2021年中考数学一轮复习基础考点及题型-专题11一次函数(含解析)

合集下载

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(解析版)

2023年中考数学一轮复习之必考点题型全归纳与分层精练-一次函数(解析版)

专题12一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义一次函数与正比例函数一次函数与正比例函数的定义如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.一次函数与正比例函数的关系一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线。

它可以由直线y=kx平移得到.它与x轴的交点为⎪⎭⎫⎝⎛-0,kb,与y轴的交点为(0,b).【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.3、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式.4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值.5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值.【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是()7.若函数y 2+6(x≤3),(x>3),则当y =20时,自变量x 的值是()A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是()A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是()11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0.参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1,解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1,当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x=1时y=9,即k+b=9.②若k<0,则y随x的增大而减小,则当x=1时y=1,即k+b=1.综上可知,k+b的值为9或1.5.解:因为点P到x轴的距离为4,所以|a|=4,所以a=±4,当a=4时,P(2,4),此时4=-2+m,解得m=6.当a=-4时,同理可得m=-2.综上可知,m的值为-2或6.6.D7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y=450-9x,自变量x的取值范围是0≤x≤50,且x为整数.9.D10.A11.<;≥技巧2:一次函数的两种常见应用【类型】一、利用一次函数解决实际问题题型1:行程问题1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300km;②乙车比甲车晚出发1h,却早到1h;③乙车出发后2.5h追上甲车;④当甲、乙两车相距50km时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个2.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4g且不超过10g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10t以内(包括10t)的用户,每吨收水费a元;一个月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,△APD的面积为10cm2?题型5:利用分段函数解几何问题)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数表达式;(2)画出此函数的图像.参考答案1.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b =2.5k+b,=4.5k+b.=110,=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k =60,即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8h后.设经过x1h恰好装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2h装满第2箱.则60x2+(4.8-3)×100÷2×2=300,解得x2=2.故经过3h恰好装满第1箱,再经过2h恰好装满第2箱.4.解:(1)y甲=477x,y乙(0≤x≤3),+318(x>3).(2)当477x=424x+318时,解得x=6,即当x=6时,到甲、乙两个商场购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是当4≤x<6时,到甲商场购买合算;当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12.故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S=10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ;②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6;③当点P 在边CD 上运动,即7≤x≤10时,y =12×4(10-x)=-2x +20.所以y 与x 之间的函数表达式为y (0≤x <3),(3≤x <7),2x +20(7≤x≤10).(2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2=-x +4,=x +2的解为()A =3=1B =1=3C =0=4D =4=02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a)-y =0,+y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)+y =4,-y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4mx +y =n ,+y =f =4,=6,则直线y =mx +n 与y =-ex +f 的交点坐标为()A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.=3,=-2=2,=1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y 轴的交点坐标是()A .(0,-7)B .(0,4)CD -37,【类型】三、方程组的解与两个一次函数图像位置的关系6+y =2,+2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定()A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 21x +y =b 1,2x -y =-b 2的解的情况是()A .无解B .有唯一解C .有两个解D .有无数解【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式.9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案1.B2.解:将(1,a)代入y =2x ,得a =所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方-y =0,+y -b =0=1,=2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1)=3,=1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×=34.4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b+b =-1,k +b =3,=-2,=1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以把A(3,-3),By =kx +b+b =-3,+b =0,=-43,=1.则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______.【答案】m=﹣3【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数,∴29030m m -⎧⎨-≠⎩=解得m=-3.故答案是:-3.【题型】二、正比例函数的图像与性质例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为()A .12y y <B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点,∴112y =,21y =,∵112<,∴12y y <.故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是()A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是()A .2k +B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案.【详解】∵一次函数2y kx =+中0k <,∴y 随x 的增大而减小,∵12x ≤≤,∴当1x =时,122y k k =⨯+=+最大,故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是()A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集.【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∴直线解析式为:112y x =-+,将y=2代入得1212x =-+,解得x=-2,∴不等式2kx b +≤的解集是2x ≥-,故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为()A .5x =-B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∴将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0)∴当y=0时,方程()530k x -+=的解为x=3,故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为()A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-,整理kx b x +≥得,()10k x b -+≥,∴0bx b -+≥,由图像可知0b >,∴10x -≤,∴1x ≤,故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为()A .2B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y (千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0 1.680 2.6k bk b=+⎧⎨=+⎩,解得:80128 kb=⎧⎨=-⎩,∴y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1);(2)根据图象可知:货车甲的速度是80÷1.6=50(km/h )∴货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v≥120,解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是()A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2,∴y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4),∴它的图象可能是B 选项,故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是()A .0k >B .0k =C .0k <D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论.【详解】∵1212,y y -<>,∴函数y 随x 的增大而减小.∴k <0,故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为()A .-1B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限,∴0m >,∴m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过()A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可.【详解】解:∵31y x =-+中0k <,∴一次函数图象经过第二、四象,∵0b >,∴一次函数图象经过一、二、四象限.故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键.5.若23y x b =+-,y 是x 的正比例函数,则b 的值是()A .0B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值.【详解】解:∵y 是x 的正比例函数,∴23=0b -,解得:23b =,故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______.【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-,故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________.【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4,即y =2x -4,故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式.(2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠?【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =,∴184020k =,∴142k =,∴1142y x =;乙商店:当0<x≤20时,设22y k x =,∴2100020k =,∴250k =,∴250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+,∴()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=,∴x =100,y =4200,∴m =100,∴m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元;(3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-()01k +-有意义的k 的值可能为()A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k +-有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若△ABC 的面积为6,则m 的值为()A .1B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据△ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,当x =0时,y =4,∴点B (0,4),∴OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,∴AC =m ,∵△ABC 的面积为6,∴1462m ´=,解得:m =3.故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是()A .B .C .D .【答案】C 【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,∴-k <0,即k >0,∴一次函数y =-kx +k 的图象经过一、二、四象限.故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质:①当k >0,b >0时,图象过一、二、三象限;②当k >0,b <0时,图象过一、三、四象限;③当k <0,b >0时,图象过一、二、四象限;④当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为()A .1B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中,令0x =,则2y m =,∴一次函数32y x m =-+与y 轴的交点为(0,2m ),∵点(0,2m )与原点关于直线1y =对称,∴22m =,∴1m =;故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题.5.甲、乙两自行车运动爱好者从A B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是()A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意;甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ),3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;2h 时,甲离A 地的距离为:30×(2-0.5)=45(km ),故选项D 不合题意.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题6.如图,直线3y x =和2y kx =+相交于点(),3P a ,则关于x 的不等式32≤+x kx 的解集是______.【答案】1x ≤【分析】先根据直线3y x =求出P 点坐标,不等式32≤+x kx 的解即为直线OP 在直线PQ 下方时,对应的x 的范围【详解】∵(),3P a 点在3y x =上。

第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

第11章  反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。

浙教版2021年中考数学总复习《一次函数》(含答案)

浙教版2021年中考数学总复习《一次函数》(含答案)

浙教版2021年中考数学总复习《一次函数》一、选择题1.若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )A.y=40xB.y=32xC.y=8xD.y=48x4.已知函数y=(2m+1)x+m﹣3,若这个函数的图象不经过第二象限,则m的取值范围是()A.m>﹣0.5B.m<3C.﹣0.5<m<3D.﹣0.5<m≤35.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为( )A.(2.5,2.5)B.(3,3)C.(,)D.(,)6.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是()A.只有①②B.只有③④C.只有①②③D.①②③④7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )8.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣0.75x+4上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.4二、填空题9.已知一次函数的图像过点(3,5)与(-4,-9),则该函数的图像与y轴交点的坐标为_______.10.把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为_______.11.如图,是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的解析式为.12.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要________s能把小水杯注满.三、解答题13.已知y-1与x成正比例,当x=-2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,-2)在这个函数的图像上,求a的值;(3)若x的取值范围是0≤x≤5,求y的取值范围.14.如图正比例函数y=2x的图像与一次函数 y=kx+b的图像交于点A(m,2),一次函数的图像经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求C点的坐标;(3)求△AOD的面积。

2021年九年级数学中考一轮复习练习题函数---一次函数【含答案】

2021年九年级数学中考一轮复习练习题函数---一次函数【含答案】

; ; ; .2021 年九年级数学中考一轮复习练习题函数——一次函数时间 90 分钟 满分:120 分一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计 30 分 )1. 如果y 关于x 的函数y = (k 2+ 1)x 是正比例函数,那么k 的取值范围是( ) A.k ≠ 0B. k ≠± 1C. 不能确定D.一切实数2. 在直角坐标平面内,任意一个正比例函数的图像都经过点( )A.(1, 1)B.(1, 0)C.(0, 1)D.(0, 0)3. 下列正比例函数中,y 的值随着x 值的增大而减小的是( )A.y = 0.2xB. 1 y = xC. 5D.y = 2x4. 下列函数中,是一次函数的有( )1(1)y = πx ;(2)y = 2x−1 (3)y = x (4)y = 2−3x (5)y = x 2−1A.4个B.3个C.2个D.1个 A (x ,3) B (x ,5) x x5. 一次函数y = 2x + m 的图象上有两点 1 2 , 2 ,则 1与 2的大小关系是( )A. x 1 < x 2B. x 1 > x 2C.x 1 = x 2D.无法确定6. 一次函数y = −4x−2的图象和性质,叙述正确的是( )A.y 随x 的增大而增大B.在y 轴上的截距为2C. 与x 轴交于点(−2,0)D. 函数图象不经过第一象限7. 已知一次函数y = kx + b(k < 0, b < 0),那么一次函数的图象不经过第( ) 象限.A.一B.二C.三D.四8. 已知直线y = kx + b 经过点(2, 1),则方程kx + b = 1的解为( )A.x = 0B.x = 1C.x = 2D.x =± 29. 一次函数y = kx + b (k ≠ 0)中变量x 与y 的部分对应值如下表x ⋯ −1 0 1 2 3 ⋯y ⋯ 8 6 4 2 0 ⋯下列结论: ①随的增大而减小;②点(6,−6)一定在函数y = kx + b 的图像上;③当x > 3时, y > 0;④当x < 2时,(k−1)x + b < 0.其中正确的个数为( )A.4B.3C.2D.1 10. 如图,已知直线l:y = 3 3 x ,过点A(0, 1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A.(0, 128)B.(0, 256)C.(0, 512)D.(0, 1024)二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计 12 分 )11. 把直线y = −2x 沿y 轴向上平移6个单位,所得到的直线解析式是. 12. 直线y = x−a 不经过第四象限,则关于x 的方程ax 2 + 2x + 1 = 0有 个实数解.13. 在平面直角坐标系内,若点(3,0),(m,2),(0,−3)在同一直线上,则m 的值为. 14. 某高速列车公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数.已知行李质量为30kg 时,需付行李费4元;行李质量为40kg 时,需付行李费12元.则旅客最多可免费携带kg 行李. 三、 解答题 (本题共计 8 小题 ,共计 78 分 )15.(9 分) 已知一次函数y = (2m + 1)x + 3 + m.(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过点(−1,1),求m的值,画出这个函数图象.16.(9 分) 在平面直角坐标系中,直线l1:y1= k1x + b1与x轴交于点B(12, 0),与直线l2:y2= k2x交于点A (6, 3).(1)分别求出直线l1和直线l2的表达式;(2)直接写出不等式k1x + b1 < k2x的解集.17.(10 分) 平面直角坐标系xOy内,一次函数y = 2x−2经过点A(−1,m)和B(n,2)(1)求m,n的值;(2)求该直线与x轴的交点坐标.18.(10 分) 已知一次函数y1= kx + b和y2= mx + n的图象如图所示.(1)求y1和y2的函数表达式,并求出它们的交点坐标.(2)利用图象直接写出当y1 < y2时,x的取值范围.19.(10 分) 如图:已知函数y = x + 1和y = ax + 3的图象交于点P,点P的横坐标为1.{x−y = −1,(1)关于x,y的方程组ax−y = −3的解是;(2)a = ;(3)求出函数y = x + 1和y = ax + 3的图象与x轴围成的几何图形的面积.20.(10 分) 某水果超市以每千克20元的价格购进一批水果,规定每千克水果售价不低于进价又不高于40元,经市场调查发现,水果的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分对应数据如下表所示.每千克售价x(元)⋯25 30 35 ⋯日销售量y(千克)⋯110 100 90 ⋯(1)求y与x之间的函数解析式;(2)当每千克水果的售价定为多少元时,日销售利润最大?最大利润是多少?21.(10 分) 在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S △ ABC = 30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△ OPD全等,求点P的坐标.22.(10 分) 某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为x元,每星期的销量为y件.(1)求商家降价前每星期的销售利润为多少元?(2)求y与x之间的函数关系式;(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?参考答案一、 选择题1.D【解答】解:∵ 函数y = (k 2+ 1)x 是正比例函数,∴ k 2 + 1 ≠ 0,∴ k 取全体实数.故选D .2.D【解答】解:由题意,设正比例函数的解析式为y = kx(k ≠ 0), 则当x = 0时,y = 0,所以任意一个正比例函数的图像都经过点(0, 0). 故选D .3.B【解答】解:由题意可知,在正比例函数中,y 的值随着x 值的增大而减小, 则k < 0,故只有B 选项正确.故选B .4.B【解答】解:(1)y = πx 是正比例函数,是特殊的一次函数;(2)y = 2x−1是一次函数;(3)y = 1x 不满足一次函数的定义,不是一次函数;(4)y = 2−3x 是一次函数;2 (5)y = x 2−1不满足一次函数的定义,不是一次函数. 所以是一次函数的有3个.故选B .5.A【解答】解:在一次函数y = 2x + m 中,∵ k = 2 > 0,∴ y 随x 的增大而增大.3 ∵ 2 < 5,∴x 1 < x 2. 故选A .6.D【解答】解:A ,由y = −4x−2可知,y 随x 的增大而减小,故A 选项错误;B ,令x = 0,得y = −2,则在y 轴上的截距为−2,故B 选项错误;1 C ,令y = 0,得x = − , (−1,0)则与x 轴交于点 2 ,故C 选项错误; D ,k = −4,b = −2,根据一次函数的性质可知,函数图象不经过第一象限,故D 选项正确.故选D .7.A【解答】解:∵ k < 0,∴ 一次函数y = kx + b 的图象经过第二、四象限.{又∵ b < 0时,∴ 一次函数y = kx + b 的图象与y 轴交与负半轴.综上所述,该一次函数图象经过第二、三、四象限,即不经过第一象限. 故选A .8.C【解答】解:∵ 直线y = kx + b 经过点(2, 1),∴ 当x = 2时,1 = kx + b ,∴ 方程kx + b = 1的解为x = 2.故选C .9.C【解答】解:把x = 0,y = 6和x = 1,y = 4分别代入y = kx + b ,得b = 6, k + b = 4.{k = −2,解得: b = 6.∴ 该一次函数的表达式为y = −2x + 6.∵ k = −2 < 0,∴ y 随x 的增大而减小,故①正确;∵ 当x = 6时,则y = −2 × 6 + 6 = −6,∴ 点(6,−6)在一次函数图像上,故②正确;∵ 当x = 3时,y = 0,y 随x 的增大而减小,∴ 当x > 3时,y < 0,故③错误;∵ k = −2,b = 6,∴ y = (k−1)x + b = −3x + 6.∵ −3 < 0,∴ 函数y = −3x + 6,y 随x 的增大而减小,又∵ 当 x=2 时,y = −3 × 2 + 6 = 0,∴ 当x < 2时,y > 0,即当x < 2时,(k−1)x + b = −3x + 6 > 0,故④错误. 综上所述,正确的有①②共2个., = , A 4 4 256 故选C .10.B【解答】3 ∵ 直线l 的解析式为;y = 3 x ,∴ l 与x 轴的夹角为30 ∘,∵ AB // x 轴,∴ ∠ABO =30 ∘ ,∵ OA =1,∴ OB =2,∴ AB = 3,∵ A 1B ⊥ l ,∴∠ABA 1=60 ∘ ∠BA 1O 30 ∘ ∴A 1O =4, ∴A 1(0, 4),同理可得A 2(0, 16), …4 ∴ 纵坐标为 = ,∴ A 4(0, 256).二、 填空题11.y = −2x + 6【解答】解:∵ 直线y = −2x 沿y 轴向上平移6个单位长度,所得到的直线解析式是y = −2x + 6.故答案为:y = −2x + 6.12.2或1【解答】解:∵ 直线y = x−a不经过第四象限,∴ −a ≥ 0,∴ a ≤ 0,∴ −4a ≥ 0.∵ ax2 + 2x + 1 = 0,当a ≠ 0时,Δ = b2−4ac = 22−4a = 4−4a > 0,此时方程有2个实数解;当a = 0时,方程为2x + 1 = 0,此时有1个实数解;∴ 方程ax2 + 2x + a = 0有2个或1个实数解.故答案为:2或1.13.5【解答】解:设这三点所在的直线的解析式为y = kx + b.把点(3,0),(0,−3)代入y = kx + b,得{3k + b = 0,b = −3,{ k = 1,解得b = −3.∴ 这三点所在的直线的解析式为y = x−3.把(m,2)代入y = x−3,得m−3 = 2.{ 解得m = 5.故答案为:5.14.25【解答】解:设一次函数y = kx + b (k ≠ 0),由题意,得4 = 30k + b , 12 = 40k + b , 4 k = ,5 解得: b = −20.4y = x−20 故一次函数的解析式为: 5 .4 当y = 0时,5x−20 = 0,解得x = 25,故旅客最多可免费携带25kg 行李. 故答案为:25.三、 解答题15.解:(1)由题意得:2m + 1 < 0,1m < − 解得:2. (2)将点(−1,1)代入可得:1 = −(2m + 1) + 3 + m ,解得:m = 1,∴ y = 3x + 4.令x = 0,则y = 4,∴ 函数图象经过点(−1,1),(0,4),作出函数图象如图所示.{ l 1 1 2 2 l 2 216.解:(1)把点A(6, 3),B(12, 0)代入直线l 1:y 1 = k 1x + b 1,1{ 6k 1 + b 1 = 3, k = − , 2 得 12k 1 + b 1 = 0, 解得 b 1 = 6, 1y = − x + 6 ∴ 直线 的表达式为 2 .将A(6, 3)代入直线l 2:y 2 = k 2x ,1 k = 解得 ,1 y = x ∴ 直线 的表达式为2 .(2)由图象可知:不等式k 1x + b 1 < k 2x 的解集为x > 6.17.解:(1)将A(−1,m)和B(n,2)代入一次函数y = 2x−2中,{m = −1 × 2−2,得 2 = 2n−2,{m = −4,解得 n = 2.(2)令y = 0,得2x−2 = 0,解得x = 1,所以该直线与x 轴的交点坐标为(1,0).18. 1 {解:(1)由图象可知y 1过点(0,3),(3,0),代入y 1 = kx + b ,得y 1 = −x + 3.y 2过点(0,5),(−5,0),代入y 2 = mx + n ,得y 2 = x + 5.{y = −x + 3, {x = −1,联立方程组 y = x + 5, 解得 y = 4,所以y 1和y 2交点的坐标为(−1,4).(2)依图象可得当y 1 < y 2时,x > −1.19.解:(1)把x = 1代入y = x + 1,得出y = 2,所以点P 的坐标为(1, 2),函数y = x + 1和y = ax + 3的图象交于点P(1, 2),即x = 1,y = 2同时满足两个一次函数的解析式.{x−y = −1, {x = 1, 所以关于x ,y 的方程组 {x = 1, ax−y = −3 的解是 y = 2. 故答案为: y = 2.(2)把P(1, 2)代入y = ax + 3中,可得2 = a + 3,解得a =−1. 故答案为:−1.(3)因为函数y = x + 1与x 轴的交点为(−1, 0),y = −x + 3与x 轴的交点为(3, 0),所以这两个交点之间的距离为3−(−1) = 4,因为P(1, 2),所以函数y = x + 1和y = ax + 3的图象与x 轴围成的几何图形的面积为: 1 × 4 × 2 = 42 . 20.时, , 解:(1)设y = kx + b(k ≠ 0),将(25, 110),(30, 100)代入,{110 = 25k + b , 得: 100 = 30k + b , {k = −2, 解得: b = 160,∴ y = −2x + 160.(2)设超市日销售利润为w 元,w = (x−20)(−2x + 160)= −2x 2 + 200x−3200= −2(x−50)2 + 1800,∵ −2 < 0,∴ 当20 ≤ x ≤ 40时,w 随x 的增大而增大,∴ 当x = 40时,w 取得最大值为:w = −2(40−50)2 + 1800 = 1600.答:当每千克水果的售价定为40元时,日销售利润最大,最大利润是1600元. 21.解:(1)∵ 点A (0,15)在直线AB 上,故可设直线AB 的表达式为y = kx + 15.又∵ 点B (20,0)在直线AB 上,∴ 20k + 15 = 0,3k = − ∴ 4,3 ∴ 直线AB 的表达为y = −4x + 15 .(2) 过C 作CM//x 轴交AB 于M ,∵ 点C 的坐标为(m,9),∴ 点M 的纵坐标为9.3当y = 9 −4x + 15 = 9152 + 202 时, , 解得x = 8,∴ M(8,9),∴ CM = |m−8|,∴S △ ABC = S △ AMC + S △ BMC1 = CM ⋅ (y A −y M ) +2 1 CM ⋅ (y M −y B ) 21 = CM ⋅ OA =2 15 |m−8| 2 .∵ S △ ABC = 30,15 ∴ 2 |m−8| = 30,解得m = 4或m = 12 .(3) ①当点P 在线段AB 上时,若点P 在B ,Q 之间,当OQ = OD = 12,且∠POQ = ∠POD 时,△ OPQ ≅ △ OPD .∵ OA = 15,OB = 20,∴ AB = = 25.设△ AOB 中AB 边上的高为h ,则AB ⋅ h = OA ⋅ OB ,∴ h = 12,∴ OQ ⊥ AB ,∴ PD ⊥ OB ,∴ 点P 的横坐标为12.3当x = 12y = −4x + 15 = 6 ∴ P 1(12,6) .若点P 在A ,Q 之间,当PQ = OD = 12,且∠OPQ = ∠POD 时有 △ POO ≅ △ OPD ,则 ,时, , 则BP = OB = 20,∴ BP:AB = 20:25 = 4:5,4∴ S △ POB = 5S △ AOB .作PH ⊥ OB 于H ,1 S △ POB = 2OB ⋅ PH 1 4 OB ⋅ PH = ∴2 5 1 × OB ⋅ OA2 ,∴ PH = 4 4 OA = 5 5 × 15 = 12 .3 当y = 12时,−4x + 15 = 12, 解得x = 4,∴ P 2(4,12).②当点P 在AB 的延长线上时,若点Q 在B ,P 之间,且PQ = OD ,∠OPQ = ∠POD 时, △ POQ ≅ △ OPD , 作OM ⊥ AB 于M ,PN ⊥ OB 于N ,则PN = OM = 12,∴ 点P 的纵坐标为−12,3当y = −12−4x + 15 = −12 解得x = 36,∴ P 3(36,−12).若点Q 在BP 的延长线上或BP 的反向延长线上,都不存在满足条件的P ,Q 两点. 综上所述,满足条件的点P 为P 1(12,6),P 2(4,12),P 3(36,−12). 22.解:(1)由题意得:(130−100) × 80 = 2400(元),∴ 商家降价前每星期的销售利润为2400元 .(2)y = 130−x × 20 + 80 5 由题意可得:,即y = −4x + 600 .(3) 设每星期的销售利润为w 元,则w = (x−100)y= (x−100)(−4x + 600)= −4(x−125)2+ 2500,∴ 当每件售价定为125元时,每星期的销售利润最大,最大销售利润是2500元.。

函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总

函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总

函数的基本性质-中考数学重难点题型一次函数(专题训练)1.一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B 【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.2.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n>B .m n =C .m n <D .无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m<n .故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键3.已知一次函数y =kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k+3=3,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k+3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k+3=3,解得:k =0,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,3k+3=4,解得:k =13>0,∴y 随x 的增大而增大,选项D 不符合题意.故选:B .4.在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为()A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,1y =,∴一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.5.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为()A .-5B .5C .-6D .6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值.【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后得到的解析式为:2(3)1y x m =++-,化简得:25y x m =++,∵平移后得到的是正比例函数的图像,∴50m +=,解得:5m =-,故选:A .【点睛】本题主要考查一次函数图像的性质,根据“左加右减,上加下减”求出平移后的函数解析式是解决本题的关键.6.已知在平面直角坐标系xOy 中,直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是()A .y =x+2B .y =2x+2C .y =4x+2D .y =【分析】求得A 、B 的坐标,然后分别求得各个直线与x 的交点,进行比较即可得出结论.【解析】∵直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0)A 、y =x+2与x 轴的交点为(﹣2,0);故直线y =x+2与x 轴的交点在线段AB 上;B 、y =2x+2与x 轴的交点为(−2,0);故直线y =2x+2与x 轴的交点在线段AB 上;C 、y =4x+2与x 轴的交点为(−12,0);故直线y =4x+2与x 轴的交点不在线段AB 上;D 、y =与x 轴的交点为(−3,0);故直线y =与x 轴的交点在线段AB 上;故选:C .7.在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点,2B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n >C .m n ≥D .m n≤【答案】A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴322>∴m<n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.8.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .12y x =B .y x =C .32y x =D .2y x=【答案】D【分析】根据已知解析式求出点A 、B 的坐标,根据过原点O 且将AOB 的面积平分列式计算即可;【详解】如图所示,当0y =时,240x -+=,解得:2x =,∴()2,0A ,当0x =时,4y =,∴()0,4B ,∵C 在直线AB 上,设(),24C m m -+,∴12OBC C S OB x =⨯⨯△,12OCA C S OA y =⨯⨯△,∵2l 且将AOB 的面积平分,∴OBC OCA S S =△△,∴y C C OB x OA ⨯=⨯,∴()4224m m =⨯-+,解得1m =,∴()1,2C ,设直线2l 的解析式为y kx =,则2k =,∴2y x =;故答案选D.【点睛】本题主要考查了一次函数的应用,准确计算是解题的关键.9.如图,一次函数y x=的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A B.C.2D【答案】A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】=+的图像与x轴、y轴分别交于点A、B,解:∵一次函数y x令x=0,则,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x ,∴x ,又BD=AB+AD=2+x ,∴2+x=,解得:+1,∴x=+1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.10.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是().A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y 随x 增大而减小,当y=0时,x=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=−2x+3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.11.一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.【答案】32a <-【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.【详解】解: 一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<,解得:32a <-,故答案是:32a <-.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.12.若21x y +=,且01y <<,则x 的取值范围为______.【答案】102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.14.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …6-2-2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x=1代入y=8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x=1时,y=8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩,解得26k b =⎧⎨=⎩;(3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.15.在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x+b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y =kx+b (k≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x+b ,得1+b =2,解得b =1,∴一次函数的解析式为y =x+1;(2)把点(1,2)代入y =mx 求得m =2,∵当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =x+1的值,∴m≥2.16.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴−b+k=−2k=1,解得k=1b=3,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解y=x+3y=3x+1得x=1y=4,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:12+(4−1)2=10;(3)把y=a代入y=3x+1得,a=3x+1,解得x=a−13;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+a−13=0时,a=52,当12(a﹣3+0)=a−13时,a=7,当12(a−13+0)=a﹣3时,a=175,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.17.如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x 轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解析】(1)由y =−12x −1y =−2x +2解得x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x+2中,令y =0,则−12x ﹣1=0与﹣2x+2=0,解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=;(3)如图所示:自变量x 的取值范围是x <2.18.已知一次函数12y kx =+(k 为常数,k≠0)和23y x =-.(1)当k=﹣2时,若1y >2y ,求x 的取值范围;(2)当x<1时,1y >2y .结合图象,直接写出k 的取值范围.【解析】(1)当2k =-时,122y x =-+,根据题意,得223x x -+>-,解得53x <.(2)当x=1时,y=x−3=−2,把(1,−2)代入y 1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y 1>y 2;当0<k≤1时,y 1>y 2.∴k 的取值范围是:41k -≤≤且0k ≠.19.如图,已知过点B (1,0)的直线l 1与直线l 2:y=2x+4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.【解析】(1)∵点P (-1,a )在直线l 2:y=2x+4上,∴2×(-1)+4=a ,即a=2,则P 的坐标为(-1,2),设直线l 1的解析式为:y=kx+b (k≠0),那么02k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩.∴l 1的解析式为:y=-x+1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB=3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =1153211222⨯⨯-⨯⨯=.20.在平面直角坐标系xOy 中,直线l :y=kx+1(k≠0)与直线x=k ,直线y=-k 分别交于点A ,B ,直线x=k 与直线y=-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k=2时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.【解析】(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1).(2)由题意,A (k ,k 2+1),B (1k k--,-k ),C (k ,-k ),①当k=2时,A (2,5),B (-32,-2),C (2,-2),在W 区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1时,y=-k+1,则有k 2+2k=0,∴k=-2,当0>k≥-1时,W 内没有整数点,∴当0>k≥-1或k=-2时W 内没有整数点.。

专题11 一次函数 -2021年中考数学一轮复习精讲+热考题型(专题测试)(解析版)

专题11 一次函数 -2021年中考数学一轮复习精讲+热考题型(专题测试)(解析版)

专题11 一次函数(满分:100分时间:90分钟)班级_________ 姓名_________ 学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)【答案】C【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【详解】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),把(20,0),(38,3600)代入y=kx+b,得020360038k b k b =+⎧⎨=+⎩,解得:2004000k b =⎧⎨=-⎩;∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =200x ﹣4000(20≤x≤38); 故选项A 不合题意;把y =2000代入y =200x ﹣4000, 解得:x =30, 30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟; 故选项B 不合题意; 设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n≥4.5, ∴小聪坐上了第5班车, 故选项C 符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分), 步行所需时间:1600÷(2000÷25)=20(分), 20﹣(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟. 故选项D 不合题意. 故选:C .2.(2020·湖北咸宁市·中考真题)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =- B .2y x =+ C .2y x=D .22y x x =-【答案】B 【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C、2xx=,解得:x=x=“好点”)和(,-,故选项不符合;D、22x x x=-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合;故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.3.(2020·四川中考真题)已知函数1(2)2(2)x xyxx-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x的值为()A.﹣2B.﹣23C.﹣2或﹣23D.﹣2或﹣32【答案】A【分析】根据分段函数的解析式分别计算,即可得出结论.【详解】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣2x=3,解得:x=﹣23,不合题意舍去;∴x=﹣2,故选:A.【点睛】本题考查了反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.4.(2020·湖南湘西土家族苗族自治州·中考真题)已知正比例函数1y的图象与反比例函数2y的图象相交于点(2,4)A-,下列说法正确的是()A .正比例函数1y 的解析式是12y x =B .两个函数图象的另一交点坐标为()4,2-C .正比例函数1y 与反比例函数2y 都随x 的增大而增大D .当2x <-或02x <<时,21y y < 【答案】D 【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式1=2y x -和28=-y x,可判断A 错误;两个函数的两个交点关于原点对称,可判断B 错误,再根据正比例函数与反比例函数图像的性质,可判断C 错误,D 正确,即可选出答案. 【详解】解:根据正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A -,即可设11=y k x ,22=k y x, 将(2,4)A -分别代入,求得12k =-,28k =-, 即正比例函数1=2y x -,反比例函数28=-y x,故A 错误; 另一个交点与(2,4)A -关于原点对称,即()24-,,故B 错误; 正比例函数1=2y x -随x 的增大而减小,而反比例函数28=-y x在第二、四象限的每一个象限内y 均随x 的增大而增大,故C 错误;根据图像性质,当2x <-或02x <<时,反比例函数28=-y x均在正比例函数1=2y x -的下方,故D 正确. 故选D . 【点睛】本题目考查正比例函数与反比例函数,是中考的重要考点,熟练掌握两种函数的性质是顺利解题的关键. 5.(2020·湖北荆州市·中考真题)在平面直角坐标系中,一次函数1y x =+的图象是( )A .B .C .D .【答案】D【分析】观察一次函数解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可. 【详解】∵一次函数y=x +1,其中k =1,b =1 ∴图象过一、二、三象限 故选:D. 【点睛】此题主要考查一次函数图象的性质,熟练掌握,即可解题.6.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5 B .3C .3-D .1-【答案】C 【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果; 【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a , 化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b . 故选:C . 【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.7.(2020·贵州遵义市·中考真题)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程,t 为赛跑时间,则下列图象中与故事情节相吻合的是( )A .B .C .D .【答案】C 【分析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率的变化.问题便可解答. 【详解】对于乌龟,其运动过程可分为两段:从起点到终点乌龟没有停歇,其路程不断增加;最后同时到达终点,可排除B ,D 选项对于兔子,其运动过程可分为三段:据此可排除A 选项开始跑得快,所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快. 故选:C 【点睛】本题考查了函数图象的性质进行简单的合情推理,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象. 8.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D 【分析】根据一次函数的图象与系数的关系选出正确选项. 【详解】解:根据函数解析式21y x =--, ∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴, 图象经过二、三、四象限. 故选:D . 【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状.9.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C 【分析】向上平移时,k 的值不变,只有b 发生变化. 【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线, 那么新直线的k=-2,b=-1+2=1. ∴新直线的解析式为y=-2x+1. 故选:C . 【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k 和b 的值发生变化. 10.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系【答案】B 【分析】设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案. 【详解】解:设水面高度为,hcm 注水时间为t 分钟, 则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系, 故选B . 【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题(共5小题,每小题4分,共计20分)11.(2020·重庆中考真题)A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160 【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案. 【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇 点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160) 故答案为:(4,160).12.(2020·山东东营市·中考真题)已知一次函数y=kx+b 的图象经过A (1,﹣1),B (﹣1,3)两点,则k 0(填“>”或“<”) 【答案】<. 【分析】根据A (1,-1),B (-1,3),利用横坐标和纵坐标的增减性判断出k 的符号. 【详解】∵A 点横坐标为1,B 点横坐标为-1, 根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了, ∴k <0.故答案为<.13.(2020·贵州黔西南布依族苗族自治州·)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解.【详解】∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数解析式为y=-2x,故答案为:y=-2x.【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.14.(2020·贵州遵义市·中考真题)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为_____.【答案】x<4【分析】=+在直线y=2下方所对应的自变量的范围即可.结合函数图象,写出直线y kx b【详解】解:∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为:x<4.故答案为:x<4.【点睛】本题考查的是利用函数图像解不等式,理解函数图像上的点的纵坐标的大小对图像的影响是解题的关键.15.(2020·上海中考真题)如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而_____.(填“增大”或“减小”) 【答案】减小 【分析】根据正比例函数的性质进行解答即可. 【详解】解:函数y =kx (k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小. 【点睛】此题考查的是判断正比例函数的增减性,掌握正比例函数的性质是解决此题的关键.三、解答题(共5小题,每小题10分,共计50分)16.(2020·辽宁锦州市·中考真题)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y (千克)与每千克售价x (元)满足一次函数关系,其部分对应数据如下表所示:(1)求y 与x 之间的函数关系式;(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元? (3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少? 【答案】(1)2160y x =-+ (2)30元 (3)40元;1600元 【分析】(1)任选表中的两组对应数值,用待定系数法求一次函数的解析式即可;(2)销售利润=销售量⨯每千克所获得的利润,得(2160)(20)1000x x -+-=,解出方程; (3)构造(20)(2160)w x x =--+,利用二次函数的最大值问题解决. 【详解】解:(1)设一次函数表达式为y kx b =+,将(25,110),(30,100)代入,得25110,30100.k b k b +=⎧⎨+=⎩解得2,160.k b =-⎧⎨=⎩2160y x ∴=-+.(2)根据题意,得(2160)(20)1000x x -+-=, 整理,得210021000x x -+=, 解得1230,70x x ==(不合题意,舍去).答:该超市要想获得1000元的日销售利润,每千克樱桃的售价应定为30元. (3)方法1: 设日销售利润为w 元.(20)(2160)w x x ∴=--+222003200x x =-+-.20a =-<,∴抛物线开口向下,又502bx a=-=, ∴当2040x 时,w 随x 的增大而增大. ∴当40x =时,w 有最大值,1600w =最大(元).答:当每千克樱桃的售价定为40元时,可获得最大利润,最大利润是1600元. 方法2:设日销售利润为w 元.2(20)(2160)2(50)1800w x x x =--+=--+,20a -<,∴抛物线开口向下,对称轴为直线50x =. ∴当2040x 时,w 随着x 的增大而增大, ∴当40x =时,w 有最大值,1600w =最大(元).答:当每千克樱桃的售价定为40元时,可获得最大利润,最大利润是1600元. 【点睛】本题考查一次函数、一元二次方程、二次函数的综合运用,是应用题中的典型,也是中考必考题型. 17.(2020·山东潍坊市·中考真题)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)【答案】(1)函数的表达式为:y=-2x+220;(2)80元,1800元. 【分析】(1)设y 与x 之间的函数表达式为y=kx+b , ,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)由题意得w=(x-50)(-2x+220)=-2(x-80)2+1800,即可求解. 【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(60,100)、(70,80)代入一次函数表达式得:100608070k bk b ⎩+⎨+⎧==, 解得:2220k b -⎧⎨⎩==,故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得: w=(x-50)(-2x+220)=-2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元. 【点睛】此题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 19.(2020·四川攀枝花市·中考真题)如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图像于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为(1,3).(1)求k 、m 的值;(2)求直线12y kx =+与函数(0)my x x =>图像的交点坐标; (3)直接写出不等式1(0)2m kx x x >+>的解集.【答案】(1)3,12;(2)(2,32);(3)0<x <32【分析】(1)根据点C′在反比例函数图像上求出m 值,利用对称性求出点C 的坐标,从而得出点P 坐标,代入一次函数表达式求出k 值;(2)将两个函数表达式联立,得到一元二次方程,求解即可; (3)根据(2)中交点坐标,结合图像得出结果. 【详解】解:(1)∵C′的坐标为(1,3),代入(0)my x x=>中, 得:m=1×3=3,∵C 和C′关于直线y=x 对称, ∴点C 的坐标为(3,1), ∵点C 为PD 中点, ∴点P (3,2), 将点P 代入12y kx =+, ∴解得:k=12; ∴k 和m 的值分别为:3,12; (2)联立:11223y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,得:260x x +-=,解得:12x =,23x =-(舍),∴直线12y kx =+与函数(0)m y x x =>图像的交点坐标为(2,32); (3)∵两个函数的交点为:(2,32),由图像可知:当0<x <32时,反比例函数图像在一次函数图像上面,∴不等式1(0)2m kx x x >+>的解集为:0<x <32.20.(2020·吉林长春市·中考真题)已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a 的值为____________. (2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间. 【答案】(1)40,480;(2)100120y x =-;(3)135小时或235小时【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480; (2)根据题意直接运用待定系数法进行分析解得即可;(3)由题意分两车相遇前与相遇后两种情况分别列方程解答即可. 【详解】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时); a=40×6×2=480, 故答案为:40;480;(2)设y 与x 之间的函数关系式为y kx b =+, 由图可知,函数图象过点()2,80,()6,480,所以2806480k b k b +=⎧⎨+=⎩解得100120k b =⎧⎨=-⎩所以y 与x 之间的函数关系式为100120y x =-; (3)两车相遇前:()801002240100x +-=- 解得:135x =两车相遇后:()801002240100x +-=+ 解得:235x =答:当甲、乙两车相距100千米时,甲车行驶的时间是135小时或235小时.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

2021年中考数学必考考点专题11 一次函数

2021年中考数学必考考点专题11 一次函数

专题11 一次函数1.一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

2.一次函数的图像:是不经过原点的一条直线。

3.一次函数的性质:(1)当k>0时,图象主要经过第一、三象限;此时,y 随x 的增大而增大;(2)当k<0时,图象主要经过第二、四象限,此时,y 随x 的增大而减小;(3)当b>0时,直线交y 轴于正半轴;(4)当b<0时,直线交y 轴于负半轴。

4. 用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.5.一正比例函数的定义一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数。

正比例函数是一次函数的特例,一次函数包括正比例函数.6.正比例函数的图像:是经过原点的一条直线。

7.正比例函数的性质(1)当k>0时,直线y=kx 经过三、一象限,y 随x 的增大而增大;(2)当k<0时,•直线y=kx 经过二、四象限,y 随x 的增大而减小.8.正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)专题知识回顾【例题1】(2019贵州省毕节市)已知一次函数y=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0 B.kb<0 C.k+b>0 D.k+b<0【例题2】(2019•江苏无锡)已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.【例题3】(2019•上海)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.专题典型题考法及解析一、选择题1.(2019•江苏扬州)若点P 在一次函数4+-=x y 的图像上,则点P 一定不在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限2.(2019广西河池)函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2019年陕西省)对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( ).A .2-B .2C .13-D .13 4.(2019年陕西省)已知一次函数y kx b =+的图象经过点11(,)A x y 、22(,)B x y ,且211x x =+时 212y y =-,则k 等于( ).A .1B .2C .1-D .2-5.(2019广西桂林)如图,四边形ABCD 的顶点坐标分别为(4,0)A -,(2,1)B --,(3,0)C ,(0,3)D ,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 6.(2019广西梧州)直线31y x =+向下平移2个单位,所得直线的解析式是( )A .33y x =+B .32y x =-C .32y x =+D .31y x =-7.(2019湖南邵阳)一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >8.(2019•浙江杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A B C D二、填空题9.(2019•贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组的解是 .10.(2019贵州黔西南州)如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为 .11.(2019湖南郴州)某商店今年6月初销售纯净水的数量如下表所示:日期 1 2 3 4数量(瓶)120 125 130 135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.12.(2019山东东营)如图,在平面直角坐标系中,函数y=33x和y=-3x的图象分别为直线l1,l2,过l1上的点A1(1,3)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为____________.13.(2019辽宁本溪)函数y=5x的图象经过的象限是.14.(2019江苏徐州)函数y=x+1的图像与x轴、y轴分别交于A、B两点,点C在x轴上,若△ABC为等腰三角形,则满足条件的点C共有_________个.。

2025年中考数学总复习第一部分考点梳理第11课时一次函数的图象和性质

2025年中考数学总复习第一部分考点梳理第11课时一次函数的图象和性质

考点1
考点2
考点3
考点4
考点5
考点6
(2)若点C的坐标为(1,1),求证:A,B,C三点共线. 证明:∵当x=1时,y=2×1-1=1,∴点C在该一次函数的图 象上, 又∵该一次函数的图象过点A,B,∴A,B,C三点共线.
考点1
考点2
考点3
考点4
考点3 一次函数图象的平移 例5:如图,已知A(1,0)、B(3,0)、M(4,3), 动点P从点A出发,沿x轴以每秒2个单位长度 的速度向右移动,且过点P的直线l:y=-x+b 也随之平移,设移动的时间为t秒,若直线l与线段BM有公共 点,则t的取值范围为_1_≤__t_≤__3_.[2024厦门外国语学校模拟4分]
(一)
(二)
(三)
(四)
(5)方程组ቊyy12==x-+24x,-2的解是_൜yx_==__2-__2__,___;
(6)不等式x+4>-2x-2的解集是_x_>__-__2__.
(一)
(二)
(三)
(四)
考点1 一次函数的概念、图象与性质[8年1考]
例1:已知一次函数y=(k-3)x+1,函数值y随自变量x的增大
(一)
(二)
(三)
(四)
2.一次函数y=kx+b(k≠0)的图象与性质:
k>0
k<0
y随x的增大而增大
y随x的增大而减小
(一)
(二)
(三)
(四)
k决定直线的倾斜方向和倾斜程度,b决定直线与y轴的交点情况.
(一)
(二)
(三)
(四)
3.解析式与图象: y=kx(k≠0),图象是经过原点的一条直线.
而减小,则k的取值范围是( D )[2024泉州一检4分]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学一轮复习基础考点及题型-专题11 一次函数
考点总结
【思维导图】
【知识要点】
知识点一变量与函数
变量:在一个变化过程中数值发生变化的量。

常量:在一个变化过程中数值始终不变的量。

【注意】
1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。

2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。

函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

【函数概念的解读】
1、有两个变量。

2、一个变量的数值随另一个变量的数值变化而变化。

3、对于自变量每一个确定的值,函数有且只有一个值与之对应。

函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

确定函数定义域的方法:(自变量取值范围)
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a 时的函数值。

函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

画函数图像的一般步骤:1、列表 2、描点 3、连线
函数图像上点的坐标与解析式之间的关系:
1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。

2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。

函数的三种表示法及其优缺点
1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

优:准确反映整个变化过程中自变量与函数的关系。

缺:求对应值是要经过比较复杂的计算,而且实际问题中有的函数值不一定能用解析式表示。

2、列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

优:自变量和与它对应的函数值数据一目了然,使用方便。

缺:所列对应数值个数有限,不容易看出自变量与函数值的对应关系,有局限性。

3、图像法:用图像表示函数关系的方法叫做图像法。

优:形象的把自变量和函数值的关系表示出来。

缺:图像中只能得到近似的数量关系。

【典型例题】
1.(2013·河北中考真题)如图,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y =()
A.2 B.3 C.6 D.x+3 【答案】B
【解析】
依题可得:
2x6
y x3
2
+
=-=.故选B.
2.(2019·广西中考模拟)下列各曲线中哪个不能表示y是x的函数的是()
A.B.
C.D.
【答案】D
【详解】
解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;
故选:D.
3.(2019·新疆中考模拟)下列曲线中不能表示y是x的函数的是()
A.B.
C.D.
【答案】C
【详解】
A ,
B ,D 的图象都满足对于x 的每一个取值,y 都有唯一确定的值与之对应,故A 、B 、D 的图象是函数,
C 的图象不满足对于x 的每一个取值,y 都有唯一确定的值与之对应,故C 错误.
故选C .
4.(2019·浙江中考模拟)用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )
A .1000.6y n m ⎛⎫
=+ ⎪⎝⎭ B .1000.6y n m ⎛⎫
=+ ⎪⎝⎭
C .()1000.6y n m =+
D .()1000.6y n m =+
【答案】A
【详解】 解:平均每本书价格为100
m ,
购买n 本书共需费用100
0.6y n m ⎛⎫=+ ⎪⎝⎭.
故选:A .
5.(2019·浙江中考模拟)已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是(

A .x <0
B .﹣1<x <1或x >2
C .x >﹣1
D .x <﹣1或1<x <2
【答案】B
【解析】
y <0时,即x 轴下方的部分,
∴自变量x 的取值范围分两个部分是−1<x <1或x >2.
故选B.
【考查题型汇总】
考查题型一 确定自变量取值范围
1.(2018·山东中考模拟)函数
x 的取值范围是( )
A .x≠2
B .x <2
C .x≥2
D .x >2。

相关文档
最新文档