高考数学抛物线的性质重点题型
高考数学抛物线复习

抛物线复习【高考会这样考】1.考查抛物线的定义、方程,常与求参数和最值等问题相结合.2.考查抛物线的几何性质,常考查焦点弦及内接三角形问题.3.多与向量交汇考查抛物线的定义、方程、性质等.考点梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0) x2=-2py(p>0) p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R开口 方向向右 向左 向上 向下【助学·微博】一个重要转化 一次项的变量与焦点所在的坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即“对称轴看一次项,符号决定开口方向”. 六个常见结论直线AB 过抛物线y 2=2px (p >0)的焦点,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图. ①y 1y 2=-p 2,x 1x 2=p 24.②|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . ③1|AF |+1|BF |为定值2p .④弦长AB =2psin 2α(α为AB 的倾斜角). ⑤以AB 为直径的圆与准线相切.⑥焦点F 对A ,B 在准线上射影的张角为90°. 考点自测1.(陕西)设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ). A .y 2=-8x B .y 2=-4x C .y 2=8x D .y 2=4x2.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.743.(四川)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( ).A.2 2 B.2 3 C.4 D.2 54.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.5.(新乡模拟)若抛物线y2=2px的焦点与双曲线x26-y23=1的右焦点重合,则p的值为________.考向一抛物线的定义及其应用【例1】►已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时P点的坐标.【训练1】设P是曲线y2=4x上的一个动点,则点P到点B(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.考向二抛物线的标准方程及几何性质【例2】►(1)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为________.(2)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是().A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【训练2】(郑州一模)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为().A.y2=9x B.y2=6x C.y2=3x D.y2=3x考向三抛物线的焦点弦问题【例3】►已知过抛物线y2=2px(p>0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【训练3】 若抛物线y 2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A ,B 两点,动点P 在曲线y 2=-4x (y ≥0)上,则△P AB 的面积的最小值为________.方法优化——有关抛物线焦点弦的解题技巧【真题探究】► (安徽)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ).A.22B. 2C.322 D .2 2【试一试】 已知抛物线y 2=4x 的焦点为F ,过F 的直线与该抛物线相交于A (x 1,y1),B(x2,y2)两点,则y21+y22的最小值是().A.4 B.8 C.12 D.16A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为 ( ). A.34 B .1C.54D.742.(东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为 ( ).A .2B .18C .2或18D .4或163.(全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ).A.45B.35C .-35D .-454.(山东)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ). A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y二、填空题(每小题5分,共10分)5.(郑州模拟)设斜率为1的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为8,则a的值为________.6.(陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.三、解答题(共25分)7.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于55?若存在,求出直线l的方程;若不存在,说明理由.8.(13分)(温州十校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切. (1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1,F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB→|+|FC →|=( ).A .9B .6C .4D .32.(洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1二、填空题(每小题5分,共10分)3.(北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.4.(重庆)过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.三、解答题(共25分)5.(12分)已知抛物线C :y 2=4x ,过点A (-1,0)的直线交抛物线C 于P 、Q 两点,设AP→=λAQ →. (1)若点P 关于x 轴的对称点为M ,求证:直线MQ 经过抛物线C 的焦点F ; (2)若λ∈⎣⎢⎡⎦⎥⎤13,12,求|PQ |的最大值.6.(13分)(新课标全国)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C 上一点,已知以F为圆心,F A为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为4 2,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.。
高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
高考数学抛物线及其性质

9.4 抛物线及其性质考点一 抛物线的定义及标准方程1.(2015浙江理,5,5分)如图,设抛物线y 2=4x 的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF|−1|AF|−1B.|BF|2−1|AF|2−1C.|BF|+1|AF|+1D.|BF|2+1|AF|2+1答案 A 过A,B 点分别作y 轴的垂线,垂足分别为M,N, 则|AM|=|AF|-1,|BN|=|BF|-1. 可知S △BCFS △ACF= 12·|CB|·|CF|·sin ∠BCF 12·|CA|·|CF|·sin ∠BCF=|CB||CA|=|BN||AM| =|BF|−1|AF|−1,故选A.2.(2014课标Ⅰ理,10,5分)已知抛物线C:y 2=8x 的焦点为F,准线为l,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP ⃗⃗⃗⃗ =4FQ⃗⃗⃗⃗ ,则|QF|=( ) A.72B.3C.52D.2答案 B ∵FP⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗ ,∴点Q 在线段PF 上,且在两端点之间,过Q 作QM ⊥l,垂足为M,由抛物线定义知|QF|=|QM|,设抛物线的准线l 与x 轴的交点为N,则|FN|=4,又易知△PQM ∽△PFN,则|QM||FN|=|PQ||PF|,即|QM|4=34.∴|QM|=3,即|QF|=3.故选B.3.(2014课标Ⅰ文,10,5分)已知抛物线C:y 2=x 的焦点为F,A(x 0,y 0)是C 上一点,|AF|=54x 0,则x 0=( ) A.1 B.2 C.4 D.8答案 A 由y 2=x 得2p=1,即p=12,因此焦点F (14,0),准线方程为l:x=-14,设A 点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x 0+14=54x 0,解得x 0=1,故选A.评析 本题考查抛物线的定义及标准方程,将|AF|转化为点A 到准线的距离是解题的关键.4.(2013课标Ⅱ理,11,5分)设抛物线C:y 2=2px(p>0)的焦点为F,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A.y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16x D.y 2=2x 或y 2=16x答案 C ∵以MF 为直径的圆过点(0,2),∴点M 在第一象限.由|MF|=x M +p2=5得M (5−p 2,√2p (5−p2)).从而以MF 为直径的圆的圆心N 的坐标为(52,12√2p (5−p2)), ∵点N 的横坐标恰好等于圆的半径,∴圆与y 轴切于点(0,2),从而2=12√2p (5−p2),即p 2-10p+16=0,解得p=2或p=8,∴抛物线方程为y 2=4x 或y 2=16x.故选C.5.(2013课标Ⅱ文,10,5分)设抛物线C:y 2=4x 的焦点为F,直线l 过F 且与C 交于A,B 两点.若|AF|=3|BF|,则l 的方程为( ) A.y=x-1或y=-x+1 B.y=√33(x-1)或y=-√33(x-1)C.y=√3(x-1)或y=-√3(x-1)D.y=√22(x-1)或y=-√22(x-1)答案 C 设直线AB 与抛物线的准线x=-1交于点C.分别过A,B 作AA 1,BB 1垂直于准线于A 1,B 1.由抛物线的定义可设|BF|=|BB 1|=t,|AF|=|AA 1|=3t.由三角形的相似得|BC||AB|=|BC|4t =12, ∴|BC|=2t,∴∠B 1CB=π6,∴直线l 的倾斜角α=π3或23π.又F(1,0),∴直线AB 的方程为y=√3(x-1)或y=-√3(x-1).故选C.6.(2012四川理,8,5分)已知抛物线关于x 轴对称,它的顶点在坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( ) A.2√2 B.2√3 C.4 D.2√5 答案 B 由题意可设抛物线方程为y 2=2px(p>0).由|MF|=p 2+2=3得p=2,∴抛物线方程为y 2=4x.∴点M 的坐标为(2,±2√2),∴|OM|=√4+8=2√3, 故选B.7.(2011课标文,9,5分)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12,P 为C 的准线上一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.48 答案 C 设抛物线方程为y 2=2px(p>0).∵当x=p 2时,|y|=p, ∴p=|AB|2=122=6. 又P 到AB 的距离始终为p, ∴S △ABP =12×12×6=36.评析 本题主要考查抛物线的定义、抛物线方程等相关知识,明确准线上任一点到直线l 的距离为p.8.(2017山东,理14,文15,5分)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a>0,b>0)的右支与焦点为F 的抛物线x 2=2py(p>0)交于A,B 两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .答案 y=±√22x解析 本题考查双曲线、抛物线的基础知识,考查运算求解能力和方程的思想方法. 设A(x 1,y 1),B(x 2,y 2).因为4|OF|=|AF|+|BF|,所以4×p 2=y 1+p 2+y 2+p 2,即y 1+y 2=p ①.由{x 2=2py,x 2a 2−y 2b 2=1消去x,得a 2y 2-2pb 2y+a 2b 2=0,所以y 1+y 2=2pb 2a 2②.由①②可得b a =√22,故双曲线的渐近线方程为y=±√22x.思路分析 由抛物线的定义和|AF|+|BF|=4|OF|可得y 1+y 2的值(用p 表示).再联立双曲线和抛物线的方程,消去x 得关于y 的一元二次方程,由根与系数的关系得y 1+y 2.从而得b a的值,近而得渐近线方程.解题关键 求渐近线方程的关键是求ba的值,利用题中条件建立等量关系是突破口,注意到|AF|、|BF|为焦半径,因此应利用焦半径公式求解.又A 、B 为两曲线的交点,因此应联立它们的方程求解.这样利用y 1+y 2这个整体来建立等量关系便可求解.9.(2012陕西理,13,5分)如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽 米.答案 2√6解析 建立坐标系如图所示.则抛物线方程为x 2=-2py.∵点A(2,-2)在抛物线上,∴p=1,即抛物线方程为x 2=-2y.当y=-3时,x=±√6.∴水位下降1米后,水面宽为2√6米.评析 本题考查了解析法在实际问题中的运用.坐标运算是解题的关键.10.(2016浙江,9,4分)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是 . 答案 9解析 设M(x 0,y 0),由抛物线方程知焦点F(1,0).根据抛物线的定义得|MF|=x 0+1=10,∴x 0=9,即点M 到y 轴的距离为9.考点二 抛物线的几何性质1.(2016课标Ⅱ文,5,5分)设F 为抛物线C:y 2=4x 的焦点,曲线y=k x(k>0)与C 交于点P,PF ⊥x 轴,则k=( ) A.12 B.1 C.32D.2答案 D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=k x(k>0)得k=1×2=2,故选D. 评析 利用垂直得到点P 的坐标是求解的关键.2.(2015课标Ⅰ文,5,5分)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C:y 2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=( ) A.3 B.6 C.9 D.12答案 B 抛物线C:y 2=8x 的焦点坐标为(2,0),准线方程为x=-2.从而椭圆E 的半焦距c=2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a>b>0),因为离心率e=c a =12,所以a=4,所以b 2=a 2-c 2=12.由题意知|AB|=2b 2a =2×124=6.故选B.评析 本题考查了椭圆、抛物线的方程和性质,运算失误容易造成失分.3.(2015陕西文,3,5分)已知抛物线y 2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A.(-1,0) B.(1,0) C.(0,-1) D.(0,1)答案 B 抛物线y 2=2px(p>0)的准线方程为x=-p2,由题设知-p 2=-1,即p 2=1,所以焦点坐标为(1,0).故选B.4.(2014安徽文,3,5分)抛物线y=14x 2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-2答案 A 由y=14x 2得x 2=4y,焦点在y 轴正半轴上,且2p=4,即p=2,因此准线方程为y=-p 2=-1.故选A.5.(2013四川文,5,5分)抛物线y 2=8x 的焦点到直线x-√3y=0的距离是( )A.2√3B.2C.√3D.1答案 D 由抛物线方程知2p=8⇒p=4,故焦点F(2,0),由点到直线的距离公式知,F 到直线x-√3y=0的距离d=√3×0|√1+3=1.故选D.评析 考查抛物线的方程及其性质、点到直线的距离公式,考查运算求解能力.6.(2012课标理,8,5分)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=4√3,则C 的实轴长为( ) A.√2 B.2√2 C.4 D.8 答案 C 如图,AB 为抛物线y 2=16x 的准线,由题意可得A(-4,2√3).设双曲线C 的方程为x 2-y 2=a 2(a>0),则有16-12=a 2,故a=2,∴双曲线的实轴长2a=4.故选C.评析 本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a. 7.(2016课标Ⅰ,10,5分)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C 的准线于D,E 两点.已知|AB|=4√2,|DE|=2√5,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.8答案 B 不妨设C:y 2=2px(p>0),A(x 1,2√2),则x 1=(2√2)22p =4p ,由题意可知|OA|=|OD|,得(4p )2+8=(p 2)2+5,解得p=4.故选B.思路分析 设出抛物线C 的方程,根据已知条件得出点A 的坐标,利用|OA|=|OD|建立关于p 的方程,解方程得出结论.8.(2017课标Ⅰ理,10,5分)已知F 为抛物线C:y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A,B 两点,直线l 2与C 交于D,E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10答案 A 如图所示,设直线AB 的倾斜角为θ,过A,B 分别作准线的垂线,垂足为A 1,B 1,则|AF|=|AA 1|,|BF|=|BB 1|,过点F 向AA 1引垂线FG,得|AG||AF|=|AF|−p|AF|=cos θ, 则|AF|=p 1−cosθ,同理,|BF|=p1+cosθ,则|AB|=|AF|+|BF|=2p sin 2θ,即|AB|=4sin 2θ, 因l 1与l 2垂直,故直线DE 的倾斜角为θ+π2或θ-π2, 则|DE|=4cos 2θ,则|AB|+|DE|=4sin 2θ+4cos 2θ=4sin 2θcos 2θ=4(12sin2θ)2=16sin 22θ, 则易知|AB|+|DE|的最小值为16.故选A. 方法总结 利用几何方法求抛物线的焦半径.如图,在抛物线y 2=2px(p>0)中,AB 为焦点弦,若AF 与抛物线对称轴的夹角为θ,则在△FEA 中,cos θ=cos ∠EAF=|AE||AF|=|AF|−p|AF|, 则可得到焦半径|AF|=p 1−cosθ,同理,|BF|=p1+cosθ,熟悉这种求抛物线焦半径的方法,对于求抛物线的焦点弦长,焦点弦中的定值,如:1|AF|+1|BF|=2p等的帮助很大.9.(2015四川理,10,5分)设直线l 与抛物线y 2=4x 相交于A,B 两点,与圆(x-5)2+y 2=r 2(r>0)相切于点M,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案 D 当直线AB 的斜率不存在,且0<r<5时,有两条满足题意的直线l.当直线AB 的斜率存在时,由抛物线与圆的对称性知,k AB >0和k AB <0时各有一条满足题意的直线l. 设圆的圆心为C(5,0),A(x 1,y 1),B(x 2,y 2),M(x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22, ∴k AB =y 2−y 1x 2−x 1=y 2−y 1y 224−y 124=2y 0. ∵k CM =y 0x 0−5,且k AB k CM =-1,∴x 0=3.∴r 2=(3-5)2+y 02>4(∵y 0≠0),即r>2. 另一方面,由AB 的中点为M 知B(6-x 1,2y 0-y 1), ∵点B,A 在抛物线上,∴(2y 0-y 1)2=4(6-x 1),①y 12=4x 1,② 由①,②得y 12-2y 0y 1+2y 02-12=0, ∵Δ=4y 02-4(2y 02-12)>0,∴y 02<12. ∴r 2=(3-5)2+y 02=4+y 02<16,∴r<4. 综上,r ∈(2,4),故选D.10.(2014课标Ⅱ文,10,5分)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则|AB|=( ) A.√303B.6C.12D.7√3答案 C 焦点F 的坐标为(34,0),直线AB 的斜率为√33,所以直线AB 的方程为y=√33(x −34),即y=√33x-√34,代入y 2=3x,得13x 2-72x+316=0, 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=212, 所以|AB|=x 1+x 2+32=212+32=12,故选C. 11.(2018课标Ⅲ理,16,5分)已知点M(-1,1)和抛物线C:y 2=4x,过C 的焦点且斜率为k 的直线与C 交于A,B 两点.若∠AMB=90°,则k= .答案 2解析 本题考查抛物线的几何性质及应用.解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为x=yk+1,设A (y 1k+1,y 1),B (y 2k +1,y 2),将直线方程与抛物线方程联立得{x =yk +1,y 2=4x,整理得y 2-4k y-4=0,从而得y 1+y 2=4k,y 1·y 2=-4.∵M(-1,1),∠AMB=90°,∴MA⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗ =0,即(y 1k +2)·(y 2k+2)+(y 1-1)(y 2-1)=0,即k 2-4k+4=0,解得k=2. 解法二:设A(x 1,y 1),B(x 2,y 2),则{y 12=4x 1,①y 22=4x 2,②②-①得y 22-y 12=4(x 2-x 1),从而k=y 2−y 1x 2−x 1=4y 1+y 2. 设AB 的中点为M',连接MM'.∵直线AB 过抛物线y 2=4x 的焦点,∴以线段AB 为直径的☉M'与准线l:x=-1相切. ∵M(-1,1),∠AMB=90°,∴点M 在准线l:x=-1上,同时在☉M'上, ∴准线l 是☉M'的切线,切点为M,且M'M ⊥l, 即MM'与x 轴平行,∴点M'的纵坐标为1,即y 1+y 22=1⇒y 1+y 2=2, 故k=4y 1+y 2=42=2.疑难突破 运用转化思想,采用“设而不求”的方法来解决直线与抛物线的相交问题.12.(2013浙江理,15,4分)设F 为抛物线C:y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于 . 答案 ±1解析设直线AB方程为x=my-1,A(x1,y1),B(x2,y2),联立直线和抛物线方程,整理得,y2-4my+4=0,由根与系数关系得y1+y2=4m,y1·y2=4.故Q(2m2-1,2m).由|FQ|=2知:√(2m)2+(2m2−1−1)2=2,解得m2=1或m2=0(舍去),故直线l的斜率等于±1(此时直线AB与抛物线相切,为满足题意的极限情况).13.(2018北京文,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.答案(1,0)解析本题主要考查抛物线的性质,弦长的计算.由题意得a>0,设直线l与抛物线的两交点分别为A,B,不妨令A在B的上方,则A(1,2√a),B(1,-2√a),故|AB|=4√a=4,得a=1,故抛物线方程为y2=4x,其焦点坐标为(1,0).14.(2017天津文,12,5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为.答案(x+1)2+(y-√3)2=1解析本题主要考查抛物线的几何性质,圆的方程.由抛物线的方程可知F(1,0),准线方程为x=-1,设点C(-1,t),t>0,则圆C的方程为(x+1)2+(y-t)2=1,因为∠FAC=120°,CA⊥y轴,所以∠OAF=30°,在△AOF中,OF=1,所以OA=√3,即t=√3,故圆C的方程为(x+1)2+(y-√3)2=1.方法总结求圆的方程常用的方法为待定系数法,根据题意列出关于三个独立参数a,b,r(或D,E,F)的方程组,从而得到参数的值,写出圆的方程.若题中涉及直线与圆的位置关系或弦长,常把圆的方程设为标准形式,同时应考虑数形结合思想的运用.15.(2014陕西文,11,5分)抛物线y 2=4x 的准线方程为 .答案 x=-1解析 由抛物线方程知p=2,故该抛物线的准线方程为x=-p 2=-1.故填x=-1.16.(2018课标Ⅰ文,20,12分)设抛物线C:y 2=2x,点A(2,0),B(-2,0),过点A 的直线l 与C 交于M,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM=∠ABN.解析 (1)当l 与x 轴垂直时,l 的方程为x=2,可得M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y=12x+1或y=-12x-1.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM=∠ABN.当l 与x 轴不垂直时,设l 的方程为y=k(x-2)(k ≠0),M(x 1,y 1),N(x 2,y 2),则x 1>0,x 2>0.由{y =k(x −2),y 2=2x得ky 2-2y-4k=0,可知y 1+y 2=2k,y 1y 2=-4. 直线BM,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2).① 将x 1=y 1k+2,x 2=y2k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k(y 1+y 2)k =−8+8k =0. 所以k BM +k BN =0,可知BM,BN 的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.方法总结 直线与圆锥曲线的位置关系的常见题型及解题策略:(1)求直线方程.先寻找确定直线的两个条件.若缺少一个可设出此量,利用题设条件寻找关于该量的方程,解方程即可.(2)求线段长度或线段之积(和)的最值.可依据直线与圆锥曲线相交,利用弦长公式求出弦长或弦长关于某个量的函数,然后利用基本不等式或函数的有关知识求其最值;也可利用圆锥曲线的定义转化为两点间的距离或点到直线的距离.(3)证明题.圆锥曲线中的证明问题多涉及定点、定值、角相等、线段相等、点在定直线上等,有时也涉及一些否定性命题,常采用直接法或反证法给予证明.借助于已知条件,将直线与圆锥曲线联立,寻找待证明式子的表达式,结合根与系数的关系及整体代换思想化简即可得证.失分警示 (1)由于忽略点M,N 位置的转换性,使直线BM 方程缺失,从而导致失分;(2)由于不能将“∠ABM=∠ABN ”正确转化为“k BM +k BN =0”进行证明,从而思路受阻,无法完成后续内容.17.(2017课标Ⅰ文,20,12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM,求直线AB 的方程.解析 本题考查直线与抛物线的位置关系.(1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1−y 2x 1−x 2=x 1+x 24=1. (2)由y=x 24,得y'=x 2,设M(x 3,y 3),由题设知x 32=1,解得x 3=2,于是M(2,1).设直线AB 的方程为y=x+m,故线段AB 的中点为N(2,2+m),|MN|=|m+1|.将y=x+m 代入y=x 24得x 2-4x-4m=0. 当Δ=16(m+1)>0,即m>-1时,x 1,2=2±2√m +1.从而|AB|=√2|x 1-x 2|=4√2(m +1).由题设知|AB|=2|MN|,即4√2(m +1)=2(m+1),解得m=7.所以直线AB 的方程为y=x+7.方法总结 (1)直线与抛物线的位置关系点差法:在已知“x 1+x 2”或“y 1+y 2”的值,求直线l 的斜率时,利用点差法计算,在很大程度上减少运算过程中的计算量.(2)直线与圆锥曲线的位置关系已知直线与圆锥曲线相交,求参数时,一般联立直线与圆锥曲线的方程,消元后利用韦达定理,结合已知列方程求解参数.求弦长时,可通过弦长公式|AB|=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2或|AB|=√1+1k 2·|y 1-y 2|=√1+1k 2·√(y 1+y 2)2−4y 1y 2(k ≠0)求解.18.(2016课标Ⅰ文,20,12分)在直角坐标系xOy 中,直线l:y=t(t ≠0)交y 轴于点M,交抛物线C:y 2=2px(p>0)于点P,M 关于点P 的对称点为N,连接ON 并延长交C 于点H.(1)求|OH||ON|; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解析 (1)由已知得M(0,t),P (t 22p,t ).(1分) 又N 为M 关于点P 的对称点,故N (t 2p ,t ),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x 1=0,x 2=2t 2p. 因此H (2t 2p,2t ).(4分) 所以N 为OH 的中点,即|OH||ON|=2.(6分) (2)直线MH 与C 除H 以外没有其他公共点.(7分)理由如下:直线MH 的方程为y-t=p 2t x,即x=2t p(y-t).(9分)代入y 2=2px 得y 2-4ty+4t 2=0,解得y 1=y 2=2t,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.(12分)方法总结 将直线与抛物线的交点坐标问题归结为直线方程与抛物线方程组成的方程组的解的问题. 评析 本题考查了直线与抛物线的位置关系,考查了运算求解能力.得到交点的坐标是求解的关键.19.(2012课标理,20,12分)设抛物线C:x 2=2py(p>0)的焦点为F,准线为l.A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m,n 距离的比值.解析 (1)由已知可得△BFD 为等腰直角三角形,|BD|=2p,圆F 的半径|FA|=√2p.由抛物线定义可知A 到l 的距离d=|FA|=√2p.因为△ABD 的面积为4√2,所以12|BD|·d=4√2,即12·2p ·√2p=4√2,解得p=-2(舍去)或p=2.所以F(0,1),圆F 的方程为x 2+(y-1)2=8. (2)因为A,B,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=12|AB|,所以∠ABD=30°,m 的斜率为√33或-√33. 当m 的斜率为√33时,由已知可设n:y=√33x+b,代入x 2=2py 得x 2-2√33px-2pb=0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb=0, 解得b=-p 6.因为m 的截距b 1=p 2,|b 1||b|=3,所以坐标原点到m,n 距离的比值为3. 当m 的斜率为-√33时,由图形的对称性可知,坐标原点到m,n 距离的比值也为3.评析 本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.。
2020年高考数学复习题:抛物线的方程及性质

抛物线的方程及性质[基础训练]1.过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点到y 轴的距离等于( )A .1B .2C .3D .4答案:D 解析:抛物线y 2=4x 的焦点为(1,0),准线为l :x =-1.设AB 的中点为E ,过A ,E ,B 分别作准线的垂线,垂足分别为C ,G ,D .EG 交y 轴于点H (如图所示).则由EG 为直角梯形ACDB 的中位线知, |EG |=|AC |+|BD |2=|AF |+|FB |2=|AB |2=5, |EH |=|EG |-1=4.则AB 的中点到y 轴的距离等于4.2.已知抛物线C: y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=32x 0,则x 0=( )A.14B.12 C .1D .2答案:B 解析:由题意知,抛物线的准线为x =-14,因为|AF |=32x 0,根据抛物线的定义可得 x 0+14=|AF |=32x 0,解得x 0=12.3.[2019吉林长春一模]过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |=( )A.13 B.23 C.34D.43答案:A 解析:记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C , 则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |, 即cos 60°=|BF |-|AF ||AF |+|BF |=12,解得|AF ||BF |=13.4.[2019洛阳模拟]已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4答案:D 解析:F ⎝ ⎛⎭⎪⎫p 2,0,那么M ⎝ ⎛⎭⎪⎫4-p 2,4在抛物线上,即16=2p ⎝ ⎛⎭⎪⎫4-p 2,即p 2-8p +16=0,解得p =4.5.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2答案:C 解析:焦点F (1,0),设A ,B 分别在第一、四象限,则点A 到准线l :x =-1的距离为3,得A 的横坐标为2,纵坐标为22,AB 的方程为y =22(x -1),与抛物线方程联立可得2x 2-5x +2=0,所以B 的横坐标为12,纵坐标为-2,S △AOB =12×1×(22+2)=322.6.[2019海南海口模拟]过点F (0,3),且和直线y +3=0相切的动圆圆心轨迹方程是( )A .y 2=12xB .y 2=-12xC .x 2=-12yD .x 2=12y答案:D 解析:由已知条件知,动圆圆心到点F 和到直线y +3=0的距离相等,所以动圆圆心轨迹是以点F (0,3)为焦点,直线y =-3为准线的抛物线,故其方程为x 2=12y ,故选D.7.[2019豫南九校联考]已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|P A |+|PQ |的最小值为( )A .7B .8C .9D .10答案:C 解析:如图,抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.∴|P A |+|PQ |=|P A |+|PM |-1=|P A |+|PF |-1≥|AF |-1=82+(7-1)2-1=10-1=9,当且仅当点P 在线段AF 上时,等号成立, 则|P A |+|PQ |的最小值为9. 故选C.8.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74答案:C 解析:如图,过A ,B 及线段AB 的中点C 向抛物线的准线l 作垂线,垂足分别为A 1,B 1,C 1,CC 1交y 轴于C 0.由抛物线定义可知,|AA 1|+|BB 1|=|AF |+|BF |, ∴|CC 0|=|CC 1|-|C 1C 0| =12(|AA 1|+|BB 1|)-|C 1C 0| =32-14=54, 故选C.9.过抛物线y 2=2px (p >0)的焦点F 作直线l 交抛物线于A ,B 两点,交准线于点C ,若CB→=3BF →,则直线l 斜率为________. 答案:±22 解析:作BB 1垂直于准线,B 1为垂足,由抛物线定义可知,|BB 1|=|BF |, ∴|BC |=3|BB 1|.在Rt △B 1BC 中,tan ∠B 1BC =2 2. ∴tan α=22(α为倾斜角). 由对称性可知,斜率还可等于-2 2. ∴斜率为±2 2.10.[2017全国卷Ⅱ]已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.答案:6 解析:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴ PM ∥OF .由题意,知F (2,0),|FO |=|AO |=2. ∵ 点M 为FN 的中点,PM ∥OF , ∴ |MP |=12|FO |=1. 又|BP |=|AO |=2, ∴ |MB |=|MP |+|BP |=3.由抛物线的定义,知|MF |=|MB |=3, 故|FN |=2|MF |=6.11.[2017北京卷]已知抛物线C :y 2=2px 过点P (1,1).过点⎝⎛⎭⎪⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解:由抛物线C :y 2=2px 过点P (1,1),得p =12. 所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫14,0, 准线方程为x =-14.(2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0,则x 1+x 2=1-k k 2,x 1x 2=14k 2. 因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝ ⎛⎭⎪⎫x 1,y 2x 1x 2.因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2 =⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2 =(2k -2)×14k 2+1-k 2k 2x 2=0, 所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.[强化训练]1.[2019清华大学学术能力诊断]已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N 两点,则S △MFN =( )A.83p 2B.233p 2C.433p 2D.833p 2答案:B 解析:不妨设P 在第一象限,过Q 作QR ⊥PM ,垂足为R ,设准线与x 轴的交点为E ,∵直线PQ 的斜率为3,∴直线PQ 的倾斜角为60°.由抛物线焦点弦的性质可得|PQ |=|PF |+|QF |=p1-cos 60°+p 1+cos 60°=2p sin 260°=83p .在Rt △PRQ 中,sin ∠RPQ =|QR ||PQ |, ∴|QR |=|PQ |·sin ∠RPQ =83p ×32=433p , 由题意可知,|MN |=|QR |=433p , ∴S △MNF =12|MN |·|FE |=12×433p ×p =233p 2. 故选B.2.[2019湖北四地七校3月联考]已知抛物线y 2=2px (p >0),点C (-4,0).过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24.则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x答案:D 解析:因为AB ⊥x 轴,且AB 过点F , 所以AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍), 所以抛物线方程为y 2=8x , 所以直线AB 的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x , 故选D.3.[2019安徽芜湖模拟]已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于( )A .-4B .4C .p 2D .-p 2答案:A 解析:①焦点弦AB ⊥x 轴,则x 1=x 2=p 2,则x 1x 2=p 24; ②若焦点弦AB 不垂直于x 轴, 可设直线AB :y =k ⎝⎛⎭⎪⎫x -p 2, 联立y 2=2px ,得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.∵y 21=2px 1,y 22=2px 2,∴y 21y 22=4p 2x 1x 2=p 4. 又∵y 1y 2<0,∴y 1y 2=-p 2. 故y 1y 2x 1x 2=-4. 4.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A ⎝ ⎛⎭⎪⎫72,4,则|P A |+|PM |的最小值是( )A.72 B .4 C.92D .5答案:C 解析:设抛物线y 2=2x 的焦点为F ,则F ⎝ ⎛⎭⎪⎫12,0.又点A ⎝ ⎛⎭⎪⎫72,4在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12.又|P A |+d =|P A |+|PF |≥|AF |=5, 所以|P A |+|PM |≥92.5.设F 为抛物线y 2=6x 的焦点,A ,B ,C 为该抛物线上三点.若F A →+FB →+FC →=0,则|F A →|+|FB→|+|FC →|=( ) A .4 B .6 C .9D .12答案:C 解析:由题意,得抛物线的焦点为F ⎝ ⎛⎭⎪⎫32,0,准线方程为x =-32.设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),∵F A →+FB →+FC →=0,∴点F 是△ABC 的重心, ∴x 1+x 2+x 3=92. 由抛物线的定义,可得|F A |=x 1-⎝ ⎛⎭⎪⎫-32=x 1+32,|FB |=x 2-⎝ ⎛⎭⎪⎫-32=x 2+32, |FC |=x 3-⎝⎛⎭⎪⎫-32=x 3+32,∴|F A →|+|FB →|+|FC →|=x 1+32+x 2+32+x 3+32 =9.6.[2019石家庄模拟]已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y答案:D 解析:因为x 2a 2-y 2b 2=1的离心率为2,所以c a =2,即c 2a 2=a 2+b 2a 2=4,所以ba = 3.x 2=2py 的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意得p21+(3)2=2,所以p =8.故C 2的方程为x 2=16y .7.[2019永州模拟]已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A.22 B .1-22 C .1+22D .2+ 2答案:D 解析:抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116, 准线为y =-116,设|MF |=a ,|NF |=b ,由∠MFN =135°, 可得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab , 由抛物线的定义,可得M 到准线的距离为|MF |,N 到准线的距离为|NF |, 由梯形的中位线定理,可得d =12(|MF |+|NF |)=12(a +b ),由|MN |2=λ·d 2,可得14λ=a 2+b 2+2ab (a +b )2=1-(2-2)ab (a +b )2≥1-(2-2)ab (2ab )2=1-2-24=2+24,可得λ≥2+2,当且仅当a =b 时,取得最小值2+ 2.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.答案:1+2 解析:|OD |=a2,|DE |=b ,|DC |=a ,|EF |=b ,故C ⎝⎛⎭⎪⎫a 2,-a ,F ⎝⎛⎭⎪⎫a 2+b ,b ,又抛物线y 2=2px (p >0)经过C ,F 两点, 从而有⎩⎪⎨⎪⎧(-a )2=2p ×a 2,b 2=2p ⎝ ⎛⎭⎪⎫a 2+b ,即⎩⎪⎨⎪⎧a =p ,b 2=ap +2bp , ∴b 2=a 2+2ab ,∴⎝ ⎛⎭⎪⎫b a 2-2·ba -1=0, 又b a >1,∴ba =1+ 2.9.[2019河南安阳一模]已知抛物线C 1:y =ax 2(a >0)的焦点F 也是椭圆C 2:y 24+x 2b 2=1(b >0)的一个焦点,点M ,P ⎝ ⎛⎭⎪⎫32,1分别为曲线C 1,C 2上的点,则|MP |+|MF |的最小值为________.答案:2 解析:将P ⎝ ⎛⎭⎪⎫32,1代入y 24+x2b 2=1,可得 14+94b 2=1,∴b =3,∴c =1,∴抛物线的焦点F 为(0,1), ∴抛物线C 1的方程为x 2=4y , 准线为直线y =-1.设点M 在准线上的射影为D , 根据抛物线的定义可知,|MF |=|MD |,∴要求|MP |+|MF |的最小值,即求|MP |+|MD |的最小值,易知当D ,M ,P 三点共线时,|MP |+|MD |最小,最小值为1-(-1)=2.10.[2019湖北武汉一模]设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过焦点的直线分别交抛物线于A ,B 两点,分别过点A ,B 作l 的垂线,垂足分别为点C ,D .若|AF |=2|BF |,且△CDF 的面积为2,则p 的值为________.答案:233 解析:设A (x 1,y 1),B (x 2,y 2). 因为直线AB 过焦点F ,所以y 1y 2=-p 2. 不妨设点A 在第一象限,因为|AF |=2|BF |,所以|y 1|=2|y 2|,所以-2y 22=-p 2.解得y 2=-22p ,所以y 1=-2y 2=2p . 所以S △CDF =12|y 1-y 2|×p =12×322p 2=2, 解得p =233.11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2, 于是4+p2=5,∴p =2, ∴抛物线的方程为y 2=4x . (2)由(1)知,点A 的坐标是(4,4). 由题意,得B (0,4),M (0,2), 又∵F (1,0),∴k F A =43. ∵MN ⊥F A ,∴k MN =-34, ∴直线F A 的方程为y =43(x -1),① 直线MN 的方程为y =-34x +2,② 由①②联立,得x =85,y =45,∴N 的坐标为⎝ ⎛⎭⎪⎫85,45.。
抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
备战高考数学复习考点知识与题型讲解68---抛物线

备战高考数学复习考点知识与题型讲解第68讲 抛物线考向预测核心素养抛物线的方程、几何性质及抛物线的综合问题是高考热点,综合问题难度较大.直观想象、数学抽象、数学运算一、知识梳理 1.抛物线的概念(1)定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹.(2)焦点:点F 叫做抛物线的焦点. (3)准线:直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2准线 方程 x =-p 2x =p 2y =-p 2y =p 2对称轴 x 轴y 轴顶点 (0,0)离心率e =1常用结论1.与焦点弦有关的常用结论如图,倾斜角为θ的直线AB与抛物线y2=2px(p>0)交于A,B两点,F为抛物线的焦点,设A(x1,y1),B(x2,y2).则有(1)y1y2=-p2,x1x2=p2 4.(2)焦点弦长:|AB|=x1+x2+p=2psin2θ(θ为直线AB的倾斜角).通径(过焦点垂直于对称轴的弦)长:2p.(3)焦半径:|AF|=p1-cos α,|BF|=p1+cos α,1|AF|+1|BF|=2p.(4)以弦AB为直径的圆与准线相切;以AF或BF为直径的圆与y轴相切.2.若A,B为抛物线y2=2px(p>0)上两点,且OA⊥OB,则直线AB过定点(2p,0).二、教材衍化1.(人A选择性必修第一册P133练习T3(2)改编)抛物线y2=12x上与焦点的距离等于6的点的坐标是________.答案:(3,±6)2.(人A选择性必修第一册P136练习T4改编)已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=________.解析:设点A的横坐标是x1,则依题意有焦点F(1,0),|AF|=x1+1=2,则x1=1.因为AF所在直线过点F,所以直线AF的方程是x=1,此时弦AB为抛物线的通径,故|BF|=|AF|=2.答案:2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.() (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.() (3)若一抛物线过点P (-4,3),则其标准方程可写为y 2=2px (p >0).() (4)抛物线x 2=-2ay (a >0)的通径长为2a .() 答案:(1)×(2)×(3)×(4)√ 二、易错纠偏1.(多选)(忽视焦点的位置致误)顶点在原点,且过点P (-2,3)的抛物线的标准方程是()A .y 2=-92xB.y 2=92xC .x 2=43yD.x 2=-43y解析:选AC.设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 2.(忽视抛物线的开口方向致误)若抛物线y =ax 2的准线方程是y =2,则a 的值是________.解析:把抛物线方程y =ax 2化为标准形式得x 2=1a y ,所以-14a =2,解得a =-18.答案:-183.(忽视方程多解致误)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析:设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2.答案:2考点一 抛物线的定义和标准方程(自主练透)复习指导:1.了解抛物线的定义、标准方程、掌握各种形式下抛物线的图形. 2.理解参数p 的几何意义.1.(2021·新高考卷Ⅱ)若抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =() A .1 B.2 C.2 2D.4解析:选B.抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x3.在平面直角坐标系xOy 中,有一定点A (2,1).若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.解析:线段OA 的垂直平分线方程是y =-2x +52,且交x 轴于点⎝ ⎛⎭⎪⎫54,0,该点为抛物线y 2=2px (p >0)的焦点,故该抛物线的准线方程为x =-54.答案:x =-54抛物线的定义及标准方程应用关键点(1)由抛物线定义,抛物线上的点到焦点的距离和到准线的距离可相互转化.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.考点二 抛物线的几何性质(多维探究)复习指导:理解应用抛物线的简单几何性质. 角度1 焦半径和焦点弦(1)(2022·河北衡水三模)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若A ,B ,C 三点坐标分别为(1,2),(x 1,y 1),(x 2,y 2),且||+||+||=10,则x 1+x 2=()A .6 B.5 C.4D.3(2)(链接常用结论1(2))设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为()A.334B.938C.6332D.94【解析】 (1)根据抛物线的定义,知||,||,||分别等于点A ,B ,C 到准线x =-1的距离,所以由||+||+||=10,可得2+x 1+1+x 2+1=10,即x 1+x 2=6.故选A.(2)由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.方法一:联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 则y A +y B =33,y A y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB=12|OF||y A-y B|=12×34×6=94.方法二:联立直线方程与抛物线方程得x2-212x+916=0,故x A+x B=212.根据抛物线的定义有|AB|=x A+x B+p=212+32=12,同时原点到直线AB的距离为d=|-3|42+(-43)2=38,因此S△OAB=12|AB|·d=94.【答案】(1)A(2)D角度2 与抛物线有关的最值设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】 41.若本例条件不变,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是________.解析:由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离,所以点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为焦点F(1,0)到直线3x+4y+7=0的距离,即|3+7|32+42=2.答案:22.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部,F(1,0).因为|PB|+|PF|的最小值即为B,F两点间的距离,所以|PB|+|PF|≥|BF|=(3-1)2+(4-0)2=25,即|PB|+|PF|的最小值为2 5.抛物线的性质及应用要点(1)由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.(2)与抛物线有关的最值问题的两个转化策略转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,“三角形两边之和大于第三边”,使问题得以解决.转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.|跟踪训练|1.已知点Q(22,0)及抛物线y=x24上的动点P(x,y),则y+|PQ|的最小值是()A.2 B.3 C.4 D.2 2 解析:选A.因为抛物线的方程为x 2=4y , 所以焦点为F (0,1),准线方程为y =-1, 所以抛物线上的动点P (x ,y )到准线的距离为y -(-1)=y +1,由抛物线的定义可得|PF |=y +1,又因为Q (22,0),所以y +|PQ |=y +1+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=(22-0)2+(0-1)2-1=3-1=2, 当且仅当F ,P ,Q 三点共线时取等号.2.(2022·沈阳质量检测)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝ ⎛⎭⎪⎫32a ,12a ,因为点A 在抛物线y 2=3x 上,所以14a 2=3×32a ,所以a =6 3.答案:6 3考点三 直线与抛物线(综合研析)复习指导:了解圆锥曲线的简单应用,了解抛物线的实际背景.(2021·高考全国卷乙)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足=9,求直线OQ 斜率的最大值. 【解】 (1)由抛物线的定义可知,焦点F 到准线的距离为p ,故p =2,所以C 的方程为y 2=4x .(2)由(1)知F (1,0),设P (x 1,y 1),Q (x 2,y 2), 则=(x 2-x 1,y 2-y 1),=(1-x 2,-y 2), 因为=9,所以⎩⎨⎧x 2-x 1=9(1-x 2),y 2-y 1=-9y 2,可得⎩⎨⎧x 1=10x 2-9,y 1=10y 2,又点P 在抛物线C 上,所以y 21=4x 1,即(10y 2)2=4(10x 2-9),化简得y 22=25x 2-925,则点Q 的轨迹方程为y 2=25x -925.设直线OQ 的方程为y =kx ,易知当直线OQ 与曲线y 2=25x -925相切时,斜率可以取最大,联立y =kx 与y 2=25x -925并化简,得k 2x 2-25x +925=0,令Δ=(-25)2-4k 2·925=0,解得k =±13,所以直线OQ 斜率的最大值为13.解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[注意]涉及弦的中点、斜率时,一般用“点差法”求解.|跟踪训练|1.直线y=x+b交抛物线y=12x2于A,B两点,O为抛物线顶点,OA⊥OB,则b的值为()A.-1 B.0C.1D.2解析:选D.设A(x1,y1),B(x2,y2),将y=x+b代入y=12x2,化简可得x2-2x-2b=0,故x1+x2=2,x1x2=-2b,所以y1y2=x1x2+b(x1+x2)+b2=b2.又OA⊥OB,所以x1x2+y1y2=0,即-2b+b2=0,则b=2或b=0,经检验b=0时,不符合题意,故b=2.2.(多选)(2022·广东省广雅中学月考)已知O为坐标原点,M(2,2),P,Q是抛物线C:y2=2px上两点,F为其焦点,若F到准线的距离为2,则下列说法正确的有() A.△PMF周长的最小值为2 5B.若=λ,则||PQ最小值为4C.若直线PQ过点F,则直线OP,OQ的斜率之积恒为-2D.若△POF外接圆与抛物线C的准线相切,则该圆面积为9π4解析:选BD.因为F到准线的距离为2,所以p=2,所以抛物线C:y2=4x,F(1,0),|MF|=(2-1)2+(2-0)2=5,准线l:x=-1,对于A,过P作PN⊥l,垂足为N,则|PF|+|PM|=|PN|+|PM|≥|MN|=2+1=3,所以△PMF周长的最小值为3+5,故A不正确;对于B ,若=λ,则弦PQ 过F ,过P 作l 的垂线,垂足为P ′,过Q 作l 的垂线,垂足为Q ′,设PQ 的中点为G ,过G 作GG ′⊥l ,垂足为G ′,则|PQ |=|PF |+|QF |=|PP ′|+|QQ ′|=2|GG ′|≥2×2=4,即||PQ 最小值为4,故B 正确;对于C ,若直线PQ 过点F ,设直线PQ :x =my +1, 联立⎩⎨⎧x =my +1,y 2=4x ,消去x 得y 2-4my -4=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,所以k OP ·k OQ =y 1x 1·y 2x 2=4y 1·4y 2=16-4=-4,故C 不正确;对于D ,因为OF 为外接圆的弦,所以圆心的横坐标为12,因为△POF 外接圆与抛物线C 的准线相切,所以圆的半径为1+12=32,所以该圆面积为π(32)2=94π,故D 正确.3.设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:不妨设点A 在第一象限.由题意得图,其中AB 垂直于抛物线的准线l .则|FC |=3p ,所以|AF|=|AB|=|CF| 2=32p,则A(p,2p).易证△EFC∽△EAB,所以|EF||EA|=|CF||AB|=|CF||AF|=2,所以|EA||AF|=13,所以S△ACE=13S△AFC=13×12×3p×2p=22p2=32,所以p= 6.答案: 6[A 基础达标]1.(2022·荆州市检测)过点A(3,0)且与y轴相切的圆的圆心的轨迹为()A.圆 B.椭圆C.直线D.抛物线解析:选D.如图,设P为满足条件的一点,不难得出结论:点P到点A的距离|PA|等于点P到y轴的距离|PB|,故点P在以点A为焦点,y轴为准线的抛物线上,故点P的轨迹为抛物线.2.已知点P(2,y)在抛物线y2=4x上,则点P到抛物线焦点F的距离为()A.2 B.3C. 3D. 2解析:选B.因为抛物线y2=4x的焦点为(1,0),准线为x=-1,结合定义点P到抛物线焦点的距离等于它到准线的距离,为3.3.(2022·哈尔滨六中期末)过抛物线x 2=4y 的焦点F 作直线l 交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=()A .5 B.6 C.8D.10解析:选C.抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线l 与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|=y 1+y 2+2=8.4.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2 B.4 C.6 D.8解析:选B.如图,不妨设抛物线C :y 2=2px (p >0),A (x 1,22),则x 1=(22)22p =4p,由题意知|OA |=|OD |,所以⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.5.(2020·高考全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.⎝ ⎛⎭⎪⎫14,0 B.⎝ ⎛⎭⎪⎫12,0 C .(1,0)D.(2,0)解析:选B.将直线方程与抛物线方程联立,可得y =±2p ,不妨设D (2,2p ),E (2,-2p ),由OD ⊥OE ,可得·=4-4p =0,解得p =1,所以抛物线C 的方程为y 2=2x ,其焦点坐标为⎝ ⎛⎭⎪⎫12,0.6.已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F 与l 相切,则抛物线的方程为________.解析:因为半径为3的圆与抛物线的准线l 相切, 所以圆心到准线的距离等于3,又因为圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x7.(2021·新高考卷Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________.解析:通解(解直角三角形法):由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p2p =p 6,解得p =3,所以C 的准线方程为x =-32. 光速解(应用射影定理法):由题易得|OF |=p2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32. 答案:x =-328.(2022·山东模拟)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =________,1|AF |+1|BF |=________.解析:由题意知p2=1,从而p =2,所以抛物线方程为y 2=4x .当直线AB 的斜率不存在时,将x =1代入抛物线方程, 解得|AF |=|BF |=2,从而1|AF |+1|BF |=1.当直线AB 的斜率存在时,设AB 的方程为y =k (x -1), 联立⎩⎨⎧y =k (x -1),y 2=4x ,整理,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2k 2+4k 2,x 1x 2=1,从而1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1.综上,1|AF |+1|BF |=1.答案:219.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=45,所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x . 10.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p2.由|AF |=3,得2+p2=3,解得p =2.所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆,必与直线GB 相切.[B 综合应用]11.(2022·陕西省咸阳市质检)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是()A.72B.3C.52D.2解析:选C.如图,抛物线的准线方程为x =-12,过点Q 作QQ ′垂直准线于点Q ′,|MQ |-|QF |=|MQ |-|QQ ′|,显然当MQ ∥x 轴时,|MQ |-|QF |取得最小值,此时|MQ |-|QF |=|2+3|-⎪⎪⎪⎪⎪⎪2+12=52.12.(多选)(2022·盐城市阜宁中学高二检测)已知抛物线C :y 2=4x 的焦点为F ,点P 在抛物线的准线上,线段PF 与抛物线交于点M ,则下列判断正确的是()A .△OMF 不可能是等边三角形B .△OMF 可能是等腰直角三角形 C.|PF ||PM |=1+2|PF |D.|PF ||MF |-|PF |=1 解析:选AC.若△OMF 是等边三角形,则边长为1,且点M 的横坐标为12,纵坐标为±2,此时|OM |=14+2=32≠1,所以△OMF 不可能是等边三角形,故A 正确;若△OMF 是等腰直角三角形,则只可能是∠OMF =90°,|OM |=|FM |=32,所以|OM |2+|FM |2≠|OF |2,故B 不正确;过点M 作准线的垂线交准线于点N ,则|MF |=|MN |,|PF ||PM |=|PM |+|MF ||PM |=1+|MF ||PM |=1+|MN ||PM |=1+2|PF |,故C 正确,D 不正确. 13.(多选)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直于l 且交l 于点Q ,M ,N 分别为PQ ,PF 的中点,MN 与x 轴相交于点R ,若∠NRF =60°,则()A .∠FQP =60° B.|QM |=1 C .|FP |=4 D.|FR |=2解析:选ACD.如图,连接FQ ,FM ,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥FQ ,又PQ ∥x 轴,∠NRF =60°,所以∠FQP =60°,由抛物线的定义知,|PQ |=|PF |,所以△FQP 为等边三角形,则FM ⊥PQ ,|QM |=2,等边三角形FQP 的边长为4,|FP |=|PQ |=4,|FN |=12|PF |=2,则△FRN 为等边三角形,所以|FR |=2.故选ACD.14.(2022·江苏省如皋市高三调研)已知抛物线C :y 2=4x 的焦点为F ,过F 的直线交抛物线C 于A ,B 两点,以AF 为直径的圆过点()0,2,则直线AB 的斜率为________.解析:由抛物线C :y 2=4x 可得焦点为F ()1,0,设A ()x 1,y 1, 由抛物线的定义可得||AF =x 1+p2=x 1+1,AF 的中点为⎝⎛⎭⎪⎫x 1+12,y 12, 所以AF 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -x 1+122+⎝ ⎛⎭⎪⎫y -y 122=⎝ ⎛⎭⎪⎫x 1+122, 因为以AF 为直径的圆过点()0,2,所以⎝ ⎛⎭⎪⎫0-x 1+122+⎝ ⎛⎭⎪⎫2-y 122=⎝ ⎛⎭⎪⎫x 1+122,可得y 1=4,所以x 1=4, 所以点A ()4,4,所以直线AB 的斜率为4-04-1=43.答案:43[C 素养提升]15.(2022·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、y 轴交于M ,N 两点,点A (2,-4),且=λ+μ,则λ+μ的最小值为________.解析:由题意得M (2,0),N (0,-4),设P (x ,y ),由=λ+μ得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74. 答案:7416.(2021·高考全国卷甲)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切.(1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.解:(1)由题意,直线x =1与C 交于P ,Q 两点,且OP ⊥OQ ,设C 的焦点为F ,P 在第一象限,则根据抛物线的对称性,∠POF =∠QOF =45°, 所以P (1,1),Q (1,-1).设C 的方程为y 2=2px (p >0),则1=2p ,p =12,所以C 的方程为y 2=x .由题意,圆心M (2,0)到l 的距离即⊙M 的半径,且距离为1,所以⊙M 的方程为(x -2)2+y 2=1.(2)设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),当A 1,A 2,A 3中有一个为坐标原点,另外两个点的横坐标均为3时,A 1A 2,A 1A 3均与⊙M 相切,此时直线A 2A 3与⊙M 相切.当x 1≠x 2≠x 3时,直线A 1A 2:x -(y 1+y 2)y +y 1y 2=0, 则|2+y 1y 2|(y 1+y 2)2+1=1,即(y 21-1)y 22+2y 1y 2+3-y 21=0, 同理可得(y 21-1)y 23+2y 1y 3+3-y 21=0,所以y 2,y 3是方程(y 21-1)y 2+2y 1y +3-y 21=0的两个根,则y 2+y 3=-2y 1y 21-1,y 2y 3=3-y 21y 21-1.直线A2A3的方程为x-(y2+y3)y+y2y3=0,设M到直线A2A3的距离为d(d>0),则d2=(2+y2y3)2==1,1+(y2+y3)2即d=1,所以直线A2A3与⊙M相切.综上可得,直线A2A3与⊙M相切.21 / 21。
人教版高考数学试题:抛物线及其标准方程

抛物线的几何性质(1)一. 选择题(共5小题,每小题5分,共25分)1.顶点在原点,坐标轴为对称轴的抛物线,过点(-2,3),则它的方程是 ( B ) A.y x 292-=或x y 342= B. y x 292-=或y x 342= C. y x 342= D. y x 292-= 2.以x 轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是 ( C ) A.x y 82= B. x y 82-= C. x y 82=或x y 82-= D. y x 82=或y x 82-=3.抛物线x 2=-4y 的通径为AB ,O 为抛物线的顶点,则 ( D )A.通径长为8,△AOB 的面积为4B.通径长为-4,△AOB 的面积为2C.通径长为4,△AOB 的面积为4D.通径长为4,△AOB 的面积为24.已知直线y =kx -k 及抛物线px y 22=(p >0),则 ( C )A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点5.等腰直角三角形AOB 内接于抛物线px y 22= (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是 ( B )A.8p 2B.4p 2C. 2p 2D.p 2二、填空题(共4小题,每小题5分,共20分)6.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点且过A 、B 的抛物线方7.已知点(x ,y )在抛物线x y 42=上,则32122+-=y x z 8.若抛物线px y 22=(p >0)上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为9.已知A (6,2),在抛物线上求一点|QA|+|QF|最小。
三、解答题(共3小题,15+20+20,共55分)10.设M 是抛物线px y 22= (p >0)上的任一点,F 是它的焦点,求证:以FM 为直径的圆 和y 轴相切.证明:作AA1⊥l 于A1,BB1⊥l 于B1,M 为AB 的中点,作MM1⊥l 于M1,则由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|.又在直角梯形BB1A1A 中故以AB 为直径的圆,必与抛物线的准线相切.11.过定点A (-2,-1)倾斜角为45°的直线与抛物线2ax y =交于B 、C ,且|BC|是|AB|、|AC|的等比中项,求抛物线方程.答案:y =x212.已知抛物线C 的准线为x =43,对称轴上有一点坐标为(6,2),C 与直线l :y =x -1相交所得弦的长为32,求抛物线方程.解:由题意,可设C 的方程为(y -2)2=2a (x -x 0),顶点为(x 0,2).∵准线方程为x =43, ∴x 0-43=2a ,即a =2x 0-23. 代入C 的方程,并与l 方程联立,消去x ,得y 2-(4x 0+1)y +477020+-x x =0. 于是27364)(02122121-=-+=-x y y y y y y .∵直线l 的斜率为1,倾斜角为45°,弦长为32, ∴345sin 2321=︒=-y y 即21,1,3273600===-a x x ∴抛物线方程为(y -2)2=x -1.。
历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之<抛物线>必会题型及答案体验高考1.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4)C.(2,3) D.(2,4) 答案 D解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0, 2=5-x 0,x 0=3,即M 必在直线x =3上, 将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.2.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.(2016·四川)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33B.23C.22D.1 答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然,当y 0<0时,k OM <0;y 0>0时,k OM >0,要求k OM 的最大值,不妨设y 0>0.则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立.故选C.4.(2016·课标全国乙)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8 答案 B解析 不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0, ① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2, ②点D ⎝ ⎛⎭⎪⎫-p2,5在圆x 2+y 2=r 2上,∴⎝ ⎛⎭⎪⎫p 22+5=r 2, ③联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.5.(2015·上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =______. 答案 2解析 根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离最小,所以有|PQ |min =p2=1⇒p =2.高考必会题型题型一 抛物线的定义及其应用例1 已知P 为抛物线y 2=6x 上一点,点P 到直线l :3x -4y +26=0的距离为d 1.(1)求d 1的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为d 2,求d 1+d 2的最小值. 解 (1)设P (y 206,y 0),则d 1=|12y 20-4y 0+26|5=110|(y 0-4)2+36|,当y 0=4时,(d 1)min =185,此时x 0=y 206=83,∴当P 点坐标为(83,4)时,(d 1)min =185.(2)设抛物线的焦点为F , 则F (32,0),且d 2=|PF |,∴d 1+d 2=d 1+|PF |,它的最小值为点F 到直线l 的距离|92+26|5=6110,∴(d 1+d 2)min =6110.点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 (1)(2016·浙江)若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是________.(2)已知点P 在抛物线y 2=4x 上,那么点P 到Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.(14,1) B.(14,-1)C.(1,2) D.(1,-2) 答案 (1)9 (2)B解析 (1)抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.(2)抛物线y 2=4x 焦点为F (1,0),准线为x =-1, 作PQ 垂直于准线,垂足为M ,根据抛物线定义,|PQ |+|PF |=|PQ |+|PM |,根据三角形两边之和大于第三边,直角三角形斜边大于直角边知:|PQ |+|PM |的最小值是点Q 到抛物线准线x =-1的距离. 所以点P 纵坐标为-1,则横坐标为14,即(14,-1).题型二 抛物线的标准方程及几何性质例2 (2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3x P , 代入x 2P =4y P ,得x P =43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.题型三 直线和抛物线的位置关系例3 已知圆C 1的方程为x 2+(y -2)2=1,定直线l 的方程为y =-1.动圆C 与圆C 1外切,且与直线l 相切.(1)求动圆圆心C 的轨迹M 的方程;(2)直线l ′与轨迹M 相切于第一象限的点P ,过点P 作直线l ′的垂线恰好经过点A (0,6),并交轨迹M 于异于点P 的点Q ,记S 为△POQ (O 为坐标原点)的面积,求S 的值. 解 (1)设动圆圆心C 的坐标为(x ,y ),动圆半径为R , 则|CC 1|=x 2+(y -2)2=R +1,且|y +1|=R , 可得x 2+(y -2)2=|y +1|+1.由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方, ∴有y +1>0,x 2+(y -2)2=y +2,整理得x 2=8y ,即为动圆圆心C 的轨迹M 的方程.(2)设点P 的坐标为(x 0,x 208),则y =x 28,y ′=14x ,k l ′=x 04,k PQ =-4x 0,∴直线PQ 的方程为y =-4x 0x +6.又k PQ =x 208-6x 0,∴x 208-6x 0=-4x 0,x 20=16,∵点P 在第一象限,∴x 0=4,点P 的坐标为(4,2),直线PQ 的方程为y =-x +6.联立⎩⎪⎨⎪⎧y =-x +6,x 2=8y ,得x 2+8x -48=0,解得x =-12或4,∴点Q 的坐标为(-12,18). ∴S =12|OA |·|x P -x Q |=48.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.高考题型精练1.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A.y 2=9x B.y 2=6x C.y 2=3x D.y 2=3x 答案 C解析 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得: |BC |=2a ,由定义得:|BD |=a , 故∠BCD =30°. 在直角三角形ACE 中,∵|AF |=3,∴|AE |=3,|AC |=3+3a , ∴2|AE |=|AC |,∴3+3a =6, 从而得a =1,∵BD ∥FG , ∴1p =23,求得p =32, 因此抛物线方程为y 2=3x ,故选C.2.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A.2±3B.2+3C.3±1D.3-1 答案 A解析 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.3.设F 为抛物线y 2=8x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|的值是( ) A.6B.8C.9D.12 答案 D解析 由抛物线方程,得F (2,0),准线方程为x =-2. 设A ,B ,C 坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),则由抛物线的定义,知|FA |+|FB |+|FC |=x 1+2+x 2+2+x 3+2=x 1+x 2+x 3+6. 因为FA →+FB →+FC →=0,所以(x 1-2+x 2-2+x 3-2,y 1+y 2+y 3)=(0,0), 则x 1-2+x 2-2+x 3-2=0,即x 1+x 2+x 3=6, 所以|FA →|+|FB →|+|FC →|=|FA |+|FB |+|FC | =x 1+x 2+x 3+6=12,故选D.4.已知抛物线C :y 2=8x 的焦点为F ,点M (-2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若∠AMB =90°,则k 等于( )A.2B.22C.12D.2 答案 D解析 抛物线C :y 2=8x 的焦点为F (2,0),由题意可知直线AB 的斜率一定存在,所以设直线方程为y =k (x -2),代入抛物线方程可得 k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1·x 2=4, 所以y 1+y 2=8k,y 1·y 2=-16, 因为∠AMB =90°,所以MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=16k 2-16k+4=0, 解得k =2,故选D.5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12B.23C.34D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12. 因为切点在第一象限,所以k =12. 将k =12代入①中,得y =8,再代入y 2=8x 中得x =8, 所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43. 6.已知A (x 1,y 1)是抛物线y 2=8x 的一个动点,B (x 2,y 2)是圆(x -2)2+y 2=16上的一个动点,定点N (2,0),若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是( )A.(6,10)B.(10,12)C.(8,12)D.(8,10)解析 抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x 1+2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,又定点N (2,0),∴△NAB 的周长即为△FAB 的周长=|AF |+|AB |+|BF |=x 1+2+(x 2-x 1)+4=6+x 2, 由抛物线y 2=8x 及B (x 2,y 2)在圆(x -2)2+y 2=16上,∴x 2∈(2,6),∴6+x 2∈(8,12),故选C.7.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x -y -10=0上的点N ,经直线反射后又回到点M ,则x 0=________.答案 6解析 由题意得P (2,4),F (2,0)⇒Q (2,-4),因此N (6,-4),因为QN ∥PM ,所以MN ⊥QN ,即x 0=6.8.已知直线l 过点(0,2),且与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2)两点,则1y 1+1y 2=_____.答案 12解析 由题意可得直线的斜率存在且不等于0,设直线l 的方程为y =kx +2,代入抛物线y 2=4x 可得y 2-4k y +8k=0, ∴y 1+y 2=4k ,y 1y 2=8k ,∴1y 1+1y 2=y 1+y 2y 1y 2=12. 9.已知抛物线y 2=4x 与经过该抛物线焦点的直线l 在第一象限的交点为A ,A 在y 轴和准线上的投影分别为点B ,C ,|AB ||BC |=2,则直线l 的斜率为________.解析 设A (x 0,y 0),则|AB |=x 0,|BC |=1,由|AB ||BC |=x 01=2,得x 0=2,y 0=4×2=22, 又焦点F (1,0),所以直线l 的斜率为k =222-1=2 2. 10.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 因为点M ,N 关于直线y =x +m 对称,所以MN 的垂直平分线为y =x +m ,所以直线MN 的斜率为-1.设线段MN 的中点为P (x 0,x 0+m ),直线MN 的方程为y =-x +b ,则x 0+m =-x 0+b ,所以b =2x 0+m .由⎩⎪⎨⎪⎧ y =-x +b ,x 2-y 23=1得2x 2+2bx -b 2-3=0, 所以x M +x N =-b ,所以x 0=-b 2,所以b =m2, 所以P (-m 4,34m ). 因为MN 的中点在抛物线y 2=18x 上,所以916m 2=-92m ,解得m =0或m =-8. 11.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y , 所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1.所以,所求轨迹方程为y 2=x -1.12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p , 代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的性质适用学科高中数学适用年级高二适用区域苏教版课时时长(分钟)60知识点1、抛物线的简单性质2.抛物线性质的应用3.直线与抛物线问题教学目标1.知识与技能(1)探究抛物线的简单几何性质,初步学习利用方程研究曲线性质的方法.(2) 掌握抛物线的简单几何性质,理解抛物线方程与抛物线曲线间互逆推导的逻辑关系及利用数形结合解决实际问题.教学过程课堂导入太阳能是最清洁的能源.太阳能灶是日常生活中应用太阳能的典型例子.太阳能灶接受面是抛物线一部分绕其对称轴旋转一周形成的曲面.它的原理是太阳光线(平行光束)射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳能灶把光能转化为热能的理论依据.师:抛物线有几个焦点?【提示】一个.师:抛物线的顶点与椭圆有什么不同?【提示】椭圆有四个顶点,抛物线只有一个顶点.师:抛物线有对称中心吗?【提示】没有.师:抛物线有对称轴吗?若有对称轴,有几条?【提示】有;1条.一、复习预习1、复习抛物线的定义及标准方程的内容2、提问双曲线有哪些几何性质,获取的途径有哪些?(从范围、对称性、顶点及离心率等研究抛物线的几何性质.)二、知识讲解考点1 抛物线性质考点2 直线与抛物线1、通径:过抛物线)0(22>=p px y 的焦点且垂直于抛物线的轴的弦AB ,叫做抛物线的通径, 其长为叫做抛物线的2p .2、抛物线焦半径公式:设P (x 0,y 0)为抛物线y 2=2px(p>0)上任意一点,F 为焦点,则20px PF +=;y 2=2px(p <0=上任意一点,F 为焦点,则20p x PF +-=; 3、抛物线y 2=2px(p>0)的焦点弦(过焦点的弦)为AB ,A (x 1,y 1)、B(x 2,y 2),则有如下结论:(1)AB =x 1+x 2+p;(2)y 1y 2=-p 2,x 1x 2=42p ;三、例题精析【例题1】【题干】已知拋物线的焦点F在x轴上,直线l过F且垂直于x轴,l与拋物线交于A、B两点,O为坐标原点,若△OAB的面积等于4,求此拋物线的标准方程.【答案】y2=±42x.【解析】由题意,设拋物线方程为y2=ax(a≠0).焦点F(a4,0),直线l:x=a4,∴A、B两点的坐标分别为(a4,a2),(a4,-a2),∴AB=|a|,∵△OAB的面积为4,∴1 2·|a4|·|a|=4,∴a=±42,∴拋物线的方程为y2=±42x.【例题2】【题干】已知抛物线的顶点在坐标原点,对称轴重合于椭圆x29+y216=1短轴所在的直线,抛物线的焦点到顶点的距离为5,求抛物线的方程.【答案】y2=20x或y2=-20x.【解析】∵椭圆x29+y216=1的焦点在y轴上,∴椭圆x29+y216=1短轴所在的直线为x轴.∴抛物线的对称轴为x轴.∴设抛物线的方程为y2=mx(m≠0).∴|m4|=5,∴m=±20.∴所求抛物线的方程为y2=20x或y2=-20x.【例题3】【题干】已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且AB=52p,求AB所在直线的方程.【答案】y =2(x -p 2)或y =-2(x -p 2).【解析】法一 焦点F (p 2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则AB =2p <52p .所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p 2),k ≠0.由⎩⎨⎧ y =k (x -p 2)y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k ,y 1y 2=-p 2.∴AB = (x 1-x 2)2+(y 1-y 2)2= (1+1k 2)·(y 1-y 2)2= 1+1k 2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2).法二 如图所示,抛物线y 2=2px (p >0)的准线为x =-p 2,A (x 1,y 1)、B (x 2,y 2),设A 、B 到准线的距离分别为d A ,d B ,由抛物线的定义知,AF =d A =x 1+p 2,BF =d B =x 2+p 2,于是AB =x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,AB =2p <52p ,所以直线AB 与Ox 不垂直.设直线AB 的方程为y =k (x -p 2).由⎩⎨⎧ y =k (x -p 2)y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,所以直线AB 的方程为y =2(x-p 2)或y =-2(x -p 2).【例题4】【题干】斜率为1的直线经过抛物线x2=8y的焦点,且与抛物线相交于A,B两点,求线段AB的长.2【答案】10【解析】设A(x1,y1),B(x2,y2),则对于抛物线x2=8y,焦点弦长AB=p+(y1+y2)=4+(y1+y2).因为抛物线x2=8y的焦点为(0,2),且直线AB的斜率为12,所以直线AB的方程为y=12x+2,代入抛物线方程x2=8y,得y2-6y+4=0,从而y1+y2=6,所以AB=10.即线段AB的长为10.【例题5】【题干】已知P是抛物线y2=4x上任意一点,点A(a,0),试求当P A最小时P点的坐标.【答案】P点的坐标为:a≤2时,P(0,0);a>2时,P(a-2,±2a-2).【解析】设P(x,y),则P A=(x-a)2+y2=(x-a)2+4x=[x-(a-2)]2+4a-4.∵x≥0,a∈R,∴需分类讨论如下:(1)当a-2≤0即a≤2时,P A的最小值为|a|,此时P(0,0).(2)当a-2>0即a>2时,则x=a-2,P A取得最小值为2a-1,此时P(a-2,±2a-2).综上所述,P A最小时,P点的坐标为:a≤2时,P(0,0);a>2时,P(a-2,±2a-2).【例题6】【题干】求抛物线y=x2上的点到直线x-y-2=0的最短距离.【答案】728.【解析】 法一 设抛物线y =x 2上一点P (x 0,y 0)到直线l :x -y -2=0的距离为d ,则d =|x 0-y 0-2|2=|x 20-x 0+2|2=12|(x 0-12)2+74|. 当x 0=12时,d min =728.法二 ⎩⎪⎨⎪⎧y =x 2x -y +m =0消去y 得x 2-x -m =0令Δ=1+4m =0得m =-14, ∴切线方程为x -y -14=0,∴最短距离为d =|-2+14|2=78 2.【例题7】【题干】求过定点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.【答案】x =0或y =1或y =12x +1.【解析】若直线的斜率不存在,则过点P (0,1)的直线方程为x =0.由⎩⎪⎨⎪⎧ x =0,y 2=2x 得⎩⎪⎨⎪⎧ x =0,y =0,∴直线x =0与抛物线只有一个公共点.若直线的斜率存在,则由题意设直线的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,y 2=2x 消去y 得k 2x 2+2(k -1)x +1=0. 当k =0时,有⎩⎨⎧ x =12,y =1,即直线y =1与抛物线只有一个公共点.当k ≠0时,有Δ=4(k -1)2-4k 2=0,∴k =12,即方程为y =12x +1的直线与抛物线只有一个公共点.综上所述,所求直线的方程为x=0或y=1或y=12x+1.四、课堂运用【基础】1.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是________.【答案】y2=8x【解析】∵p=2,∴p=4,∴抛物线标准方程为y2=8x.22.经过抛物线y2=2px(p>0)的所有焦点弦中,弦长的最小值为________.【答案】2p【解析】通径长为2p.3.过抛物线y2=4x的焦点作直线与抛物线相交于P(x1,y1),Q(x2,y2)两点,若x1+x2=8,则PQ的值为________.【答案】10【解析】PQ=x1+x2+2=10.4.抛物线y2=4x的焦点到双曲线x2-y23=1的渐近线的距离是________.【答案】32【解析】由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x-y=0或3x+y=0,则焦点到渐近线的距离d1=|3×1-0|(3)2+(-1)2=32或d2=|3×1+0|(3)2+12=32.【巩固】1.已知等边三角形AOB的顶点A,B在抛物线y2=6x上,O是坐标原点,则△AOB的边长为________.【答案】12 3【解析】设△AOB边长为a,则A(32a,a2),∴a24=6×32a.∴a=12 3.2.过抛物线y=ax2(a>0)的焦点F作一条直线交抛物线于P、Q两点,若线段PF与FQ的长分别为m、n,则1m+1n=________.【答案】4a【解析】由焦点弦性质知1PF +1FQ=2p,抛物线的标准方程为x2=1a y(a>0),∴2p=1a,p=12a,∴1 PF +1FQ=4a,即1m+1n=4a.3.已知弦AB过拋物线y2=2px(p>0)的焦点,则以AB为直径的圆与拋物线的准线的位置关系是________.【答案】相切【解析】设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),如图,则AB=AF+BF=x1+x2+p.设A,B,M到准线l:x=-p2距离分别为d1,d2,d,则有d1=x1+p2,d2=x2+p2,d=d1+d22=x1+x2+p2=AB2,∴以AB为直径的圆与拋物线的准线相切.4.如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽________米.【答案】26【解析】设水面与拱桥的一个交点为A,如图所示,建立平面直角坐标系,则A的坐标为(2,-2).设抛物线方程为x2=-2py(p>0),则22=-2p×(-2),得p=1.设水位下降1米后水面与拱桥的交点坐标为(x0,-3),则x20=6,解得x0=±6,所以水面宽为26米.【拔高】1.设抛物线顶点在原点,焦点在y 轴负半轴上,M 为抛物线上任一点,若点M 到直线l :3x +4y -14=0的距离的最小值为1,求此抛物线的标准方程.【答案】x 2=-16y .【解析】 设与l 平行的切线方程为3x +4y +m =0,由⎩⎪⎨⎪⎧x 2=-2py 3x +4y +m =0得2x 2-3px -pm =0. ∴Δ=0即m =-98p .又d =|14-98p |5=1,∴p =8或p =1529(舍),∴抛物线的标准方程为x 2=-16y .2.过点(0,4),斜率为-1的直线与拋物线y 2=2px (p >0)交于两点A ,B ,如果OA ⊥OB (O 为原点)求拋物线的标准方程及焦点坐标.【答案】(1,0).【解析】 直线方程为y =-x +4.由⎩⎪⎨⎪⎧y =-x +4,y 2=2px ,消去y 得x 2-2(p +4)x +16=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2(p +4),x 1x 2=16,Δ=4(p +4)2-64>0.所以y 1y 2=(-x 1+4)(-x 2+4)=-8p .由已知OA ⊥OB 得x 1x 2+y 1y 2=0,从而16-8p =0,解得p =2.所以,拋物线的标准方程为y 2=4x ,焦点坐标为(1,0).3.在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求OA →·OB →的值;(2)如果OA →·OB →=-4,证明:直线l 必过一定点,并求出该定点.【答案】(1)-3;(2)(2,0).【解析】 (1)设l :my =x -1与y 2=4x 联立,得y 2-4my -4=0,∴y 1+y 2=4m ,y 1y 2=-4,∴OA →·OB →=x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=-3.(2)证明:设l :my =x +n 与y 2=4x 联立,得y 2-4my +4n =0,∴y 1+y 2=4m ,y 1y 2=4n .由OA →·OB →=-4=(m 2+1)y 1y 2-mn (y 1+y 2)+n 2=n 2+4n ,解得n =-2,∴l :my =x -2过定点(2,0).课程小结1.由抛物线的几何性质求抛物线的标准方程,应当先定位,再定量,恰当地设出标准形式,利用待定系数法求解.2.当抛物线方程为y2=2px(p>0)时,其焦点弦长公式为AB=x1+x2+p,替代一般弦长公式计算更为简洁,对其它标准方程,可以得出相应焦点弦弦长公式.3.抛物线的最值问题一般转化为函数最值问题,若是涉及到抛物线上的点坐标,应注意范围的限制.。