ตู้中数学特点的变化
创新学校中考总复习数学通用辅导材料初三复习基本训练卷--分式方程和无理方程(A)

一. 填空题:1.方程13=+πx _____________分式方程.(填“是”或“不是”) 2.分式方程11510+=x x 的根是___________________. 3.如果代数式31--x x 的值是32,那么x =______________. 4.方程011322=--+-xx x _____________无理方程.(填“是”或“不是”) 5.方程3162=-x 的解是__________________.6.已知线段AB=10cm,点P 是线段AB 的黄金分割点,且AP>BP,则AP=_______cm.7.分式方程1837222-=-++x x x x x 的最简公分母是______________. 8.分式方程112331)2(82222=+-+-+x x x x x x ,如果设y x x x =-+1222,那么原方程可以化为_______________.9.已知:0(180≠=nR R n l π),则R=______________.(用n 、l 的代数式表示R ) 10. 用换元法解无理方程2152522=++-+x x x x ,如果设y x x =++152,则原方程可以化为_______________.11. 在解分式方程时,可以通过去分母或换元法将它转化为整式方程,体现了___________数学思想.12. 无理方程042=+-x 无解的依据是_________________________.13. 已知点P 的坐标为(x ,3),A(4,-1),如果PA=6,那么可得到方程_______________.14. 分式方程111=-⋅-xx x 的解x =________________. 15. 如果04412=+-x x ,那么x2的值是__________________. 16. 已知方程a a x x 11+=+的两根分别为a 、a 1,则方程1111-+=-+a a x x 的根是__________________.17. 在解分式方程时,除了用去分母方法以外,对于某些特殊的分式方程,还可以用______________法来解.18. 如果)(111221R R R R R ≠+=,如果用R 、R 2表示R 1,则R 1=_____________. 19. 当x=____________时,代数式3472--x x x 与534+x 的值互为倒数. 20. 方程02050=+⋅-x x 的根是____________;方程0)20)(50(=+-x x 的根是________________.21. 某数的正的平方根比它的倒数的正的平方根的10倍多3,如设某数为x ,则可列出方程_________________________.22. 已知021=++-y x ,则xy =_________________.23. 解分式方程331-=--x m x x 产生增根,则m=________________. 24. 方程22=-+x x 的根是__________________.25. 方程032=+-x x 的解是___________________.26. 若代数式4162--x x 的值为0,则x=______________. 27. 解分式方程)2(3422x x x x +=+,如果设y x x =+2,原方程则可以化为______. 28. 方程65=+xx 的解是___________________. 二. 选择题:1.方程0242=--xx 的根是 ( ) (A) x 1=2,x 2=-2; (B) x 1=2; (C) x =-2; (D) 以上答案都不对.2.方程2211-=-x x 的根是 ( ) (A) x 1=1,x 2=2; (B) x =1; (C) x =2; (D) x =0.3.下列方程中,有实数解的是 ( ) (A) 012=+-x ;(B) 43-=-x x ;(C) x x -=+2; (D) 015=++-x x .4.设y=x 2+x +1,则方程xx x x +=++2221可化为 ( ) (A) y 2-y -2=0; (B) y 2+y+2=0; (C) y 2+y -2=0; (D) y 2-y+2=0.5.分式方程420960960=+-x x 的解是 ( ) (A) x =60; (B) x =-80; (C) x 1=60,x 2=-80; (D) x 1=-60,x 2=80.三. 简答题:1.解方程06)1(5)1(2=++++x x x x2.解方程12244212=-+-++xx x x3.33=-+x x4.用换元法解方程153322=++-+x x x x5.解方程组⎪⎪⎩⎪⎪⎨⎧=--+=-++346234121341233xy y x y x y x。
初升高衔接班

前言初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
1 数学语言在抽象程度上突变。
初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、函数语言以及以后要学习到的逻辑运算语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
当然,能力的发展是渐进的,不是一朝一夕的。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。
3现有初高中数学知识存在“脱节”。
立方和与差的公式初中已删去不讲,而高中的运算还在用;因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,但高中教材许多化简求值都要用到,如解方程、不等式等;二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧;二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
初高中数学衔接课程(5)——一元二次不等式与分式不等式讲义

初高中数学衔接课程第五讲 方程与不等式5.1 二元二次方程组解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程。
其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项。
我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组。
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法。
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解。
例1 解方程组22440,220.x y x y ⎧+-=⎨--=⎩解:由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即y (y +1)=0。
解得y 1=0,y 2=-1。
把y 1=0代入③,得x 1=2;把y 2=-1代入③,得x 2=0。
所以原方程组的解是112,0x y =⎧⎨=⎩,;220,1.x y =⎧⎨=-⎩说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解。
例2解方程组7,12.x y xy +=⎧⎨=⎩解:由①,得7.x y =- ③把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==。
把13y =代入③,得14x =;把24y =代入③,得23x =。
所以原方程的解是114,3x y =⎧⎨=⎩,;223,4.x y =⎧⎨=⎩【例3】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解。
数学北师大版高中必修1初高中数学衔接教材(打印稿)

初高中数学衔接教材(初中部分)前言:初、高中数学衔接的问题分析 (1)乘法公式 (2)第一讲因式分解 (3)1.十字相乘法 (3)2.提取公因式法 (4)3:公式法 (4)4.分组分解法 (5)第二讲函数与方程 (5)2.1 一元二次方程 2.1.1根的判别式 (6)2.1.2 根与系数的关系(韦达定理) (6)2.2 二次函数 (10)2.2.1 二次函数y=ax2+bx+c的图象和性质 (10)2.2.2 二次函数的三种表示方式 (13)2.2.3 二次函数的简单应用 (14)第三讲三角形的“四心” (15)前言:初、高中数学衔接的问题分析1教材内容方面:①初中数学教材较通俗易懂,难度相对高中较小,大多研究的是常量,且较多的侧重于定量计算,而高中数学教材较多的研究的是变量,不但注重定量计算,而且还常需作定性研究。
②为了适应义务教育要求,初中数学教材降低幅度较大,而高中由于受客观上升学压力和评价标准的影响,实际难度难以下降,且又增加了应用性的知识,因此在一定程度上,反而加大了高、初中数学教材内容的台阶。
③部分教学内容已由原来的初中讲授移到高中讲授(如常用对数、二次函数的图象法),而高中一些教师对调整后的大纲要求认识不够,而对编在附录内的内容认为初中讲了,而未讲这部分知识,形成了初、高中两不管的教材,给学生后继过程学习带来了极大的困难。
初高中衔接,不是单纯的知识衔接,更不是买一本“衔接教程”,利用暑假提前上课,或让学生自学就当已经衔接过了.初高中衔接,是一个严肃、重要的教学任务,通过调查分析研究,整理出一份与以前知识、高中教师原有认知相比的需要衔接设想,供新课程教学实施的教师参考.下面列出初高中教材的对比表1.与以前知识、高中教师原有认知相比认为存在但初中已删除需衔接的内容用心爱心专心 12教学方法方面:①初中数学教材每课时安排内容较少,因此教学进度一般较慢,对重点内容及疑难问题教师均有较多的时间反复练习、答疑、解惑;而高中数学教材每课时内容通常较多,所以教学进度一般较快,即使是重点内容教师也没有更多的时间反复强调,这对习惯了初中较慢教学进度的高一新生来说,无疑是一大挑战,对部分接受能力较弱的学生,或基础缺陷的学生,常处于一知半解的状态。
【免费下载】初高中数学衔接内容第七讲 分式方程和无理方程的解法
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
初高中过渡的数学教学策略分析研究
初高中过渡的数学教学策略分析研究随着基础教育改革的推进,数学教学的理念、方式及其教学内容发生了很大的变革。
高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
如何在我们的教学中落实好新课标的理念,让九年义务教育毕业刚进入高中的新生比较顺利地适应高中的数学学习,应该是高中数学教师尤其是高一数学教师应该关注的事情。
这些学生通过三年新课程标准的教材教法和理念的熏陶,多方面体现出来的能力优势十分明显,如好学、好问、好动、主动参与的意识特别强、思维活跃知识面较宽,能力培养潜力比较大。
但不足的方面也是非常明显且不可回避的,如运算能力有所减弱,学习习惯不够规范,缺乏严密数学思想和逻辑思维方面的训练,尤其是进入高中后,高中数学与初中阶段的教学内容与方法有很多差异和区别,甚至存在部分知识点的缺漏和知识系的断层。
因此,初高中过渡的教学问题的教学策略的分析和研究是摆在我们面前的一个重大课题。
一、北师大版的实验教材高中数学课程标准优点1.知识方面新课标“空间与图形”的内容涉及现实世界中物体、几何体和平面图形的形状、大小、位置关系及其变换。
“多姿多彩的图形”“投影与视图”等部分,从由物画图和由图想物两方面反映平面图形与立体图形的相互转化,使学生对立体图形三视图投影等有一定认识。
新课标教材中新知识都从实例引出,引导了学生关注社会、关注生活,注重学生用所学知识解决实际问题。
“统计与概率”采用螺旋式渗透统计知识并新增概率内容。
设置了阅读与思考、实验与探究、观察与猜想栏目,开放题、变式题训练多。
对学生数感、符号感和估算能力的训练,新增了函数图像法,求方程(组)不等式的近似解,加强了方程不等式与函数知识的综合运用。
2.能力方面空间想象能力提高。
初中学习了视图与投影,会画基本几何体的三视图(主视图、左视图、俯视图)及立体图形的平面展开图、新教材增加了平移、旋转、位似等内容。
高一数学 初高中衔接教材 高次方程、分式方程、无理方程的解法
分式方程解法例3(1)
例3(1) 解方程
7 5 x2 x
典 型 例
解: 两边同乘以最简公分母 x(x2) 题
得 7x5(x2)
解得 x5 经检验, x5 是原方程的解.
分式方程解法例3(2)
例3(2) 解方程
5x2 x2 x
3 x1
典 型 例
解: 两边同乘以最简公分母 x2 x
题
得 (5x2 )x ( 1 )3 (x2x)
即 (t6)t(4)0
故 t 6 或 t 4
即 x25x6或 x25x4
解得:x 1 1 ,x 2 6 ,x 3 1 ,x 4 4
高次方程解法例2(2)
典
例2(2)解方程
型
(x 2 )x ( 1 )x ( 4 )x ( 7 ) 19例 题
解:原方程即
(x 2 5 x 1 4 )(x 2 5 x 4 ) 1 9
例
解:原方程即
题
(6 x 7 )2 (6 x 7 1 )6 ( x 7 1 ) 72
换元 令 t6x7
原方程可化为 t2(t2 1)72
解得 t 2 9 或 t2 8(舍去)
解得 t 3 即 6x73
解得 x 2 或 x 5
3
3
解高次方程的思路是:
高次 因式分解、换元 一次或二次方程
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、把整式方程的解代入最简公分母,如果最简公 分母的值不为0,则整式方程的解是原分式方程的解; 否则,这个解不是原分式方程的解,必须舍去.
初高中数学衔接(1)
初高中数学衔接知识数学是一门重要的课程,其地位不容置疑,同学们在初中已经学过很多数学知识,这是远远不够的,而且现有初高中数学知识存在以下“脱节”:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
目录一、绝对值二、分式三、二次根式四、乘法公式五、因式分解六、一元二次方程七、一元二次不等式八、二次函数一、绝对值绝对值的概念始出现于初一数学课本,它是数学重要的概念之一,贯穿于整个初等数学的始终,并随着知识的发展,不断深化.【初中】借助数轴理解绝对值的意义,并会求有理数的绝对值(绝对值符号内不含字母).【高中】接触含字母的绝对值,含绝对值不等式在选修系列4—5不等式选讲.含字母的绝对值运算贯穿于整个高中数学中.【建议】掌握含字母的绝对值及简单的含绝对值的方程(不等式)的解法. 【补充知识】1. 和差的绝对值与绝对值的和差的关系b a b a b a +≤+≤- b a b a b a +≤-≤-2. 含有绝对值的不等式的解法(1)最简单的含有绝对值的不等式的解法 n无解无解的解为)0()0()0(<<=<<<-><a a x a a x a x a a a x 一切实数的全体实数的解为或的解为)0(0)0()0(<>≠=>-<>>>a a x x a a x a x a x a a x(2)①⎩⎨⎧<+->+⇔<+<-⇔><+cb ax cb axc b ax c c c b ax )0(②c b ax c b ax c c b ax >+-<+⇔>>+或)0( 【高一前应掌握的练习】 例1:解关于x 的不等式14<-x二、分式【初中】了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算;会解可化为一元一次方程的分式方程(方程中的分式不超过两个);能确定分式函数的自变量取值范围,并会求出函数值.【高中】不再学习. 但在整个高中学习中都会用到分式的计算. 高二选修中,有少量分式不等式的学习. 【建议】接触更复杂的分式运算(如分式拆分,分式乘方);解可化为一元二次方程的分式方程. 【补充知识】 1. 繁分式像pn m pn m d c b a++++2,这样的分子或分母中含有分式的分式叫繁分式,一定要分清谁是分子,谁是分母,将其化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 分式方程和无理方程
初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握 (1) 不超过三个分式构成的分式方程的解法,会用” 去分母” 或” 换元法” 求方程的根,并会验根; (2) 了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用” 平方” 或” 换元法” 求根,并会验根.
一、可化为一元二次方程的分式方程
1 .去分母化分式方程为一元二次方程
【例 1 】解方程.
分析:去分母,转化为整式方程.
解:原方程可化为:
方程两边各项都乘以:
即,整理得:
解得:或.
检验:把代入,不等于 0 ,所以是原方程的解;
把代入,等于 0 ,所以是增根.
所以,原方程的解是.
说明:
(1) 去分母解分式方程的步骤:
① 把各分式的分母因式分解;② 在方程两边同乘以各分式的最简公分母;
③ 去括号,把所有项都移到左边,合并同类项;④ 解一元二次方程;⑤ 验根.
26
(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式
方程可能产生的增根,就是使分式方程的分母为 0 的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为 0 .若为 0 ,即为增根;若不为 0 ,即为原方程的解.
2 .用换元法化分式方程为一元二次方程
【例 2 】解方程
分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程
的结构特点,设,即得到一个关于的一元二次方程.最后在已知的
值的情况下,用去分母的方法解方程.
解:设,则原方程可化为:解得或.
(1) 当时,,去分母,得;
(2) 当时,.
检验:把各根分别代入原方程的分母,各分母都不为 0 .
所以,,都是原方程的解.
说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值.
【例 3 】解方程.
分析:注意观察方程特点,可以看到分式与互为倒数.因此,可
以设,即可将原方程化为一个较为简单的分式方程.
27
解:设,则
原方程可化为:.
(1) 当时,;
(2) 当时,.检验:把把各根分别代入原方程的分母,各分母都不为 0 .
所以,原方程的解是,,.
说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想.
二、可化为一元二次方程的无理方程
根号下含有未知数的方程,叫做无理方程.
1 .平方法解无理方程
【例 4 】解方程
分析:移项、平方,转化为有理方程求解.
解:移项得:
两边平方得:
移项,合并同类项得:
解得:或
检验:把代入原方程,左边右边,所以是增根.
把代入原方程,左边 = 右边,所以是原方程的根.
所以,原方程的解是.
说明:含未知数的二次根式恰有一个的无理方程的一般步骤:
28
① 移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;
② 两边同时平方,得到一个整式方程;③ 解整式方程;④ 验根.
【例 5 】解方程
分析:直接平方将很困难.可以把一个根式移右边再平方,这样就可以转化为上
例的模式,再用例 4 的方法解方程.
解:原方程可化为:
两边平方得:
整理得:
两边平方得:
整理得:,解得:或.
检验:把代入原方程,左边 = 右边,所以是原方程的根.
把代入原方程,左边右边,所以是增根.
所以,原方程的解是.
说明:含未知数的二次根式恰有两个的无理方程的一般步骤:
① 移项,使方程的左边只保留一个含未知数的二次根式;② 两边平方,得到含
未知数的二次根式恰有一个的无理方程;③ 一下步骤同例 4 的说明.
2 .换元法解无理方程
【例 6 】解方程
分析:本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中
含未知数的二次根式与其余有理式的关系,可以发现:
.因此,可以设,这样就可将原方程先转化为关于的一元二次方程处理.
解:设,则
原方程可化为:,
29
即,解得:或.
(1) 当时,;
(2) 当时,因为,所以方程无解.
检验:把分别代入原方程,都适合.
所以,原方程的解是.
说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想.
练习:
1 .解下列方程:
(1) (2)
(3) (4)
2 .用换元法解方程:
3 .解下列方程:
(1) (2) (3)
4 .解下列方程:
(1) (2)
5 .用换元法解下列方程:
(1) (2)
30。