充分条件与必要条件教学设计课题
《充分条件与必要条件》 教学设计

《充分条件与必要条件》教学设计一、教学目标1、知识与技能目标理解充分条件、必要条件的概念。
能够准确判断给定命题中条件与结论之间的充分性和必要性关系。
学会运用充分条件和必要条件解决简单的数学问题和逻辑推理问题。
2、过程与方法目标通过实例分析和逻辑推理,培养学生的观察、分析和归纳能力。
引导学生进行自主探究和合作交流,提高学生的思维能力和创新意识。
3、情感态度与价值观目标让学生感受数学逻辑的严谨性和科学性,激发学生对数学的兴趣和热爱。
培养学生严谨的思维习惯和实事求是的科学态度。
二、教学重难点1、教学重点充分条件和必要条件的概念。
判断条件与结论之间的充分性和必要性关系。
2、教学难点理解充分条件和必要条件的本质含义。
运用充分条件和必要条件解决复杂的逻辑问题。
三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课通过一个简单的生活实例引入课题,比如:“如果今天下雨,那么地面会湿。
”提问学生:在这个例子中,“今天下雨”和“地面会湿”之间有怎样的关系?2、讲解充分条件的概念给出命题:若 p,则 q。
如果由 p 可以推出 q,那么称 p 是 q 的充分条件。
举例说明:“如果一个数是偶数,那么它能被 2 整除。
”在这里,“一个数是偶数”就是“它能被 2 整除”的充分条件。
3、讲解必要条件的概念同样对于命题:若 p,则 q。
如果由 q 可以推出 p,那么称 p 是 q 的必要条件。
举例:“如果一个三角形是等边三角形,那么它的三个内角相等。
”“一个三角形的三个内角相等”就是“它是等边三角形”的必要条件。
4、区分充分条件和必要条件通过对比的方式,让学生理解充分条件强调的是条件足以导致结论成立,而必要条件强调的是结论成立必须具备的条件。
例如:“如果一个人是中国人,那么他是亚洲人。
”“一个人是中国人”是“他是亚洲人”的充分条件;“如果一个人是亚洲人,那么他不一定是中国人。
”“一个人是亚洲人”是“他是中国人”的必要条件。
充分条件与必要条件教案

充分条件与必要条件教案第一篇:充分条件与必要条件教案充分条件与必要条件教学目标:(1)正确理解充分条件、必要条件和充要条件的概念;(2)能正确判断是充分条件、必要条件还是充要条件;教学重点:理解充分条件和必要条件的概念.教学难点:理解充分条件和必要条件的概念教学类型:新授课教学用具:粉笔黑板教学过程: 1.复习引入我们已经学过怎么判断一个命题真假,那我们下面就判断一下下列命题的真假(板书例子.)练习:判断下列命题是真命题还是假命题(1)若a是无理数,则a+3是无理数;(2)全等三角形的面积相等;(3)若四边形对角互补,则四边形内接于圆;(4)若x>2,则x>4;(5)若x+y≠-2则x、y不都为-1;(6)若ac=bc则a=b;(学生口答,教师板书.)(1)、(2)、(3)是真命题,(4)、(5)、(6)是假命题.(置疑):对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?答:(是不是)看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.对于命题“若条件,则结论”,如果由条件经过推理能推出结论,也就是说,如果条件成立,那么结论一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是使结论成立的充分条件,记作 =>2.讲授新课下面我们给出充分条件的定义(板书充分条件的定义.)一般地有命题p与q,如果已知p,则能推出q那么我们就说p 是q 成立的充分条件.提问:请用充分条件来叙述上述(1)、(2)、(3)的条件与结论之间的关系.(学生口答)(1)“a是无理数”是“a+3是无理数”成立的充分条件;(2)“三角形全等”是“三角形面积相等”成立的充分条件;(3)“四边形对角互补”是“四边形内接于圆”成立的充分条件.从另一个角度看,如果原命题成立,那么其逆否命题也成立,我们就那第一个命题来说即如果“a+3不是无理数”,那么“a不是无理数”,亦即“a+3是无理数”是“a是无理数” 成立的必须要有的条件,也就是必要条件.记作<= 下面我们给出必要条件的定义(板书必要条件的定义.)一般地有命题p与q,如果已知p,则能推出q那么我们就说q 是p 成立的必要条件.提出问题:用“充分条件”和“必要条件”来叙述上述第(1)(2)(3)个命题.(学生口答).(1)因为“a是无理数”,“a+3是无理数”,所以“a是无理数”是“a+3是无理数”的充分条件,“a+3是无理数”是“a是无理数”的必要条件;(2)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;(3)因为“四边形对角互补”,“四边形内接于圆”;,所以“四边形对角互补” 是“四边形内接于圆” 的充分条件;四边形内接于圆是“四边形对角互补” 的必要条件;总结:如果p 是q 的充分条件,又p是q 的必要条件,则称p 是q 的充分必要条件,简称充要条件,记作.p q 下面我们给出充分必要条件的定义(板书充要条件的定义.)一般地有命题p、q,如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。
充分条件和必要条件教案(教师

充分条件和必要条件教案(教师版)第一章:引言教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 让学生掌握如何判断充分条件和必要条件。
教学内容:1. 引入充分条件和必要条件的概念。
2. 通过实例让学生理解充分条件和必要条件的区别。
教学步骤:1. 向学生介绍充分条件和必要条件的概念。
2. 通过举例说明充分条件和必要条件的区别。
3. 让学生进行练习,判断给出的条件是充分条件还是必要条件。
教学评估:1. 通过课堂提问检查学生对充分条件和必要条件的理解程度。
2. 通过练习题检查学生判断充分条件和必要条件的能力。
第二章:充分条件教学目标:1. 让学生理解充分条件的意思。
2. 让学生掌握如何判断一个条件是充分条件。
教学内容:1. 定义充分条件的概念。
2. 讲解如何判断一个条件是充分条件。
1. 向学生解释充分条件的概念。
2. 通过举例让学生理解如何判断一个条件是充分条件。
3. 让学生进行练习,判断给出的条件是否是充分条件。
教学评估:1. 通过课堂提问检查学生对充分条件的理解程度。
2. 通过练习题检查学生判断充分条件的能力。
第三章:必要条件教学目标:1. 让学生理解必要条件的概念。
2. 让学生掌握如何判断一个条件是必要条件。
教学内容:1. 定义必要条件的概念。
2. 讲解如何判断一个条件是必要条件。
教学步骤:1. 向学生解释必要条件的概念。
2. 通过举例让学生理解如何判断一个条件是必要条件。
3. 让学生进行练习,判断给出的条件是否是必要条件。
教学评估:1. 通过课堂提问检查学生对必要条件的理解程度。
2. 通过练习题检查学生判断必要条件的能力。
第四章:充分条件和必要条件的区别1. 让学生理解充分条件和必要条件的区别。
2. 让学生掌握如何判断一个条件是充分条件还是必要条件。
教学内容:1. 讲解充分条件和必要条件的区别。
2. 讲解如何判断一个条件是充分条件还是必要条件。
教学步骤:1. 向学生讲解充分条件和必要条件的区别。
充分条件与必要条件教案

充分条件与必要条件教案一、教学目标1. 让学生理解充分条件和必要条件的概念。
2. 让学生学会判断充分条件和必要条件。
3. 培养学生运用充分条件和必要条件解决实际问题的能力。
二、教学内容1. 充分条件和必要条件的定义。
2. 充分条件和必要条件的判断方法。
3. 充分条件和必要条件在实际问题中的应用。
三、教学重点与难点1. 教学重点:充分条件和必要条件的定义及判断方法。
2. 教学难点:充分条件和必要条件在实际问题中的应用。
四、教学方法1. 采用实例讲解法,让学生通过具体例子理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生学会判断充分条件和必要条件。
3. 采用练习法,让学生巩固所学知识,提高解决问题的能力。
五、教学过程1. 引入新课:通过一个故事引入充分条件和必要条件的概念。
2. 讲解充分条件和必要条件的定义:讲解什么是充分条件,什么是必要条件。
3. 讲解充分条件和必要条件的判断方法:如何判断一个条件是充分条件,如何判断一个条件是必要条件。
4. 实例分析:分析一些具体的例子,让学生理解充分条件和必要条件的应用。
5. 小组讨论:让学生分组讨论,判断一些例子中的条件是充分条件还是必要条件。
6. 练习巩固:布置一些练习题,让学生巩固所学知识。
7. 总结:对本节课的内容进行总结,强调充分条件和必要条件的重要性。
8. 作业布置:布置一些有关充分条件和必要条件的练习题,让学生课后巩固。
六、教学评估1. 课堂提问:通过提问了解学生对充分条件和必要条件的理解程度。
2. 练习题:布置课后练习题,评估学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。
七、教学反思1. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够理解和运用充分条件和必要条件。
3. 反思教学过程:总结本节课的优点和不足,为下一节课的教学做好准备。
充分条件和必要条件教案

充分条件和必要条件教案章节一:引入概念教学目标:1. 了解充分条件和必要条件的概念。
2. 能够区分充分条件和必要条件。
教学内容:1. 引入充分条件和必要条件的概念。
2. 通过举例说明充分条件和必要条件的区别。
教学步骤:1. 引入概念:充分条件和必要条件的定义。
2. 举例说明:给出几个例子,让学生判断哪个是充分条件,哪个是必要条件。
3. 练习:让学生举例说明充分条件和必要条件。
章节二:充分条件和必要条件的判断教学目标:1. 能够判断一个条件是充分条件还是必要条件。
2. 能够判断一个条件既是充分条件又是必要条件。
教学内容:1. 充分条件和必要条件的判断方法。
2. 举例说明如何判断一个条件是充分条件还是必要条件。
教学步骤:1. 讲解判断方法:根据定义,如果一个条件能够导致另一个条件的成立,这个条件是充分条件;如果一个条件是另一个条件的必要条件,这个条件是必要条件。
2. 举例说明:给出几个例子,让学生判断哪个是充分条件,哪个是必要条件。
3. 练习:让学生举例说明充分条件和必要条件。
章节三:充分条件和必要条件的应用教学目标:1. 能够运用充分条件和必要条件解决实际问题。
2. 能够运用充分条件和必要条件进行逻辑推理。
教学内容:1. 充分条件和必要条件在实际问题中的应用。
2. 充分条件和必要条件在逻辑推理中的应用。
教学步骤:1. 讲解应用:通过举例说明充分条件和必要条件如何解决实际问题和进行逻辑推理。
2. 练习:让学生运用充分条件和必要条件解决实际问题和进行逻辑推理。
章节四:充分条件和必要条件的组合教学目标:1. 能够理解充分条件和必要条件的组合。
2. 能够判断组合条件下的充分条件和必要条件。
教学内容:1. 充分条件和必要条件的组合概念。
2. 举例说明如何判断组合条件下的充分条件和必要条件。
教学步骤:1. 讲解组合概念:充分条件和必要条件的组合意味着一个条件既是充分条件又是必要条件。
2. 举例说明:给出几个例子,让学生判断组合条件下的充分条件和必要条件。
充分条件与必要条件教学设计

充分条件与必要条件教学设计(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、策划方案、规章制度、演讲致辞、合同协议、条据书信、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, planning plans, rules and regulations, speeches, contract agreements, policy letters, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!充分条件与必要条件教学设计充分条件与必要条件教学设计作为一名辛苦耕耘的教育工作者,就不得不需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。
高中数学《充分条件与必要条件》教学设计
北师大版--选修2-1--第一章《常用逻辑用语》充分条件与必要条件一、教学内容解析:1. 教学内容:“充分条件与必要条件”是中学数学中最重要的数学概念之一,它主要研究命题的条件与结论之间的逻辑关系. “若p,则q”为真命题,记作p q⇒.称p是q的充分条件,称q是p的必要条件.所以“p q⇒”与“p是q的充分条件”、“q是p的必要条件”之间是同一逻辑关系的三种不同描述形式,前者是符号表示,后两者是文字表示.通过对命题真假的判断,研究命题中p与q之间的关系,所以判断充分条件与必要条件的关键是分清条件与结论,再判断命题的真假. 另外,充分条件与必要条件和集合知识的联系在丰富知识外延拓展的同时,从“形”上(韦恩图表示集合关系)帮助我们进一步理解充分条件与必要条件的内涵.2. 知识地位:“充分条件与必要条件”是高中北师大版《数学》选修2-1第一章《简单逻辑用语》第二节的内容. 逻辑是研究思维规律的学科,而“充分条件与必要条件”是数学中常用的逻辑用语,逻辑用语在数学中具有重要的作用.所以掌握了充分、必要条件的知识,并灵活运用它们进行推理判断,才可以说是建立起了保证数学活动顺利进行的完整的逻辑结构.为了提高这部分内容的学习质量,在“充分条件与必要条件”这节内容前, 教材安排了“命题”这一节内容作为必要的知识铺垫. 并把充分条件与必要条件安排在第一课时,第二课时学习充要条件.在选修中学习逻辑用语,可以结合逻辑用语的使用,对我们已经学习过的必修部分的数学知识加以巩固和提升,同时能够体现出逻辑用语的工具价值,也可以更好地应用于今后的学习当中,这使得逻辑用语的教学起到了承上启下的作用.3. 思想方法:充分条件与必要条件的知识学习过程中,蕴含着观察、推理、归纳、总结等方法,在知识的形成与运用中,还体现了数学思维的合理性与严密性,以及数形结合、分类讨论的数学思想,这些都是数学的精髓.4. 教学重点:充分条件与必要条件的概念的形成及判定方法.5. 教学难点:必要条件的概念的理解.二、教学目标设置:1.通过江西鄱阳湖候鸟视频介绍地方文化,教育学生加强生态、环保意识,并由生活问题抽象到数学问题,从而感悟逻辑关系,引入新课.2.通过“数”、“形”两个例子的设计,让学生自主探究,经历观察、发现、归纳、概括出充分条件的概念,培养学生数学抽象以及逻辑推理的能力.3.通过电路图中开关闭合与灯泡亮的设计,让学生经历“直观感受”、“数学抽象”、“逻辑关系”、“深化理解”四个过程,突破必要条件概念的难点,培养学生的直观想象、数学抽象以及逻辑推理的能力.4. 通过探究充分条件和必要条件与集合间的联系,让学生建立概念间的多元联系,从“形”上帮助其进一步理解充分条件与必要条件的内涵,培养学生数学抽象的能力.5. 通过以学生为主体的数学活动的设计,让学生自主构建知识网络,加深对充分条件与必要条件的认识,体验获取知识的感受.师生互动及时评价培养了学生敢于质疑,善于发现、提出问题的能力,养成严谨规范表达的学习习惯.三、学生学情分析:1.教学有利因素:学生在初中阶段已经接触过命题、真假命题,高中教材在本节课教学之前安排了命题、命题的形式(若p则q)和四种命题的学习,以及学生日常生活中已有大量逻辑经验的积累都为本节课“充分条件与必要条件”概念的学习奠定了良好的基础.江西师大附中高二(12)班学生基础较好,数学思维活跃,有强烈的求知欲,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2.教学不利因素:“充分条件与必要条件”是密不可分的、相对的两个概念,由于概念较抽象, 与学生的原有思维习惯又有差异,导致学生不易理解,容易停留在形式上. 特别是对“必要条件”概念的理解较为困难. 此外,充分条件与必要条件是一个开放性的知识交汇点,往往涉及其它数学知识或者其它学科知识,对学生其它知识的掌握也有一定要求.3.难点突破策略:从“数”、“形”的两个例子自主探究,感悟到改变命题的条件(有的是增加条件,有的是替换条件),足以使结论成立.让学生充分理解充分条件的概念,同时学会文字语言、符号语言的表达.通过电路图中开关闭合与灯泡亮的直观感知,体会到条件的不可缺少,从而感悟逻辑关系,进而加深对命题的新的表述方式的理解,突破必要条件的难点. 循序渐进,再从充分条件、必要条件与集合间的联系上,结合集合的韦恩图表示,直观、形象的理解充分条件与必要条件的概念.四、教学策略分析:鉴于以上分析,为达成课堂教学目标,突出重点、突破难点,本节课的设计融合人教A版的教材理念,对教材进行二次开发,实现教学资源的整合. 主要贯彻与执行以下思路:1. 体现“教师为主导,学生为主体”的教学理念本节课的教学,教师更多的是站在一个引路人的角度,告诉学生该向哪里走,怎么走,让他们自己去走,让学生更多的亲身体验数学的发现之美.通过独立思考、主动探究、合作交流,使学生切实学好数学知识,提高数学能力.2. 注重对学生的思维训练引导学生多角度的审视问题,让学生从不同角度去看待问题,分析问题,思考问题. 例如:在概念教学中,从“数”与“形”两个角度入手,通过实例让学生亲身感知充分条件概念的发生与形成过程。
《充分条件与必要条件》教案完美版
《充足条件与必需条件》教课设计(一)教课目的1.知识与技术:正确理解充足不用要条件、必需不充足条件的观点;会判断命题的充足条件、必需条件.2.过程与方法:经过对充足条件、必需条件的观点的理解和运用,培育学生剖析、判断和概括的逻辑思想能力.3.感情、态度与价值观:经过学生的举例,培育他们的辨析能力以及培育他们的优秀的思想质量,在练习过程中进行辩证唯心主义思想教育.(二)教课要点与难点要点:充足条件、必需条件的观点.( 解决方法:对这三个观点分别先从实质问题惹起观点,再详尽叙述观点,最后再应用观点进行论证. )难点:判断命题的充足条件、必需条件。
要点:分清命题的条件和结论,看是条件能推出结论仍是结论能推出条件。
教具准备:与教材内容有关的资料。
教课假想:经过学生的举例,培育他们的辨析能力以及培育他们的优秀的思想质量,在练习过程中进行辩证唯心主义思想教育.(三)教课过程学生研究过程:1.练习与思虑写出以下两个命题的条件和结论,并判断是真命题仍是假命题?( 1)若 x > a 2 + b2,则 x > 2ab,( 2)若 ab = 0 ,则 a = 0.学生简单得出结论;命题 (1) 为真命题,命题 ( 2 ) 为假命题.置疑:对于命题“若p,则 q”,有时是真命题,有时是假命题.如何判断其真假的?答:看 p 能不可以推出 q,假如 p 能推出 q,则原命题是真命题,不然就是假命题.2.给出定义命题“若 p,则 q”为真命题,是指由p 经过推理能推出q,也就是说,假如p 建立,那么 q 必定建立.换句话说,只需有条件p 就能充足地保证结论q 的建立,这时我们称条件 p 是 q 建立的充足条件.一般地,“若 p,则 q”为真命题,是指由p 经过推理能够得出q.这时,我们就说,由p 可推出 q,记作: p q.定义:假如命题“若p,则 q”为真命题,即p q, 那么我们就说p 是 q 的充足条件; q 是 p 必需条件.上边的命题 (1)为真命题,即x > a 2 + b 2x> 2ab ,因此“ x > a 2+ b 2”是“ x > 2ab ”的充足条件,“x > 2ab ”是“ x > a 2+ b 2”"的必需条件.3.例题剖析:例1:以下“若p,则 q”形式的命题中,那些命题中的p 是 q 的充足条件?( 1)若 x = 1,则 x2- 4x + 3 = 0;( 2)若 f(x)= x ,则 f(x) 为增函数;( 3)若 x 为无理数,则 x2为无理数.剖析:要判断 p 是不是 q 的充足条件,就要看p 可否推出 q.解略.例2:以下“若p, 则 q”形式的命题中,那些命题中的q 是 p 的必需条件 ?(1)若 x = y ,则 x2= y 2;(2)若两个三角形全等,则这两个三角形的面积相等;(3)若 a >b, 则 ac> bc.剖析:要判断q 是不是 p 的必需条件,就要看 p 可否推出 q.解略.4、稳固稳固:P12 练习第 1、 2、3、 4 题5.教课反省:充足、必需的定义.在“若 p,则 q”中,若p q,则 p 为 q 的充足条件, q 为 p 的必需条件.6.作业P 14:习题 1.2A 组第 1(1)(2),2(1)(2)题注:( 1)条件是互相的;(2) p 是 q 的什么条件,有四种回答方式:①p 是 q 的充足而不用要条件;② p 是 q 的必需而不充足条件;③ p 是 q 的充要条件;④ p 是 q 的既不充足也不用要条件.风,没有衣裳;时间,没有住所;它们是拥有全球的两个穷人生活不仅眼前的苟且,还有诗和远方的野外。
完整版《充分条件与必要条件》教学设计
引导学生总结归纳,形成正确的概念体 系。
巩固练习与拓展延伸
设计练习题,让学生运用所学知 识解决问题,加深对充分条件和
必要条件的理解。
拓展延伸,引导学生思考充分条 件和必要条件在实际生疑问,进行课堂互 动,促进知识内化。
03
教学方法与手段
启发式教学法应用
3
提供个性化辅导
针对学习困难的学生,教师需要提供个性化的辅 导和支持,帮助他们克服学习障碍,提高学习效 果。
THANKS
感谢观看
。
成果展示
各小组选派代表展示讨论成果, 其他小组进行补充和质疑。
分享交流环节
分享学习心得
学生分享自己在探究过程中的学习心得和体会。
交流不同观点
学生就充分条件与必要条件的理解进行交流,探讨不同观点。
教师总结提升
教师对学生的分享和交流进行总结,提升学生的认识水平。
自我评价和反思环节
自我评价
01
学生对自己在本次活动中的表现进行评价,包括参与度、合作
小组的实力均衡。
明确讨论任务
给每个小组分配明确的 讨论任务,如分析某个 问题中的充分条件和必
要条件等。
小组内讨论
小组成员在组内展开讨 论,互相交流看法和思
路,共同解决问题。
小组间交流
各小组之间进行交流和 分享,互相学习和借鉴 ,提高整体学习效果。
多媒体辅助教学应用
制作课件
根据课程内容制作精美的课件 ,包括文字、图片、动画等元 素,增强视觉效果和吸引力。
演示实验
通过多媒体演示相关实验或操 作过程,帮助学生更好地理解 充分条件和必要条件的概念及 应用。
视频教学
播放与课程内容相关的视频资 料,如专家讲座、案例分析等 ,丰富教学手段和内容。
充分条件与必要条件教案
充分条件与必要条件教案章节一:引言教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 培养学生运用逻辑推理的能力。
教学内容:1. 引入充分条件和必要条件的概念。
2. 举例说明充分条件和必要条件的区别。
教学步骤:1. 引入概念:引导学生回顾之前学过的相关概念,如因果关系、逻辑推理等。
2. 讲解充分条件和必要条件的定义。
3. 举例说明:通过具体的例子让学生理解充分条件和必要条件的区别。
作业:1. 让学生举出一些生活中的充分条件和必要条件的例子,并加以解释。
章节二:充分条件教学目标:1. 让学生理解充分条件的概念。
2. 培养学生判断充分条件的能力。
教学内容:1. 讲解充分条件的定义。
2. 举例说明充分条件的应用。
教学步骤:1. 回顾上节课的内容,引导学生理解充分条件的定义。
2. 通过具体的例子让学生判断充分条件。
作业:1. 让学生找出一篇文章或故事中的充分条件,并加以解释。
章节三:必要条件教学目标:1. 让学生理解必要条件的概念。
2. 培养学生判断必要条件的能力。
教学内容:1. 讲解必要条件的定义。
2. 举例说明必要条件的应用。
教学步骤:1. 回顾前两节课的内容,引导学生理解必要条件的定义。
2. 通过具体的例子让学生判断必要条件。
作业:1. 让学生找出一篇文章或故事中的必要条件,并加以解释。
章节四:充分条件和必要条件的区别教学目标:1. 让学生理解充分条件和必要条件的区别。
2. 培养学生运用逻辑推理的能力。
教学内容:1. 讲解充分条件和必要条件的区别。
2. 举例说明充分条件和必要条件的区别的应用。
教学步骤:1. 回顾前几节课的内容,引导学生理解充分条件和必要条件的区别。
2. 通过具体的例子让学生判断充分条件和必要条件的区别。
作业:1. 让学生找出一篇文章或故事中的充分条件和必要条件的区别,并加以解释。
章节五:综合练习教学目标:1. 让学生巩固充分条件和必要条件的概念。
2. 培养学生运用逻辑推理的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档构筑理解概念的平台——(选修1-1)1.2充分条件与必要条件教学设计1、设计思想:新的课程标准指出:数学课程应面向全体学生,促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识.这与建构主义教学观相吻合.本节课正是基于这样的理念,通过创设丰富的问题情境,引导学生主动探究,强调学生的主体性,使学生实现知识的建构,培养学生“用数学”的意识.在教学中尽量多地让学生亲身体验在“主动”中发展,在“合作”中增知,在“探究”中创新.2、教材分析:教科书结合实例给出推断符号“”和等价符号“”,并引出充分条件、必要条件与充要条??件的概念.它们是研究命题的条件与结论之间的逻辑关系的重要工具,是中学数学中最重要的数学概念之一.在“充分条件与必要条件”这节内容前,教材安排了“命题及其关系”作为必要的知识铺垫,并把充分、必要条件的定义安排在第一课时,第二课时学习充要条件.学习本节,要注意与前面有关逻辑初步知识内容的联系,本节所讲的充分条件、必要条件与充要条件中的p、q与四种命题中的p、q内容是一致的,即它们可以是简单命题,可以是不能判断真假的语句,也可以是“若p则q”形式的复合命题,但本节中,一般只要求p、q是简单命题,而不作更深的讨论.新的国家标准规定:符号“”叫做推断符号.“”表示“若p则q”,也表示“p蕴含q”,有时也用“”,?q?pq?p“”还可写成“”.pq?p?q符号“”叫做等价符号.“”表示“”且“”;也表示“p等价q”.“”?qpq?p?qp?pq?有时也写成“”.qp?本节的重点与难点是关于充分条件、必要条件及充要条件的概念的理解和判断.(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.(2)在判断条件和结论之间的因果关系中应该:①首先分清条件是什么,结论是什么;②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接法、间接法(即反证法),也可以举反例说明其不成立;③最后再指出条件是结论的什么条件.(3)在讨论条件和条件的关系时,要注意:p,则p是q的充分但不必要条件;,但q①若q?p??文案大全.实用文档q,则p是q的必要但不充分条件;②若,但p p?q??③若,且,则p是q的充要条件;pq?p?q qp,则p是q,且q的既不充分也不必要条件.④若p ????(4)若条件p以集合P的形式出现,结论q以集合Q的形式出现,则借助集合知识,有助于充要条件的理解和判断.①若,则P是Q的充分条件;QP?②若,则P是Q的必要条件;PQ?③若,则P是Q的充要条件;Q?P④若,且,则P是Q的既不充分也不必要条件.PQ?P?Q(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题与逆否命题等价,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.3、学情分析:虽然经过初中及高一的学习,学生已经具备一定的逻辑推理能力,但学生在学习本节内容时的知识储备仍不够丰富.这些概念较抽象,与学生原有的思维习惯有所差异,理解和掌握这些内容有一定难度.结合以往的教学实践,我估计学生会在以下几个方面的学习中存在困难:⑴若,qp?为什么把q叫p的必要条件;⑵在判断p是q的什么条件时,学生知道要判断p是否是q的充分条件,但会“忘记”还要判断p是否是q的必要条件.⑶在具体关系判断中,较难确定谁是条件p.为了突破难点,理顺知识间的逻辑关系,让学生能在比较、识别中把握三个概念的内涵,教学中对这部分内容进行整合处理,第一课时完成三个定义的学习以及初步运用,第二课时进行拓展应用训练.基于本节内容特点,教学中通过师生对实例的考察研究,采用探究式教学法,通过师生互动来实现本节课的教学目标.对学生的要求,不可追求一步到位,要有一个随着学习的深入,逐步提高、完善的过程.4、教学目标:1.初步理解充分条件、必要条件与充要条件的概念,掌握几种基本类型的判定方法,熟练利用“?”解决具体问题.2.从实例探究中感知概念;从原命题及逆否命题的对比分析中形成概念;从发散练习题的构造中理解概念;从集合的角度深化概念;提高数学语言的运用能力和逻辑推断能力.3.在对命题的条件与结论间逻辑关系的探究中培养学生思维的严谨性;通过严格推理和证明的文案大全.实用文档教学,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辩证唯物主义的世界观.5、重点难点:关于充分条件、必要条件及充要条件的概念的理解和判断.6、课前准备:由于这是充分条件与必要条件的概念课,文字信息量较普通的数学课要大得多,因此用软件自制课件,以简化教师板书工作,增加课堂教学的信息容量,保证学生的活动空间和思维空间,努力提高单位教学效益.7、教学过程:一、感知概念(1)课前准备工作时音乐欣赏《我是一只鱼》;提问:鱼离不开水,没有水,鱼就无法生存.但只有水,够吗?引导探究:p:“有水”;q:“鱼能生存”.判断“若p,则q”和“若q,则p”的真假.(2)练习:①写出命题“若,则”的逆命题、否命题、逆否命题,并判断它们的真假;22ab?2xbx?a?②写出命题“若,则”的逆命题、否命题、逆否命题,并判断它们的真假.0a?0ab?设计意图:从具体问题出发来引出数学概念更符合学生的认知规律.(1)(2)在这里起到承上启下的作用,既复习了前面所学知识,又找准了学生知识结构上的生长点,为后面充分条件和必要条件的学习做准备.(3)感知概念、引出课题问题:能否改变②的条件,使原命题变成真命题?设计意图:这题有较大的思维空间,不同层次的学生都能在这个问题上有不同层次的施展.以此让学生认识到命题中的条件与结论之间应该具备某种关系,为下面探究活动提出了问题,并引出课题.以上两题的解答可以发现有的命题真,有的命题假,即有的命题可以从条件推得结论,有的则不能;而另外也有命题只要结论成立,就一定不能少了命题给出的条件,但是没有这个条件,结论不一定能成立.那么命题中的条件与结论到底有怎样的关系呢?这是本节课要讨论的问题——充分条件与必要条件.二、形成概念一般地,“若p,则q”是真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作“”.qp?文案大全.实用文档学生练习:用“”和“”符号表示“感知概念”中的(1)和(2)及其逆命题.???设计意图:理解“”符号的含义,为引出定义奠定知识基础.?通过研究原命题,对建立在学生原有认知水平上“充分”这个感性化的词汇获得数学意义上的认识,引出充分条件的定义;通过研究逆否命题,又让学生理解了q是p成立的“必需要有”的条件,引出必要条件的定义.设计意图:通过以上的实例使学生亲身感知概念的发生与形成过程,使充分、必要条件定义的引入顺理成章,水到渠成,帮助学生突破难点1.通过以上分析,师生共同给出充分、必要条件的定义.定义:“”,也就是条件p“足以”保证或“充分”保证结论q成立,这时我们说p是qq?p的充分条件(sufficient condition);从命题的角度看,“”,根据逆否命题与原命题的等价性,qp?既也就是如果没有q成立,就一定没有p成立,q成立是p成立“必须要有”的前提条件,我们说q 是p的必要条件(necessary condition).尝试初步运用,设计2个探究问题:①如果p是q的必要条件,那么应该有还是?p?q?qp②如何判断p是q的什么条件?设计意图:以问题的形式,帮助学生突破难点2,即如何判断p是q的什么条件.引导学生探究出结论,即:p可能q是的充分条件,也可能是必要条件.因此要判断能否有或.pq??pq再回到前面的(1)和(2)进行实践操作.先判断p是q的什么条件,由学生完成,教师适当点评,之后再独立判断q是p的什么条件.设计意图:因为已经有了前面原命题、逆命题的真假判断,以及对推断符号的理解,当学生的视线再回到(1)和(2)时,他们的认识已螺旋式上升,达到一个新的高度,这样,(1)和(2)既可以加深对定义的理解,又帮助学生感受在具体问题中如何判断充要关系,解决问题的时候又可以发现新的知识点,学生完全可以独立归纳出充分非必要、必要非充分以及充要条件的定义.由学生在实例中发现,并自己给出充要条件的定义,更符合学生的认知规律.给出定义:一般地,如果既有,又有,就记作.此时,我们说,p是q的充qp?pqq?p?分必要条件,简称充要条件(sufficient and necessary condition).显然,如果p是q充要条件,那么q也是p的充要条件.概括地说,如果,那么p与q互为充要条件.qp?例1 完成下表pq 的什么条件p是q 的什么条件q是p文案大全.实用文档由学生自行归纳总结:在理解定义的基础上解决简单问题,同时归纳判断充要条件的方法与步骤,并强化设计意图:也作为1. 促进学生养成正确的思维习惯,帮助学生突破难点3同时例判断时先要确定谁是条件p,课内的操作评价,让学生充分暴露思维障碍,帮助教师了解学生获取知识的现状,以便调整教学节.奏三、理解概念道发散题:为帮助学生充分理解概念,设计2 的充分不必要条件?2 下列条件中哪些是例0b?a? C. 且 A. B. |ba|?||0??0a?0,b?0,?a0,b?0ba D.F. 且E.|b|?||a0??3,b?2,ba?0?ab??a 加强学生思维的灵活性、分析问题的深刻性.设计意图:请同学们分成四个小组,分别编写:充分非必要条件、必要非充分条件、充要条件和既不3 例充分又不必要条件四种类型的题目.让主体主动构建自己的认知结构,,(思维时间)空(思维空间)设计意图:给学生提供活动的时通过分组交流、思辨,帮助学生深化理解并运用定义,同时让学生在这一过程中获得成功的喜悦.四、深化概念探究问题:”如何用集合间的关系理解“q,表示该元素属于集合Q,如果p表示某元素x属于集合P q?p的含义?结论:,用图形可以表示为:,则”即:或“⑴QQP??x??xPQP Q、P qp?文案大全.实用文档,用图形可以表示为:,则⑵“”即且;. QP?Q?x?x?P?x?QPx?、P Qqp?通过前面的学习,学生可以初步理解充分、必要、充要条件的概念,再从集合角度对这三个概念加以分析,则可以使学生更准确深入地理解其中的内涵.例4 写出的一个必要不充分条件__________________________.1|x|?设计意图:解决的关键首先是确定谁是定义中的条件p,再用集合的观点画数轴解决.例4强化认清条件和结论的重要性,使学生学习用集合的思想进行判断,更直观、快捷.例5 已知:⊙O的半径为r,圆心O到直线l的距离为d,求证:d=r是直线l与⊙O相切的充要条件.分析:要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.设计意图:通过师生互动探究,提高数学语言的运用能力和逻辑推理能力.五、知识小结(1)定义:①若,则p是q的充分条件.(p可能会多余浪费)qp?②若,则p是q的必要条件.(p可能还不足以使q成立)p?q③若,则p是q的充要条件.(p不多不少,恰到好处)qp?(2)判别步骤:①找出p、q;②判断与的真假.③根据定义下结论.pq?p?q小结的重点是强化三个概念,以及在问题解决中推理判断的方法.通过小结,融合知识,深化理解.8、知识结构或板书设计)其中右半部分是投影屏幕(文案大全.实用文档9、作业设计:???”和“1)用符号“”填空:(①__________;22yx?y?x②内错角相等__________两直线平行;③整数a能被6整除______a的个位数学为偶数;④ac=bc______a=b.(2)下列“若p则q”形式的命题中,哪些命题中的p是q的充分条件?哪些命题中的p是q 的必要条件?①若两条直线的斜率相等,则这两条直线平行;②若,则.10?5?xx③若a+5是无理数,则a是无理数.④若,则. 0??b)(x?a)(x ax?(3)下列各题中,p是q的什么条件?设计意图:前三题以落实教材习题为主,在理解定义的基础上解决简单问题,强化基础,巩固目标,促进学生养成正确的思维习惯,帮助学生突破难点3.(4)求圆经过原点的充要条件.222r?b)(x?a)y?(?(5)求证:是等边三角形的充要条件是,这里a,b,c是的222ABC?ABC?bc??ab?ba??cac三条边.(6) 已知p是q的充要条件,r是s的必要条件同时又是q的充分条件,试确定p与r的关系.设计意图:一为提高学生解决问题的能力,二是让学生充分暴露思维障碍,帮助教师了解学生获取知识的现状,以便调整教学节奏.文案大全.实用文档【问题研讨】(1) 在教学设计中,改变了教材安排的授课顺序,教材安排第一课时学习充分条件和必要条件,第二课时学习充要条件.本设计将它整合为第一课时完成定义的学习以及初步运用,第二课时进行拓展应用训练,这样是否更有利于学生系统地学好和掌握本节内容的知识?(2) 教师的本意是想多从“贴近教材、贴近学生、贴近实际”的角度来进行教学,具体实践过程中能否让学生有多种机会在不同的情境下去应用他们所学的知识(将知识“外化”)?【参考资料】[1] 马复:《设计合理的数学教学》,高等教育出版社2003年版[2] 黄燕玲,喻平:《对数学理解的再认识》,《.数学教育学报》2002年第11卷第3期[3] 郑毓信,梁贯成:《认知科学建构主义与数学教育——数学学习心理学的现代研究》,上海教育出版社2002年版文案大全.。