高考数学中函数图像的判断专题练习
高考数学函数的图像专题卷

高考数学函数的图像专题卷一、单选题(共28题;共56分)1. ( 2分) (2020高三上·兴宁期末)函数y=xcos x+sin x的图象大致为( ).A. B.C. D.2. ( 2分) (2021高三上·宝安月考)函数的图象大致为()A. B.C. D.3. ( 2分) (2021高三上·河南月考)函数的大致图象为()A. B.C. D.4. ( 2分) (2021高三上·河北期中)函数的图象大致为()A. B.C. D.5. ( 2分) (2021高三上·湖北期中)函数的图象大致为()A. B.C. D.6. ( 2分) (2021·芜湖模拟)函数的部分图象可能为()A. B.C. D.7. ( 2分) (2020高三上·天津月考)函数的图象大致是()A. B. C. D.8. ( 2分) 函数的图象大致为()A. B.C. D.9. ( 2分) (2020高三上·杭州期中)函数的部分图象大致为()A. B.C. D.10. ( 2分) (2021高三上·赣州期中)已知函数,则函数的大致图象为()A. B.C. D.11. ( 2分) (2021高三上·湖州期中)函数的图象可能是()A. B. C. D.12. ( 2分) (2021高三上·金华月考)已知,函数,,则图象为上图的函数可能是()A. B. C. D.13. ( 2分) (2021高三上·杭州期中)函数的图象可能是()A. B.C. D.14. ( 2分) (2021高三上·陕西月考)在同一直角坐标系中,函数,,(,且)的图像可能是()A. B.C. D.15. ( 2分) (2021高三上·贵州月考)函数f(x)= 的大致图象不可能是()A. B.C. D.16. ( 2分) (2020高三上·温州月考)函数的图像可能是()A. B.C. D.17. ( 2分) (2021·四川模拟)函数及,则及的图象可能为()A. B.C. D.18. ( 2分) 已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a (x﹣k)的大致图象是()A. B. C. D.19. ( 2分) (2021高三上·重庆月考)函数的大致图象如图所示,则a,b,c 大小顺序为()A. B. C. D.20. ( 2分) (2021·株洲模拟)若函数的大致图象如图所示,则()A. B. C. D.21. ( 2分) (2020高三上·浙江开学考)已知函数的图像如图所示,则下列判断正确的个数是()(1),(2),(3),(4)A. 1个B. 2个C. 3个D. 4个22. ( 2分) 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A. B.C. D.23. ( 2分) (2021·新乡模拟)如图,在正方形中,点M从点A出发,沿向,以每2个单位的速度在正方形的边上运动;点N从点B出发,沿方向,以每秒1个单位的速度在正方形ABCD的边上运动.点M与点N同时出发,运动时间为t(单位:秒),的面积为(规定共线时其面积为零,则点M第一次到达点A 时,的图象为()A. B.C. D.24. ( 2分) (2017高三上·九江开学考)如图,圆C:x2+(y﹣1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量在=(0,1)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.25. ( 2分) 在边长为1的正方体中,E,F,G,H分别为A1B1,C1D1,AB,CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记E,F,P,Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图象应为()A. B. C. D.26. ( 2分) 如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.27. ( 2分) (2013·江西理)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A. B.C. D.28. ( 2分) (2016高三上·崇明期中)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1,O2.动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1,O,O2,B五点共线),记点P运动的路程为x,设y=|O1P|2,y与x的函数关系为y=f (x),则y=f(x)的大致图象是()A. B.C. D.答案解析部分一、单选题1.【答案】D【考点】函数的图象【解析】【解答】由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除B,由当时,y=1>0,当x=π时,y=π×cosπ+sinπ=−π<0.由此可排除A和C,故正确的选项为D.故答案为:D.【分析】利用奇函数的定义证出函数为奇函数,再利用奇函数的图象关于原点对称的性质结合特殊值法及函数值与0的大小关系,再利用排除法得出函数y=xcos x+sin x的大致图象。
高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)

高考数学复习重点知识专题讲解与练习专题05 函数图象的辨析1.(2021·江西赣州·高三期中(文))已知函数||()122x xx f x =+,则函数()y f x =的大致图象为( )A .B .C .D .【答案】D 【分析】函数图像的识别,通常利用性质+排除法进行判断: 利用函数的奇偶性排除B ,利用特殊点的坐标排除A 、C. 【详解】 由||()22x xx f x -=+,得()f x 的定义域为R ,(0)0f =,排除A 选项. 而||()()22x xx f x f x --==+,所以()f x 为偶函数,图像关于y 轴对称,排除B 选项.()1141421,1152522f f ⎛⎫====< ⎪⎝⎭+,排除C 选项. 故选:D .2.(2021·浙江·高三月考)函数sin 2x y x=的图象可能是( )A .B .C .D .【答案】B 【分析】判断当3,22x x ππ==的符号,可排除AC ,求导,判断函数在()0,π上的单调性,可排除D ,即可得出答案. 【详解】解:由()()sin 02x y f x x x==≠得,1310,0223f f ππππ⎛⎫⎛⎫=>=-< ⎪ ⎪⎝⎭⎝⎭,故排除AC , ()2cos sin 2x x x f x x -'=,令()cos sin g x x x x =-,则()sin g x x x '=-,当0πx <<时,()0g x '<, 所以函数()g x 在()0,π上递减, 所以()()00g x g <=在()0,π上恒成立, 即()2cos sin 02x x xf x x-'=<在()0,π上恒成立, 所以函数()f x 在()0,π上递减,故排除D. 故选:B.3.(2021·江苏省前黄高级中学高三月考)已知215()sin ,()42f x x x f x π⎛⎫+⎪⎭'=+ ⎝为()f x 的导函数,则()f x '的图象是( )A .B .C .D .【答案】A 【分析】求出导函数,判断导函数的奇偶性,再利用特殊值即可得出选项. 【详解】22co 151()si s n424f x x x x x π⎛⎫=++= +⎪⎝⎭, ()1sin 2f x x x '∴=-,∴函数()f x '为奇函数,排除B 、D.又1024f ππ⎛⎫'=-< ⎪⎝⎭,排除C.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.(2021·浙江·高二开学考试)函数())ln cos f x x x x =+⋅在[]2,2ππ-上的图象可能是( )A .B .C .D .【答案】C 【分析】确定奇偶性,可排除两个选项,然后确定函数在3[,2]2ππ上的单调性可再排除一个选项,从而得正确选项. 【详解】())cos())cos ()f x x x x x x x f x -=-+-=--=-,()f x 是奇函数,排除AB ,在3[,2]2x ππ∈时,由复合函数单调性知)y x =是增函数,且)0y x =>,又cos y x =增函数,且cos 0y x =>,所以)cos y x x =是增函数,而y x =是增函数,所以()f x 是增函数,排除D . 故选:C .5.(2021·浙江金华·高三月考)函数|ln()|x ay x a +=-的图象,不可能是( )A .B .C .D .【答案】D 【分析】通过函数的定义域、值域以及特殊值对四个选项中的函数图像一一分析即可判断.【详解】对于A ,当0a =时,ln xy x=,其定义域为{}0,1x x x >≠,且0y >恒成立,故A 正确; 对于B ,由函数定义域可知,0a <,当0y =,x a =-,当x a >-时,0y >,当x a <-时,0y <,故B 正确;对于C ,由函数定义域可知,0a >,当1x a -=时,函数无意义,且0y ≥恒成立,故C 正确;对于D ,由函数定义域可知,0a <,当0y =,x a =-,当x a <-时,0y <,但图中0y >,不满足条件,故D 错误; 故选:D.6.(2021·全国·高三专题练习)函数2x y π=的图像大致是( )A .B .C .D .【答案】A 【分析】由02x <<时()0f x >,排除B 和C ;再探究出函数()f x 的图象关于直线1x =对称,排除D. 【详解】当02x <<时,sin 02x π>,所以()sin02xy f x π==>,故排除B 和C ;又(2)(2)sinsin()22x xf x f x ππ--===,所以函数()f x 的图象关于直线1x =对称,排除D. 故选:A. 【点睛】方法点睛:解决函数图象的识别问题的技巧:一是活用性质,常利用函数的定义域、值域、单调性与奇偶性来排除不合适的选项;二是取特殊点,根据函数的解析式选择特殊点,即可排除不合适的选项,从而得出正确的选项.7.(2021·天津市新华中学高三月考)函数23sin ()x x x x x f x e e--=+的图象大致为( )A .B .C .D .【答案】B 【分析】先判断函数的奇偶性排除A,D,再根据(1)0f >,排除C 即得解. 【详解】解:根据题意,23sin ()x x x x x f x e e--=+,其定义域为R ,有23sin ()()x xx x xf x f x e e---==+,则函数f (x )为偶函数,排除A ,D , 3sin11(1)01f e e-=>+,排除C , 故选:B . 【点睛】方法点睛:根据函数的解析式找图象,一般先找差异,再验证. 8.(2021·全国·高三专题练习)函数2()1cos e 1x f x x ⎛⎫=+⎪-⎝⎭的大致图象为( ) A . B .C .D .【答案】B 【分析】判断图像类问题,首先求定义域,其次判断函数的奇偶性()()f x f x -=-;再次通过图像或函数表达式找特殊值代入求值,()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =;也可通过单调性来判断图像.主要是通过排除法得解. 【详解】函数()f x 的定义域为{}0x x ≠,因为2e 12e 1()1cos cos cos e 1e 1e 1x x x x x f x x x x ⎛⎫⎛⎫-++⎛⎫=+⋅=⋅=⋅ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,并且()()00e 1e e 1e ()cos cos cos e 1e e 1ex x xx x xf x x x x f x --+++-=⋅-=⋅=⋅=----, 所以函数()f x 为奇函数,其图象关于原点对称,可排除A C ,;当()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =,而cos 0x =的根是2x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z ,,可排除D . 故选:B 【点睛】函数的定义域,奇偶性,特殊值,单调性等是解决这类问题的关键,特别是特殊值的选取很重要,要结合图像的特征来选取.9.(2022·全国·高三专题练习(理))函数()232sin log y x x x π=⋅⋅的图象大致为( )A .B .C .D .【答案】B 【分析】分析函数()232sin log y x x x π=⋅⋅的定义域、奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】设()()()2322sin log sin log f x x x x x x ππ=⋅⋅=⋅,该函数的定义域为{}0x x ≠,()()()()22sin log sin log f x x x x x f x ππ-=-⋅-=⋅=-,函数()f x 为奇函数,排除AC 选项;当01x <<时,0x ππ<<,()sin 0x π>,则()0f x <,排除D 选项. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.10.(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x 时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 【点睛】函数图象的辨识可以从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.(2022·全国·高三专题练习)函数()122cos cos 4421x x f x x x ππ+-⎛⎫⎛⎫=+- ⎪ ⎪+⎝⎭⎝⎭的图象为( ) A . B .C .D .【答案】D【分析】先将()f x 的解析式化简,然后判断()f x 的奇偶性,再根据()f π的取值特点判断出对应的函数图象. 【详解】因为()12221cos cos 2442121x x x x f x x x x x x x ππ+⎫⎫--⎛⎫⎛⎫=+-=⋅⋅⋅+⎪⎪ ⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭()222121cos sin cos22121x x x x x x x --=⋅-=⋅++, 所以()()()2112cos 2cos22112x xx x f x x x f x -----=⋅-=⋅=-++且定义域为R 关于原点对称, 所以()f x 为奇函数,排除A 和C ;由()21cos2021f ππππ-=>+,排除B , 故选:D . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.(2021·河南·温县第一高级中学高三月考(理))函数()ln |||sin |,(f x x x x ππ=+-≤≤且0)x ≠的图象大致是( )A .B .C .D .【答案】B 【分析】根据解析式判断奇偶性,在0x π>>上0x +→有()f x →-∞,利用导函数,结合函数图象分析0x π>>内极值点的个数,即可确定正确函数图象. 【详解】函数()ln |||sin()|ln |||sin |()f x x x x x f x -=-+-=+=,(x ππ-≤≤且0)x ≠是偶函数,A 不合要求. 当0x π>>时,()ln sin f x x x =+:当0x +→,()f x →-∞,C 不合要求;而1()cos 0f x x x'=+=时,1,cos y y x x==-在0x π>>上只有一个交点(如下图示),即区间内只有一个极值点. D不合要求,B 符合要求.故选:B. 【点睛】关键点点睛:利用导函数,应用数形结合分析函数的交点情况,判断函数在区间上极值点个数.13.(2021·全国·高三专题练习(文))已知函数()f x ,()g x 满足()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩,则()()()sin 2x h x f x g x π⎛⎫+ ⎪⎝⎭=⋅的图像大致是( ) A . B .C .D .【答案】C 【分析】依题意得()()()221=4x x f x g x e e --⋅,根据奇偶性定义知()h x 为奇函数,再结合特征点即可得答案. 【详解】因为()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩解得()()()()11=,=22x x x xf x e eg x e e --+- 所以()()()221=4x x f x g x e e --⋅,则()()()22sin 4cos 2=x xx x h x f x g x e e π-⎛⎫+ ⎪⎝⎭=⋅- ()h x 定义域为{}0x x ≠因为()()224cos x xxh x h x e e --==--,故()h x 是奇函数,则B ,D 错;当02x π<<时,()224cos 0x xxh x e e -=>-,则C 正确,故选:C 【点睛】思路点睛:函数图象的识别可以以下方面入手: (1)从函数定义域判断; (2)从函数单调性判断; (3)从函数奇偶性判断; (4)从函数特征点判断.14.(2021·湖南·长郡中学二模)函数sin cos 4411()x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭的图像可能是( )A .B .C .D .【答案】A 【分析】本题首先可通过()()f x f x -=-判断出函数()f x 为奇函数,C 、D 错误,然后取04x π<≤,通过sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭判断出此时()0f x <,即可得出结果.【详解】 因为sin cos cos sin 44441111()()x x x x f x f x ee e e ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝==-⎭⎝⎭,x ∈R ,所以函数()f x 为奇函数,C 、D 错误,当04x π<≤,442x πππ<+≤,sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411x x e e ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411()0x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎭<⎝,B 错误,故选:A. 【点睛】方法点睛:本题考查函数图像的判断,在判断函数的图像的时候,可以通过函数的单调性、奇偶性、周期性、函数值的大小、是否过定点等函数性质来判断,考查数形结合思想,是中档题.15.(2021·福建龙岩·高一期末)已知函数()cos6x xxf x e e -=-,则()f x 的图象大致是( )A .B .C .D .【答案】C 【分析】分析函数()f x 的奇偶性及其在区间0,12π⎛⎫⎪⎝⎭上的函数值符号,由此可得出合适的选项.【详解】 对于函数()cos6x xxf x e e-=-,0x x e e --≠,解得0x ≠,函数()f x 的定义域为{}0x x ≠, ()()()cos 6cos6x xx xx xf x f x e e e e----==-=---,所以,函数()f x 为奇函数,排除BD 选项, 当0,12x π⎛⎫∈ ⎪⎝⎭时,60,2x π⎛⎫∈ ⎪⎝⎭,则cos60x >且0x x e e -->,此时,()0f x >,排除A 选项. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.16.(2021·湖北武汉·高一期末)函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .【答案】A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x xx x x x x xx x x x f x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x --+-===++,故(x ∈时,00,0,202x x x x x ->+>+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 17.(2021·全国·高三专题练习(理))函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】分析函数()f x 的奇偶性,以及当0x >时,()f x 的符号,进而可得出合适的选项. 【详解】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g x x =为奇函数,令())ln0g x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x =. 所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.18.(2021·全国全国·高三月考(理))已知函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭,则其图象为( ) A . B .C .D .【答案】A 【分析】分析函数()f x 的定义域、奇偶性以及该函数在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】 函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭的定义域为{}0x x ≠,排除D 选项; ()()()()()()333111sin sin sin f x x x x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎢⎥-=--⋅-=-+⋅-=-⋅= ⎪ ⎪⎝⎭⎝⎭⎢⎥-⎣⎦, 所以,函数()f x 为偶函数,排除B 选项;当01x <<时,433110x x x x--=<,sin 0x >,此时()0f x <,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.19.(2020·全国全国·模拟预测(文))函数()()ee sin 32xx xf x -+⋅=在55,22⎡⎤-⎢⎥⎣⎦上的图象大致是( )A .B .C .D .【答案】B 【分析】先判断函数奇偶性得函数为奇函数,故排除A,再结合π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >排除C ,最后讨论函数在对应区间内的零点个数即可得答案. 【详解】∵()()()()()e e sin 3e e sin 322xx xx x f f xx x --+⋅-+⋅==-=--,∴()f x 是奇函数,排除A .当π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >,排除C .由()0f x =得sin30x =,又15153,22x ⎡⎤∈-⎢⎥⎣⎦, ∴30x =或π±或2π±,∴()f x 在55,22⎡⎤-⎢⎥⎣⎦上有5个零点,排除D .故选:B . 【点睛】本题考查利用函数性质确定函数图象,考查了函数的奇偶性,考查数形结合思想,属于基础题.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.20.(2020·山西·河津中学高三月考(理))函数(),()sin f x x g x x x ==+,则()()()h x f x g x =的图象大致为( )A .B .C .D .【答案】A 【分析】由()h x 为偶函数,故排除选项B ,当0x >时,()0,f x >且()f x 为增函数,()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=,所以当0x >时,()()()0h x f x g x =>,排除选项D ,从而可得出()h x 在(0,)+∞上为增函数,排除选项C ,得到答案.【详解】()(sin )h x x x x =+,则()()()()sin sin h x x x x x x x h x -=---=+=,所以()h x 为偶函数,故排除选项B. 当0x >时,()0,f x >且()f x 为增函数.()1cos 0g x x '=+≥恒成立,所以()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=所以当0x >时,()()()0h x f x g x =>,排除选项D. 设120x x <<,则()()120f x f x <<,()()120g x g x << 则()()()()()()121122g g h x h x f x x f x x -=-()()()()()()()()11121222g g g g f x x f x x f x x f x x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+-由条件()10f x >,()()12g g 0x x -<,则()()()()112g g 0f x x x -<()2g 0x >,()()120f x f x -<,则()()()()212g 0x f x f x -<所以()()()()()()()()112212g g g 0f x x x x f x f x -+-<,即()()12h x h x < 因此()h x 在(0,)+∞上为增函数,排除选项C 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.。
高考数学:专题10 函数图像的判断(解析版)

【高考地位】函数图像作为高中数学一个“重头戏”,是研究函数性质、方程、不等式重要武器,已经成为各省市高考命题一个热点。
在高考中经常以几类初等函数图像为基础,结合函数性质综合考查,多以选择、填空题形式出现。
【方法点评】方法一 特值法使用情景:函数()f x 解析式已知情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=图象大致为( )【答案】C考点:函数图像【点评】特值法是解决复杂函数图像问题方法之一,其将复杂问题简单化,且操作性简单可行。
【变式演练1】函数()2ln y x x =+图象大致为( )A .B .C .D .【答案】A【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)图象可能为( )【答案】D 【解析】考点:1.函数基本性质;2.函数图象. 【变式演练3】现有四个函数:①②③④图象(部分)如下,则按照从左到右将图象对应函数序号安排正确一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C【解析】试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数解析式和性质确定函数图象,属于中档题;已知函数解析式确定函数图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象对称性),单调性(确定图象变化趋势),最值(确定图象最高点或最低点),特殊点函数值(通过特殊函数值排除选项),其主要方法是排除法.考点:1.函数奇偶性;2.函数图象.【变式演练4】函数xe x y )1(2-=图象大致是( )【答案】C 【解析】考点:偶函数图象性质.方法二 利用函数基本性质判断其图像使用情景:函数()f x 解析式已知情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单基本初等函数图像特征如对称性、周期性等进行判断即可; 第三步 得出结论.例2 函数()(1)ln ||f x x x =-图象大致为( )【答案】A 【解析】考点:1、导数在研究函数单调性中应用;2、函数图像.【思路点睛】本题主要考查了导数在研究函数单调性中应用和函数图像,具有一定综合性,属中档题.其解题一般思路为:首先观察函数表达式特征如0)1(=f ,然后运用导数在研究函数单调性和极值中应用求出函数单调区间,进而判断选项,最后将所选选项进行验证得出答案即可.其解题关键是合理地分段求出函数单调性.【变式演练5】如图,周长为1圆圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆对称性可知,动点N 轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 长递增,t 值递增,且变化由快到慢,由给定图象可知选D . 考点:函数图象.【变式演练6】如图可能是下列哪个函数图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形面积为y (图中阴影部分),若函数()y f x =大致图像如图,那么平面图形形状不可能是( )【答案】C【解析】试题分析:由函数图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意. 考点:函数图象与图形面积变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数底数)部分图象大致是( )【答案】C 【解析】【变式演练9】函数2ln x x y x=图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象对称性可知应选D. 考点:函数图象性质及运用.【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭图象大致形状是( ) A . B .C .D .【答案】B 【解析】考点:函数奇偶性及函数图象. 【变式演练11】若函数()2(2)m xf x x m-=+图象如图所示,则m 范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数奇偶性;2.函数单调性;3.导数应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项.2.【2015高考安徽,理9】函数()()2ax bf x x c +=+图象如图所示,则下列结论成立是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】 C【考点定位】1.函数图象与应用.【名师点睛】函数图象分析判断主要依据两点:一是根据函数性质,如函数奇偶性、单调性、值域、定义域等;二是根据特殊点函数值,采用排除方法得出正确选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点位置能够判断,,a b c 正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 边2AB =,1BC =,O 是AB 中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 函数()f x ,则()y f x =图像大致为( )(D)(C)(B)(A)yπ4π23π4ππ3π4π2π4yyπ4π23π4ππ3π4π2π4yDPCOAx【答案】B【考点定位】函数图象和性质.【名师点睛】本题考查函数图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 运动轨迹来判断图像对称性以及特殊点函数值比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 图象为折线ACB ,则不等式()()2log 1f x x +≥解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =图象向左平移一个单位得到2log (1)y x =+图象1x =时两图象相交,不等式解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)图象,要求正确画出画出图象,利用数形结合写出不等式解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=图像可能是( )答案: D考点:函数图像.【名师点睛】本题主要考查了函数指数与对数函数图像和性质,属于常见题目,难度不大;识图常用方法:(1)定性分析法:通过对问题进行定性分析,从而得出图象上升(或下降)趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量计算来分析解决问题;(3)函数模型法:由所提供图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且图像如右图所示,则下列函数图像正确是( )13OxyDC BAy=log a (-x)y=(-x)ay=x ay=a -x-1-3113OO OO1y x1xy1xyxy【答案】B 【解析】考点:函数图象.【名师点睛】本题主要考查函数图像识别问题及分析问题解决问题能力,求解此题首先要根据图像经过特殊点,确定参数值,然后利用函数单调性确定正确选项,解决此类问题要重视特殊点及单调性应用.【反馈练习】1. 【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111y x =--图象是( )【答案】B 【解析】试题分析:将1y x =-图象沿x 轴向右平移1个单位得到11y x =--图象,再沿y 轴向上平移1个单位得到111y x =--图象.故选B . 考点:函数图象平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x -=图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B ,故选A .考点:函数图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 定义域为[],a b ,函数()y f x =图象如图甲所示,则函数(||)f x 图象是图乙中( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数图象只可能是( )【答案】B【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =大致图象如图所示,则函数()y f x =解析式应为( )A .()ln x f x e x =B .()ln(||)xf x ex -=C .()ln(||)xf x e x = D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-图象大致为( )【答案】A 【解析】试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C ,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数图象;2、函数奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M ,将点M 到直线OP 距离与O 到M 距离之和表示成x 函数()f x ,则()y f x =在[]0,π上图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处切线斜率为()g x ,则函数()cos y g x x =部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上增函数,则函数1|)1(|--=x f y 图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数图象,图象变换.。
高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)

高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。
(名师导学)高考数学总复习 第二章 函数 第12讲 函数的图象练习 理(含解析)新人教A版-新人教A

第12讲 函数的图象夯实基础 【p 26】【学习目标】1.熟练掌握基本初等函数的图象;掌握函数作图的基本方法(描点法和变换法).2.利用函数图象研究函数性质或求两函数的图象的交点个数.【基础检测】1.函数f(x)=x 2-2|x|的图象大致是( )【解析】∵函数f(x)=x 2-2|x|,∴f(3)=9-8=1>0,故排除C ,D ,∵f(0)=-1,f ⎝ ⎛⎭⎪⎫12=14-212<-1,故排除A ,故选B . 【答案】B2.为了得到函数y =2x +1-1的图象,只需把函数y =2x的图象上的所有的点( ) A .向左平移1个单位长度,再向下平移1个单位长度B .向右平移1个单位长度,再向下平移1个单位长度C .向左平移1个单位长度,再向上平移1个单位长度D .向右平移1个单位长度,再向上平移1个单位长度【解析】把函数y =2x 的图象向左平移1个单位长度得到函数y =2x +1的图象,再把所得图象再向下平移1个单位长度,得到函数y =2x +1-1的图象.【答案】A3.函数f(x)=ln (1-x)向右平移1个单位,再向上平移2个单位的大致图象为( )【解析】将函数f(x)=ln (1-x)向右平移1个单位,得到函数为y =ln [1-(x -1)]=ln (2-x),再向上平移2个单位可得函数为y =ln (2-x)+2.根据复合函数的单调性可知y =ln (2-x)+2在(-∞,2)上为单调减函数,且恒过点(1,2),故选C .【答案】C4.若函数y =f(x)的图象经过点(1,2),则y =f(-x)+1的图象必经过的点坐标是________.【解析】根据y =f(x)图象经过点(1,2),可得y =f(-x)的图象经过点(-1,2),函数y =f(-x)+1的图象经过点(-1,3).【答案】(-1,3)5.已知偶函数f ()x 和奇函数g ()x 的定义域都是()-4,4,且在(]-4,0上的图象如图所示,则关于x 的不等式f ()x ·g ()x <0的解集为________.【解析】设h ()x =f ()x g ()x ,则h ()-x =f ()-x g ()-x =-f ()x g ()x =-h ()x ,∴h ()x 是奇函数.由图象可知,当-4<x<-2时,f ()x >0,g ()x <0,即h ()x <0;当0<x<2时,f ()x <0,g ()x >0,即h ()x <0,∴h ()x <0的解为()-4,-2∪()0,2.【答案】()-4,-2∪()0,2【知识要点】1.基本初等函数(一次函数、二次函数、幂函数、指数函数、对数函数)的图象2.作图方法:描点法,变换法.(1)描点法作图的基本步骤:①求出函数的__定义域和值域__.②找出__关键点__(图象与坐标轴的交点,最值点、极值点)和__关键线__(对称轴、渐近线),并将关键点列表.③研究函数的基本性质(__奇偶性、单调性、周期性__).若具有奇偶性就只作右半平面的图象,然后作关于原点或y 轴的对称图形即可;若具有单调性,单调区间上只需取少量代表点;若具有周期性,则只作一个周期内的图象即可.④在直角坐标系中__描点、连线__成图.(2)变换作图法常见的变换法则:__平移变换__、__伸缩变换__和__对称变换__,具体方法如下: 平移变换又包括左右平移变换(针对自变量)和上下平移变换(针对函数值整体). ①左右平移变换(左加右减),具体方法是:y =f (x )――→将函数图象向左平移b (b >0y =f (x )――→将函数图象向右平移b (b >0 ②上下平移变换(上正下负),具体方法是:y =f (x )――→将函数图象向上平移h (h >0y =f (x )――→将函数图象向下平移h (h >0③伸缩变换包括左右伸缩变换(针对自变量)和上下伸缩变换(针对函数值整体),(横缩纵伸)具体方法如下:y =f (x )――→纵坐标保持不变横坐标缩为原来的1a倍y = f (ax ),a >0 , y =f (x )――→横坐标保持不变纵坐标伸长为原来的a 倍y = af (x ),a >0 .(3)对称变换包括中心对称和轴对称①y=f(x)与y =-f(x)关于__x 轴__对称;②y=f(x)与y =f(-x)关于__y 轴__对称;③y=f(x)与y =-f(-x)关于__原点__对称;④y=f(x)与y =f(2a -x)关于__x =a__对称;⑤y=f(x)与y =|f(x)|,保留x 轴上方的图象,将x 轴下方的图象沿x 轴翻折上去,x 轴下方图象删去;⑥y=f(x)与y =f(|x|),保留y 轴右方的图象,将y 轴右方的图象沿y 轴翻折到左边,y 轴左方原图象删去.3.识图:通过对函数图象观察得到函数定义域、值域、奇偶性、单调性、特殊点等.4.用图:利用函数的图象可以讨论函数的性质、求最值、确定方程的解的个数、解不等式等.数形结合,直观方便.典 例 剖 析 【p 27】考点1 作函数的图象例1作出下列函数的图象:(1)y =2-x x +1; (2)y =⎝ ⎛⎭⎪⎫12|x +1|;(3)y =|log 2x -1|;(4)y =|x -2|·(x +1).【解析】(1)易知函数的定义域为{x∈R |x ≠-1}.y =2-x x +1=-1+3x +1,因此由y =3x的图象向左平移1个单位长度,再向下平移1个单位长度即可得到函数y =2-x x +1的图象,如图①所示. (2)先作出y =⎝ ⎛⎭⎪⎫12x,x ∈[0,+∞)的图象,然后作其关于y 轴的对称图象,再将整个图象向左平移1个单位长度,即得到y =⎝ ⎛⎭⎪⎫12|x +1|的图象,如图②所示. (3)先作出y =log 2x 的图象,再将图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方来,即得到y =|log 2x -1|的图象,如图③所示.(4)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=⎝ ⎛⎭⎪⎫x -122-94; 当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝ ⎛⎭⎪⎫x -122+94. ∴y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -122-94,x ≥2,-⎝ ⎛⎭⎪⎫x -122+94,x <2. 这是分段函数,每段函数的图象可根据二次函数图象作出(如图).【点评】为了正确作出函数的图象,除了掌握“列表、描点、连线”的方法外,还要做到以下两点:(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、正弦函数、余弦函数以及形如y =x +1x的函数; (2)掌握常用的图象变换方法,如平移变换、伸缩变换、对称变换、翻折变换、周期变换等.考点2 函数图象的识别例2(1)函数f (x )=x 2sin x 的图象可能为( )【解析】因为f (x )是奇函数,图象关于坐标原点对称,排除B 、D ,又因为f (π)=0,故选C.【答案】C(2)函数y =(3x 2+2x )e x的图象大致是( )【解析】f (x )=(3x 2+2x )e x ,则函数f (x )只有两个零点,x =-23和x =0,故排除B 、D.f′(x )=(3x 2+8x +2)e x,由f′(x )=0可知函数有两个极值点,故排除C.【答案】A(3)如图所示,在直角梯形ABCD 中,∠A =90°,∠B =45°,AB =5,AD =3,点E 由B 沿折线B -C -D 向点D 移动,EM⊥AB 于M ,EN⊥AD 于N ,设BM =x ,矩形AMEN 的面积为y ,那么y 与x 的函数关系图象大致是如图所示的( )【解析】∵EM⊥AB,∠B =45°,∴EM =MB =x ,AM =5-x.当点E 在BC 上运动时,即当0≤x≤3时,y =x ()5-x =-⎝ ⎛⎭⎪⎫x -522+254; 当点E 在CD 上运动时,矩形AMEN 即为矩形AMED ,此时3<x≤5,y =-3x +15. 所以y 与x 的函数关系为f ()x =⎩⎨⎧-⎝ ⎛⎭⎪⎫x -522+254,()0≤x≤3,-3x +15,(3<x≤5).画出图象如选项A 所示.【答案】A【点评】函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.考点3函数图象的应用例3(1)定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图象如图所示,给出下列四个命题:①方程f[g(x)]=0有且仅有三个解;②方程g[f(x)]=0有且仅有三个解;③方程f[f(x)]=0有且仅有九个解;④方程g[g(x)]=0有且仅有一个解.其中正确的结论是________(填写所有正确结论的序号).【解析】①方程f[g(x)]=0有且仅有三个解;g(x)有三个不同值,由于y=g(x)是减函数,所以有三个解,正确;②方程g[f(x)]=0有且仅有三个解;从图中可知,f(x)∈(0,a)可能有1,2,3个解,不正确;③方程f[f(x)]=0有且仅有九个解;类似②不正确;④方程g[g(x)]=0有且仅有一个解.结合图象,y=g(x)是减函数,故正确.【答案】①④(2)函数y=f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当x ∈[-1,1]时,y 的取值X 围是________;②如果对任意x ∈[a ,b ](b <0),都有y ∈[-2,1],那么a 的最小值是________.【解析】由图象可知,当x =0时,函数在[-1,1]上的最小值y min =1,当x =±1时,函数在[-1,1]上的最大值y max =2,所以当x ∈[-1,1]时,函数y =f (x )的值域为[1,2];当x ∈[0,3]时,函数f (x )=-(x -1)2+2,当x ∈[3,+∞)时,函数f (x )=x -5, 当f (x )=1时,x =2或x =6,又因为函数为偶函数,图象关于y 轴对称,所以对于任意x ∈[a ,b ](b <0),要使得y ∈[-2,1],则a ∈[-6,-2],b ∈[-6,-2],且a ≤b ,则实数a 的最小值是-6.【答案】[1,2];-6(3)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,ln (x +1),x >0,若|f (x )|≥ax 恒成立,则实数a 的取值X 围是__________.【解析】在平面直角坐标系中画出函数y =|f (x )|,y =ax 的图象如图,结合图象可知当直线y =ax 的斜率a 满足a ∈[-2,0]时,不等式|f (x )|≥ax 恒成立.【答案】[-2,0]方 法 总 结 【p 28】1.函数图象是函数性质的具体体现,它是函数的另一种表示形式,因此对基本初等函数的图象必须熟记.2.掌握好函数作图的两种方法:描点法和变换法,作图时要注意定义域,并化简解析式.3.变换法作图时,应先选定一个基本函数,通过变换,找出所求的图象和这个基本函数图象间的关系,再分步画出图形.4.在图象变换中,写函数解析式,也要分步进行,每经过一个变换,对应一个函数解析式.5.合理处理好识图题:对于给定的函数图象,要从图象的左右、上下X 围,端点、特殊点情况,以及图象所反映出的定义域、值域、极值、单调性、奇偶性、对称性、周期性等函数性质多方面进行观察分析,结合题给条件,进行合理解答. 6.充分用好图:数形结合是重要的数学思想方法,函数图象形象地显示了函数性质,为研究数量关系提供了“形”的直观性.它是探求解题途径,快速获取结果的重要工具,特别是对解答填空选择题、方程根的个数等方面,很有效.因此,一定要注意数形结合,及时作出图象,借用图象帮助解题.走 进 高 考 【p 28】1.(2018·全国卷Ⅱ)函数f (x )=e x -e -x x2的图象大致为( )【解析】∵x ≠0,f (-x )=e -x -e xx 2=-f (x ),∴f (x )为奇函数,舍去A ;∵f (1)=e -e -1>0,∴舍去D ;∴f ′(x )=(e x +e -x )x 2-(e x -e -x)2xx4=(x -2)e x +(x +2)e-xx 3,∴当x >2,f ′(x )>0, 所以舍去C ;因此选B. 【答案】B2.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )【解析】当x =0时,y =2,排除A ,B ;y ′=-4x 3+2x =-2x (2x 2-1),当x =0.1时,y ′>0.故选D.【答案】D考 点 集 训 【p 188】A 组题1.如图所示的4个图象中,与所给3个事件最吻合的顺序是( ) ①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进; ②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进; ③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A .③①② B.③④② C .②①③ D .②④③【解析】离开家后缓慢行进,但最后发现快迟到时,加速前进;对应离开家的距离先缓慢增长再快速增长,对应图象②;骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;对应离开家的距离直线上升再停止增长再直线上升(与开始直线平行),对应图象①;快速的骑着自行车,最后发现时间充足,又减缓了速度;对应离开家的距离先快速增长再缓慢增长,对应图象③.【答案】C2.把函数y =log 2(x -1)的图象上各点的横坐标缩短到原来的12倍,再向右平移12个单位长度所得图象的函数解析式为( )A .y =log 2(2x +1)B .y =log 2(2x +2)C .y =log 2(2x -1)D .y =log 2(2x -2)【解析】把函数y =log 2(x -1)图象上各点的横坐标缩短到原来的12倍,得到y =log 2(2x-1)的图象,再向右平移12个单位长度,所得函数的解析式为y =log 2⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -12-1=log 2(2x -2).【答案】D3.已知某函数图象如图所示,则图象所对应的函数可能是( )A .y =x2|x |B .y =2|x |-2C .y =e |x |-|x | D .y =2|x |-x 2【解析】对于A ,函数f (x )=x2|x |,当x >0时,y >0;当x <0时,y <0,所以不满足题意.对于B ,当x ≥0时,f (x )单调递增,不满足题意. 对于C ,当x ≥0时,f (x )>0,不满足题意.对于D ,函数y =2|x |-x 2为偶函数,且当x ≥0时,函数有两个零点,满足题意. 【答案】D4.函数f (x )=x ln|x |的图象可能是( )【解析】函数的定义域{x |x ≠0}关于坐标原点对称,且由函数的解析式可知:f (-x )=-x ×ln|-x |=-x ln x =-f (x ), 则函数f (x )为奇函数,其图象关于坐标原点对称,选项C ,D 错误; 当x >0时,f (x )=x ln x ,则f ′(x )=ln x +x ×1x=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减, 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增, 即函数f (x )在区间(0,+∞)内先单调递减,再单调递增,据此可排除B 选项,故选A. 【答案】A5.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧e x-a (x ≤0),ln (x +a )(x >0)(e 为自然对数的底数),若方程f (x )=12有两个不相等的实数根,则实数a 的取值X 围是( )A.⎣⎢⎡⎦⎥⎤0,12 B.[]0,e C.⎣⎢⎡⎦⎥⎤-12,12 D.⎣⎢⎡⎦⎥⎤-12,e 【解析】(1)若a <0,则函数的定义域不是R ,不合题意;(2)若a =0,则f (x )=⎩⎪⎨⎪⎧e x(x ≤0),ln x (x >0),定义域为R ,显然方程f (x )=12有两个不等实根,符合题意;(3)若a >0,函数的定义域为R .当x ≤0时,-a <f (x )≤1-a ;当x >0时,f (x )=ln(x +a )>ln a .结合图象可得要使方程f (x )=12有两个不等实根,则⎩⎪⎨⎪⎧a >0,-a <12≤1-a ,ln a <12,解得0<a ≤12.综上可得0<a ≤12.【答案】A6.函数f (x )的定义域为[-1,1],图象如图①所示;函数g (x )的定义域为[-2,2],图象如图②所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =( )A .6B .8C .10D .12【解析】由图象可知若f (g (x ))=0,则g (x )=-1或g (x )=0或g (x )=1.由图②知当g (x )=-1时, x =-1或x =1;当g (x )=0时, x 的值有3个;当g (x )=1时, x =2或x =-2,故m =7.若g (f (x ))=0,则f (x )=-2-12=-1.5或f (x )=1.5或f (x )=0.由图①知f (x )=1.5与f (x )=-1.5均无解;当f (x )=0时, x =-1, x =1或x =0,故n =3,所以m +n =10.【答案】C7.已知函数y =f (x )是定义在区间[-3,3]上的偶函数,它在区间[0,3]上的图象是如图所示的一条线段,则不等式f (x )+f (-x )>x 的解集为________.【解析】由题意,函数f (x )过点(0,2),(3,0),∴y =-23x +2.又因为f (x )是偶函数,关于y 轴对称, 所以f (x )=f (-x ),即2f (x )>x .根据函数f (x )在[-3,3]上的图象可知,当x ∈[-3,0)的时候,y =2f (x )的图象恒在y =x 的上方,当x ∈[0,3]的时候,令2f (x )=x ,x =127,即当x ∈⎣⎢⎡⎭⎪⎫-3,127时,满足2f (x )>x ,即f (x )+f (-x )>x . 【答案】⎣⎢⎡⎭⎪⎫-3,127 8.已知二次函数y =f ()x 满足f ()2x -1=4x 2-8x .(1)求f ()x 的解析式;(2)作出函数y =||f ()x 的图象,并写出其单调区间; (3)求y =f ()x 在区间[]t ,t +1(t ∈R )上的最小值. 【解析】(1)令2x -1=t 则x =t +12,∴f ()t =4⎝ ⎛⎭⎪⎫t +122-8·t +12=t 2-2t -3,∴f ()x =x 2-2x -3.(2)函数|f (x )|的图象如图:由图象可知:|f ()x |的单调递增区间为[]-1,1,[3,+∞); 单调递减区间为(]-∞,-1,[]1,3. (3)f ()x =x 2-2x -3=(x -1)2-4,开口向上,对称轴为x =1,当t ≥1时,f ()x 在[]t ,t +1上为增函数, 所以x =t 时y 有最小值为f ()t =t 2-2t -3;当t <1<t +1,即0<t <1时,f ()x 在[]t ,t +1上先减后增, 所以x =1时y 有最小值为f ()1=-4;当t +1≤1,即t ≤0时,f ()x 在[]t ,t +1上为减函数, 所以x =t +1时y 有最小值为f ()t +1=t 2-4;综上所述:t ≤0时,f ()x 最小值为t 2-4;0<t <1时,f ()x 最小值为-4;t ≥1时,最小值为t 2-2t -3.B 组题1.已知f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0),x 2+1,x ∈[0,1],结合图象,则下列选项错误的是( )A .①是f (x -1)的图象B .②是f (-x )的图象C .③是f (|x |)的图象D .④是|f (x )|的图象【解析】作出函数y =f (x )的图象,如图所示,对于选项A ,f (x -1)的图象是将f (x )的图象向右平移1个单位长度后得到的,正确;对于选项B ,f (-x )的图象与f (x )的图象关于y 轴对称,正确;对于选项C ,f (|x |)的图象为f (x )在y 轴右侧的图象不变,y 轴左侧的图象与右侧图象关于y 轴对称,正确;对于选项D ,|f (x )|的图象为f (x )在x 轴上方的图象不变,下方图象沿x 轴对称翻折到x 轴上方,因为函数f (x )的图象均在x 轴上方,所以|f (x )|的图象应与f (x )的图象相同,错误.【答案】D2.已知函数f ()x 是定义在[)-3,0∪(]0,3上的奇函数,当x ∈(]0,3时,f ()x 的图象如图所示,那么满足不等式f ()x ≥2x-1的x 的取值X 围是________.【解析】由图象可知,当x ∈(]0,3时,f ()x 单调递减,当0<x ≤1时,f ()x ≥1,2x-1≤1,满足不等式f ()x ≥2x-1;当1<x ≤3时,f ()x <1,1<2x-1≤7,不满足不等式f ()x ≥2x-1;∵函数f ()x 是定义在[)-3,0∪(]0,3上的奇函数,∴当x ∈[)-3,0时,f ()x 单调递减,当-3≤x ≤-2时,-34≤f ()x <0,-78<2x-1≤-34,满足不等式f ()x ≥2x -1;当x >-2时,f ()x <-34,2x -1>-34,不满足不等式f ()x ≥2x-1;∴满足不等式f ()x ≥2x-1的x 的取值X 围是[]-3,-2∪(]0,1.【答案】[]-3,-2∪(]0,13.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同的实数根,则a 的取值X 围是__________.【解析】x ≤0时,f (x )=2-x-1,0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值X 围是(-∞,1). 【答案】(-∞,1)4.已知函数f (x )=2x-a2x (a ∈R ),将y =f (x )的图象向右平移两个单位长度,得到函数y =g (x )的图象.(1)求函数y =g (x )的解析式;(2)若函数y =h (x )与y =g (x )的图象关于直线y =1对称,设F (x )=f (x )+h (x ),已知F (x )>2+3a 对任意的x ∈(1,+∞)恒成立,求a 的取值X 围.【解析】(1)g (x )=2x -2-a2x -2.(2)设y =h (x )的图象上一点P (x ,y ),点P (x ,y )关于y =1的对称点为Q (x ,2-y ),由点Q 在y =g (x )的图象上,所以2-y =2x -2-a 2x -2, 于是y =2-2x -2+a2x -2,即h (x )=2-2x -2+a2x -2. F (x )=f (x )+h (x )=34×2x +3a2x +2. 由F (x )>3a +2,化简得14×2x +a2x >a ,设t =2x ,t ∈(2,+∞),F (x )>2+3a 对任意的x ∈(1,+∞)恒成立,即t 2-4at +4a >0在(2,+∞)上恒成立.设m (t )=t 2-4at +4a ,t ∈(2,+∞),对称轴为t =2a , 则Δ=16a 2-16a <0,③或⎩⎪⎨⎪⎧Δ=16a 2-16a ≥0,2a ≤2,m (2)≥0,④ 由③得0<a <1,由④得⎩⎪⎨⎪⎧a ≤0或a ≥1,a ≤1,a ≤1,即a ≤0或a =1.综上,a ≤1.。
函数图象的判断(25题)含详细答案

函数图象的判断(25题)含详细答案一、选择题1.函数()33xy x x =-⋅的图象大致是()A .B .C .D .2.函数()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭的图象大致为()A .B .C .D .3.函数()()||f x xcosx sinx ln x =+的部分图像大致为()A .B .C .D .4.函数2()(1)31x f x cosx =-⋅+的图像大致为()A .B .C .D .5.函数()313ln xf x x x=-的图象可能为()A .B .C .D .6.函数()2sin222x xx xf x -=-的图象大致为()A .B .C .D .7.已知函数()y f x =部分图象如图所示,则函数()f x 的解析式可能为()A .()sin2f x x x =B .()sin f x x x =C .()2sin xf x x=D .()2sin2xf x x=8.“家在花园里,城在山水间.半城山色半城湖,美丽惠州和谐家园......”首婉转动听的《美丽惠州》唱出了惠州的山姿水色和秀美可人的城市环境.下图1是惠州市风景优美的金山湖片区地图,其形状如一颗爱心.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为()A .y =B .y =C .y =D .y =9.已知函数e (21)()1x x f x x -=-,则()f x 的大致图象为()A .B .C .D .10.函数()2221x xf x x--=-的图象大致是()A .B .C .D ..11.函数()1f x x sinx x ⎛⎫=-⎪⎝⎭的图象可能为()A .B .C .D .12.函数3e ()e cosxf x x lncosx+=-的图象大致为()A .B .C .D .13.函数()221()22xxx sinx f x -+=+的部分图象大致是()A .B .C .D .14.如图是下列某个函数在区间[]22-,的大致图象,则该函数是()A .()3223312x x x xf x cosx +-=+B .()322331x x xf x x +-=+C .()3221x x xf x sinx x -+=+D .()2251x xf x cosxx -=+15.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .112323y sinx sin x sin x =++B .112323y sinx sin x sin x=--C .112323y sinx cos x cos x=++D .112323y cosx cos x cos x=++16.函数()211e xf x sinx ⎛⎫=-⎪+⎝⎭的部分图像大致形状是()A .B .C .D .17.函数()e 1e 1x x f x cosx -=⋅+的图象大致为()A .B .C .D .18.函数())f x xln x =的图象大致为()A .B .C .D .19.函数()e ex xy sinxln -=+在区间[]ππ-,上的图象大致为()A .B .C .D .20.已知函数op =>0,≤0,则函数()1y f x =-的图象大致是()A .B .C .D .21.函数()3sin xf x x x=-在[]ππ-,上的图像大致为()A .B .C .D .22.函数3||x sinxy x -=的大致图象是()A .B .C .D .23.函数101()101x x f x sinx -=⋅+在区间ππ22⎡⎤-⎢⎣⎦,上的图象大致为()A .B .C .D .24.已知函数()f x 的图象如图所示,则该函数的解析式可能是()A .()||||22f x sinx cosx sin x =+-B .()||||22f x sinx cosx sin x =-+C .()||||22f x sinx cosx cos x =-+D .()||||22f x sinx cosx cos x=++25.函数()e e 3πsin 242x x f x x -+⎛⎫=⋅- ⎪⎝⎭在[]44-,上的图象大致是()A .B .C .D .答案解析部分1.【答案】B【知识点】函数的图象【解析】【解答】解:函数()33xy x x =-⋅的定义域为R ,()()()()()33x f x x x f x --=---⋅=-,所以函数()33xy x x =-⋅为奇函数,故排除CD 选项,当01x <<时,3x x <,所以()330xy x x =-⋅<再排除A.故答案为:B.【分析】先求函数的定义域,利用函数的奇偶性判处CD 选项,再根据01x <<时,函数值的正负即可排除A.2.【答案】A【知识点】奇偶函数图象的对称性;函数的图象【解析】【解答】解:因为()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭,所以101xx+>-,解得:-1<x<1,即函数f(x)的定义域为(-1,1),所以()()2111111111x x x x x x x f x ln ln xln x x x x x --+++⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭,()()()111111x x x f x x ln xln xln f x x x x --+⎛⎫⎛⎫⎛⎫-=--==-= ⎪ ⎪ ++-⎝⎭⎝⎭⎝⎭,所以函数f(x)是偶函数,故排除C 、D 选项;当0<x<1时,则-1<-x<0,1<1+x<2,0<1-x<1,所以111x x +>-,则1ln 01x x +⎛⎫> ⎪-⎝⎭,所以f(x)<0,排除B 选项;故答案为:A.【分析】先求出f(x)的定义域并化简解析式,利用奇偶性排除C 、D 选项,再推导出当0<x<1时,f(x)<0排除B 选项.3.【答案】A【知识点】函数的奇偶性;奇偶函数图象的对称性;函数的图象【解析】【解答】函数()()||f x xcosx sinx ln x =+的定义域为{}|0x x ≠,且()()()()()f x xcos x sin x ln x xcosx sinx lnx f x -=--+--=--=-⎡⎤⎣⎦,所以函数()f x 是奇函数,其函数图象关于()00,对称,所以C 、D 不符合题意;又ππππππ0222222f cos sin ln ln ⎛⎫=-+⋅=> ⎪⎝⎭,所以B 不符合题意;故答案为:A.【分析】利用奇偶函数的定义可判定出函数()f x 是奇函数,再根据奇函数图象的对称性可排除C 、D ;再由π02f ⎛⎫> ⎪⎝⎭可排除B ;进而可得答案.4.【答案】B【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】2()(1)31x f x cosx =-⋅+,则()f x 的定义域为R ,又()()()2232111313131x x x x f x cos x cosx cosx f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()f x 为奇函数,图象关于原点对称,故排除CD ,当πx =时,()ππ22π=1π-1+03131f cos ⎛⎫-=< ⎪++⎝⎭,故排除A.故答案为:B.【分析】根据题意,先分析函数的奇偶性,排除C 、D ;结合特殊值()πf ,排除A ;综合可得答案.5.【答案】D【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】函数()313ln x f x x =-定义域为(0)(0)⋃-∞+∞,,,()()()331133ln x ln x f x x x f x -⎛⎫-=--=--=- ⎪-⎝⎭则函数()f x 为奇函数,其图像关于原点中心对称,排除C ;又()3111110313ln f =⨯-=>,排除AB ;故答案为:D【分析】先判断出函数f (x)为奇函数,排除选项C ;再利用特值f (1)>0排除选项A 、B ;进而得到答案.6.【答案】D【知识点】函数的奇偶性;函数的图象【解析】【解答】由()2sin222x x x x f x -=-可得定义域为{|0}x x ≠,因为()()()2sin222x x x x f x f x ---==-,所以()f x 是偶函数,函数图象关于y 轴对称,A ,C 不符合题意;又()2111sin21022f -⨯=>-,B 中图象不符合,D 中图象符合,故答案为:D .【分析】利用函数的奇偶性以及函数值的符号,逐项进行判断,可得答案.7.【答案】D【知识点】分段函数的解析式求法及其图象的作法;函数的图象【解析】【解答】由图象知()[]00πf x x =∈,,有三个零点经验证只有AD 满足,排除BC 选项,A 中函数满足()sin(2)sin2()f x x x x x f x -=--==为偶函数,D 中函数满足()2(2)22()x x f x sin x sin x f x --=-=-=-为奇函数,而图像关于原点对称,函数为奇函数,排除A ,选D .故答案为:D .【分析】由函数图象结合函数零点与函数与x 轴交点横坐标的等价关系,依据奇函数和偶函数的定义、对称性,逐项排除可得答案。
高中数学函数的图象与性质考试题(含答案解析)

---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------函数的图象与性质试题成绩课程名称高考数学二轮复习模拟考试开卷闭卷√教研室高三数学组A卷√B卷复习时间年月日时分至时分适用专业班级班级姓名学号考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。
答案写在答题纸上,写在试题纸上无效。
A组一、选择题一、选择题1.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)2.(2017·沈阳模拟)已知函数f(x)=则f(f(4))的值为() A.-19B.-9C.19D.93.(2017·湖南东部六校联考)函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减试题共页第页C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减4.函数f(x)=2|log2x|-⎪⎪⎪⎪⎪⎪x-1x的图象为()5.(2017·西安模拟)对于函数y=f(x),部分x与y的对应关系如下表:x 123456789y 37596182 4数列{x n}满足:x1=1,且对于任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+…+x2 017=()A.7 554 B.7 540C.7 561 D.7 5646.已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是()A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为() A.a<b<c B.b<a<cC.b<c<a D.c<b<a8.函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=() A.-2 B.-1C.0 D.1---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 9.(2017·高考山东卷)设f(x)=⎩⎨⎧x,0<x<1,2(x-1),x≥1.若f(a)=f(a+1),f(1a)=() A.2 B.4C.6 D.810.(2017·山西四校联考)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=12log2|x|在区间[-3,5]内解的个数是()A.5 B.6C.7 D.811.(2017·天津模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.x2cos x B.sin x2C.x sin x D.x2-16x412.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)二、填空题13.(2017·高考全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.试题共页第页---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------B组1.已知函数f(x)=⎩⎨⎧2x-2,x≤0,-log3x,x>0,且f(a)=-2,则f(7-a)=() A.-log37 B.-34C.-54D.-742.(2017·高考北京卷)已知函数f(x)=3x-(13)x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数3.函数y=(x3-x)2|x|的图象大致是()4.函数y=|x|(1-x)在区间A上是增函数,那么区间A是() A.(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C.[0,+∞) D.⎝⎛⎭⎪⎫12,+∞试题共页第页5.若函数f(x)=⎩⎨⎧x2-5x,x≥0,-x2+ax,x<0是奇函数,则实数a的值是()A.-10 B.10C.-5 D.56.(2017·贵阳模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=e1-x2 B.f(x)=e x2-1C.f(x)=e x2-1 D.f(x)=ln(x2-1)7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1 B.45C.-1 D.-458.(2017·陕西宝鸡中学第一次月考)已知函数f(x)=⎩⎨⎧(3a-1)x+4a,x<1,log a x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围是()A.⎝⎛⎭⎪⎫0,13 B.⎝⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,19.对于函数f(x),使f(x)≤n成立的所有常数n中,我们把n的最小值G叫做函数f(x)的上确界.则函数f(x)=的上确界是()试题共页第页A组答案解析1.解析:∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.答案:D2.解析:因为f(x)=所以f(f(4))=f(-2)=19.答案:C3.解析:因为lg|-x|=lg|x|,所以函数y=lg|x|为偶函数,又函数y=lg|x|在区间(0,+∞)上单调递增,由其图象关于y轴对称,可得y=lg|x|在区间(-∞,0)上单调递减,故选B.答案:B4.解析:由题设条件,当x≥1时,f(x)=2log2x-⎝⎛⎭⎪⎫x-1x=1x;当0<x<1时,f(x)=2-log2x-⎝⎛⎭⎪⎫1x-x=1x-⎝⎛⎭⎪⎫1x-x=x.故f(x)=⎩⎪⎨⎪⎧1x,x≥1,x,0<x<1.故选D.答案:D5.解析:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.答案:A7.解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案:C8.答案:D9.解析:若0<a<1,由f(a)=f(a+1)得a=2(a+1-1),∴a=14,∴f(1a)=f(4)=2×(4-1)=6.若a≥1,由f(a)=f(a+1)得2(a-1)=2(a+1-1),无解.综上,f(1a)=6.故选C.答案:C10.解析:画出y1=f(x),y2=12log2|x|的图象如图所示,由图象可得所求解的个数为5.答案:A11.解析:由图象可得f ⎝⎛⎭⎪⎫π2>0,故可排除A选项.由于函数f(x)在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y=x sin x在⎝⎛⎭⎪⎫0,π2上单调递增(因为y=x及y=sin x均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C选项.对函数y=x2-16x4而言,y′=2x-23x3=23x(3-x2),当x∈⎝⎛⎭⎪⎫0,π2时,y′=23x(3-x2)>0,故y=x2-16 x4在区间⎝⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D选项.故选B. 答案:B12.解析:由f(x-4)=-f(x)得f(x+2-4)=f(x-2)=-f(x+2),由f(-x)=-f(x)试题共页第页---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 1.解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a =9,所以f(7-a)=f(-2)=2-2-2=-74,故选D.答案:D2.解析:∵函数f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),∴函数f(x)是奇函数.∵函数y=(13)x在R上是减函数,∴函数y=-(13)x在R上是增函数.又∵y=3x在R上是增函数,∴函数f(x)=3x-(13)x在R上是增函数.故选A.答案:A3.解析:易判断函数为奇函数,由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.答案:B4.解析:y=|x|(1-x)=⎩⎨⎧x(1-x),x≥0,-x(1-x),x<0=⎩⎨⎧-x2+x,x≥0,x2-x,x<0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x-122+14,x≥0,⎝⎛⎭⎪⎫x-122-14,x<0.试题共页第页试题共页第页。
2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 ,所以函数 为偶函数,图像关于y轴对称,可排除B,D选项,
又 恒成立,可排除C选项
故选:A
15.函数 的部分图象大致是()
A. B.
C. D.
【答案】C
【分析】
判断函数的奇偶性,以及函数的单调性,推出结果即可.
6.已知函数 ,其图象可能是()
A. B.
C. D.
【答案】A
【分析】
利用奇偶性排除B和C,利用不等式放缩判断D
【详解】
根据题意,函数 为偶函数,图象关于 轴对称,有两个零点为 ,排除B和C,又当 时 ,排除D
故选:A.
【点睛】
方法点睛:由解析式判断图像主要从定义域,奇偶性,单调性,特殊值等方面考虑
高考数学中函数图像的判断专题练习
一、单选题
1.函数图象如图,其对应的函数可能是()
A. B. C. D.
【答案】A
【分析】
根据定义域可排除BD,根据 可排除C.
【详解】
由图可知 的定义域为 ,故BD错误;
,故C错误.
故选:A.
2.函数 的图象大致是()
A. B.
C. D.
【答案】A
【分析】
先根据条件分析出 的奇偶性,然后取特殊值计算函数值分析得到 的大致图象.
【点睛】
本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.
12.函数 的图象大致是()
A. B.
C. D.
【答案】A
【分析】
利用函数的定义域,单调性以及特值,结合选项得到答案.
【详解】
函数定义域为
,则 为奇函数,排除选项C,D
又
故选:A
B选项,当 时, , ,所以 ,不满足题意;排除B;
C选项,由 得 ,即 不过原点,不满足题意;排除C;
D选项,因为 ,所以 ,则 ,不满足题意,排除D;
故选:A.
【点睛】
思路点睛:函数图象的辨识可从以下方面入手:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.
(2)从函数的单调性,判断图象的变化趋势;
③:函数 在第一象限内是减函数,因此从左到右第二个图象符合;
④:函数 在第一象限内是增函数,因此从左到右第一个图象符合,故选:D8.函数 的大致图象是()
A. B. C. D.
【答案】C
【分析】
根据 的解析式判断.
【详解】
因为函数 ,
所以其大致图象C选项中的图象,
故选:C
9.如图所示, 是边长为2的等边三角形,直线 截这个三角形位于此直线左方的图形面积为 (见图中阴影部分),则函数 的大致图形为()
(4)从函数的特征点,排除不合要求的图象.
5.函数 的图象大致为( )
A. B. C. D.
【答案】C
【分析】
化简函数,判断函数的奇偶性,即可用排除法得出答案.
【详解】
根据题意,函数 , ,所以 ,所以函数f(x)为奇函数,排除A、B、D.
故选:C.
【点睛】
本题主要考查函数的图象,解题的关键是会判断函数的奇偶性,奇函数 ,图象关于原点对称,偶函数 ,图象关于 轴对称,属于基础题.
10.某函数的部分图象如图所示,则该函数的解析式可能是()
A. B.
C. D.
【答案】A
【分析】
根据函数图象,由函数基本性质,逐项判断,即可得出结果.
【详解】
A选项, ,
则 ,
所以 是定义在 上的奇函数,其图象关于原点对称,满足题中图象;
又当 时, ,由 可得 ,解得 或 ;由 可得 ,解得 ,满足题中图象,故该函数的解析式可能是 ;A正确;
13.函数 的图象是()
A. B.
C. D.
【答案】C
【分析】
化简函数为分段函数,利用解析式即判断图象.
【详解】
依题意,函数定义域为 ,化简 ,即知图象如选项C中的图象.
故选:C.
14.函数 的图象大致是().
A. B. C. D.
【答案】A
【分析】
由函数为偶函数,可排除B,D选项,又 恒成立,可排除C选项,得出答案.
7.已知函数:① ;② ;③ ;④ ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()
A.②①③④B.②③①④C.④①③②D.④③①②
【答案】D
【分析】
根据指数函数、幂函数的性质进行选择即可.
【详解】
①:函数 是实数集上的增函数,且图象过点 ,因此从左到右第三个图象符合;
②:函数 是实数集上的减函数,且图象过点 ,因此从左到右第四个图象符合;
A. 、3、 B. 、3、 C. 、 、3D. 、 、3
【答案】D
【详解】
由题意得,根据幂函数的图象与性质可知, ,
所以解析式中指数 的值依次可以是 ,
故选:D.
4.函数 在区间 的图象大致是()
A. B.
C. D.
【答案】C
【分析】
判断函数非奇非偶函数,排除选项A、B,在计算 时的函数值可排除选项D,进而可得正确选项.
(3)从函数的奇偶性,判断图象的对称性;
(4)从函数的特征点,排除不合要求的图象.
11.已知函数 ,则函数 的图象可能是()
A. B. C. D.
【答案】B
【分析】
先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项.
【详解】
易知函数 的图象的分段点是 ,且过点 , ,又 ,
故选:B.
【详解】
因为 ,且 的定义域为 关于原点对称,所以 是奇函数,所以排除BC,
又因为当 且 较小时,可取 ,所以 ,所以排除D,
故选:A.
【点睛】
本题考查根据函数解析式辨别函数图象,难度一般.辨别函数图象的常用方法:分析函数的奇偶性、单调性,计算特殊值的大小等.
3.图中 、 、 为三个幂函数 在第一象限内的图象,则解析式中指数 的值依次可以是()
【详解】
因为 , 且 ,
所以 既不是奇函数也不是偶函数,排除选项A、B,
因为 ,排除选项D,
故选:C
【点睛】
思路点睛:函数图象的辨识可从以下方面入手:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.
(2)从函数的单调性,判断图象的变化趋势;
(3)从函数的奇偶性,判断图象的对称性;
A. B.
C. D.
【答案】D
【分析】
根据题意,分 和 讨论三角形的面积,求得 的解析式,分析选项即可得答案.
【详解】
因为 是边长为2的等边三角形,所以 ,
当 时, ,
当 时,
故函数 的大致图形当 时,为开口向上的抛物线,当 时为开口向下的抛物线,故选项D符合,
故选:D
【点睛】
本题的关键点是根据题意得出 的解析式,需要分 是直接利用三角形面积公式, 是用 的面积减去三角形的面积可得阴影部分面积,根据解析式可选择正确的图象.