四川省德阳市2013届高三“一诊”考试数学文试题(word版)
四川省德阳市2012届高三第一次诊断性考试(数学文)WORD版

四川省德阳市2012届高三第一次诊断性考试(数学文)WORD 版 说明:1.试卷分第I 卷和第II 卷。
将第I 卷的正确选项填在答题卡上,第II 卷用铅笔或圆珠笔直接答在试卷上。
2.本试卷满分150分,120分钟完卷。
第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.记集合22{|4},{|30}M x x N x x x =>=-≤,则N M = ( )A .{|23}x x <≤B .{|02}x x x ><-或C .{|23}x x -<≤D .{|02}x x <<2.已知向量(1,2),(,4)a b x ==,若||2||b a =,则x 的值为 ( )A .4B .2C .4±D .2±3.在等比数列{}n a 中,5113133,4a a a a ⋅=+=,则155a a = ( ) A .3 B .13 C .3或13 D .133--或 4.已知a ,b 均为单位向量,它们的夹角为60︒,那么26a a b +⋅等于 ( )A.1+B .4 C .3 D .75.函数cos()sin()23y x x ππ=++-具有性质 ( )A,图象关于直线6x π=对称B .最大值为1,图象关于直线6x π=对称C(,0)6π对称 D .最大值为1,图象关于(,0)6π对称6.已知函数(0.5)(1),1()log 1a a a x x f x x x --<⎧=⎨≥⎩在R 上为减函数,则a 的取值范围是( )A .01a <<B .00.5a <<C .0.5a <D .0.51a <<7.x R ∈,且“2log 2sin x θ=+”,则|1||10|x x ++-等于( ) A .29x - B .92x - C .11 D .98.已知命题2:23p x ≤≤,命题5:[2,]2q x ∈,则下列说法正确的是 ( )A .p 是q 的充要条件B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件D .p 是q 的既不充分也不必要条件9.六个人排成一排,甲乙两人中间至少有一个人的排法种数有( )A .480B .720C .240D .36010.已知四边形ABCD 上各点在映射:(,)(1,2)f x y x y →+的作用下的象集为四边形''''A B C D ,若四边形''''A B C D 的面积为12,那么四边形ABCD 的面积为( ) A .9 B .6 CD .1211.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,那么32sgn(31)y x x x =-++的大致图象是 ( )12.设函数()(1)1x f x ax x x =+>-,若a 是从1,2,3三数中任取一个,b 是从2,3,4,5四数中任取一个,那么()f x b >恒成立的概率为( ) A .16 B .14 C .34 D .56第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题4分,共16分。
高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A. B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13.4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C的渐近线方程为( ).A .B .C .12y x =± D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵e =c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年四川高考试题及答案

所以,数列的前
n
项和
同理在△MBD 中,|MB|+|MD|>|BD|=|OB|+|OD|, 则得, |MA|+|MB|+|MC|+|MD|>|OA|+|OB|+|OC|+|OD|, 故 O 为梯形内唯一中位点是正确的.
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.
16.(2013 四川,理 16)(本小题满分 12 分)在等差数列{an}中,a1+a3=8,且 a4 为 a2 和 a9 的等比中项,求 数列{an}的首项、公差及前 n 项和.
故向量 BA 在 BC 方向上的投影为| BA |cos B=
2
.
2
18.(2013 四川,理 18)(本小题满分 12 分)某算法的程序框图如图所示,其中输入的变量 x 在 1,2,3,…, 24 这 24 个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出 y 的值为 i 的概率 Pi(i=1,2,3); (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行 n 次后,统计记录了输出 y 的值 为 i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.
C.[1,e+1]
D.[e-1-1,e+1]
答案:A
解析:由题意可得,y0=sin x0∈[-1,1],
而由 f(x)= ex x a 可知 y0∈[0,1],
2013年四川省高考数学试卷(文科)

高考注意事项1.进入考场时携带的物品。
考生进入考场,只准携带准考证、二代居民身份证以及2B铅笔、0.5毫米黑色墨水签字笔、直尺、圆规、三角板、无封套橡皮、小刀、空白垫纸板、透明笔袋等文具。
严禁携带手机、无线发射和接收设备、电子存储记忆录放设备、手表、涂改液、修正带、助听器、文具盒和其他非考试用品。
考场内不得自行传递文具等物品。
由于标准化考点使用金属探测仪等辅助考务设备,所以提醒考生应考时尽量不要佩戴金属饰品,以免影响入场时间。
2.准确填写、填涂和核对个人信息。
考生在领到答题卡和试卷后,在规定时间内、规定位置处填写姓名、准考证号。
填写错误责任自负;漏填、错填或字迹不清的答题卡为无效卡;故意错填涉嫌违规的,查实后按照有关规定严肃处理。
监考员贴好条形码后,考生必须核对所贴条形码与自己的姓名、准考证号是否一致,如发现不一致,立即报告监考员要求更正。
3.考场面向考生正前方的墙壁上方悬挂时钟,为考生提供时间参考。
考场时钟的时间指示不作为考试时间信号,考试时间一律以考点统一发出的铃声信号为准。
2013年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={1,2,3},集合B={﹣2,2},则A∩B=()A.∅B.{2}C.{﹣2,2}D.{﹣2,1,2,3}2.(5分)一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.A B.B C.C D.D4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∃x∈A,2x∈B B.¬p:∃x∉A,2x∈B C.¬p:∃x∈A,2x∉B D.¬p:∀x∉A,2x∉B5.(5分)抛物线y2=8x的焦点到直线的距离是()A.B.2 C.D.16.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.169.(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)lg+lg的值是.12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=.14.(5分)设sin2α=﹣s inα,α∈(,π),则tan2α的值是.15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和最小的点的坐标是.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{a n}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及前n项和.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A﹣B)cosB﹣sin(A ﹣B)sin(A+C)=﹣.(Ⅰ)求sinA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610 (210)1027376697乙的频数统计表(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117…………2101051696353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i (i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:,其中S为底面面积,h为高)20.(13分)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx 与圆C交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.21.(14分)已知函数,其中a是实数.设A(x1,f(x1)),B (x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={1,2,3},集合B={﹣2,2},则A∩B=()A.∅B.{2}C.{﹣2,2}D.{﹣2,1,2,3}【分析】找出A与B的公共元素即可求出交集.【解答】解:∵集合A={1,2,3},集合B={﹣2,2},∴A∩B={2}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台.故选:D.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.A B.B C.C D.D【分析】直接利用共轭复数的定义,找出点A表示复数z的共轭复数的点即可.【解答】解:两个复数是共轭复数,两个复数的实部相同,虚部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选:B.【点评】本题考查复数与共轭复数的关系,复数的几何意义,基本知识的考查.4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∃x∈A,2x∈B B.¬p:∃x∉A,2x∈B C.¬p:∃x∈A,2x∉B D.¬p:∀x∉A,2x∉B【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈A,2x∈B 的否定是:¬p:∃x∈A,2x∉B.故选:C.【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.5.(5分)抛物线y2=8x的焦点到直线的距离是()A.B.2 C.D.1【分析】由抛物线y2=8x得焦点F(2,0),再利用点到直线的距离公式可得点F(2,0)到直线的距离.【解答】解:由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选:D.【点评】熟练掌握抛物线的性质和点到直线的距离公式是解题的关键.6.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣故选:A.【点评】本题给出y=Asin(ωx+φ)的部分图象,求函数的表达式.着重考查了三角函数的图象与性质、函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.【分析】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.【解答】解:根据题意,频率分布表可得:分组频数频率[0,5)10.05[5,10)10.05[10,15)40.20………[30,35)30.15[35,40)20.10合计100 1.00进而可以作频率直方图可得:故选:A.【点评】本题考查频率分布直方图的作法与运用,关键是正确理解频率分布表、频率分步直方图的意义并运用.8.(5分)若变量x,y满足约束条件且z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是()A.48 B.30 C.24 D.16【分析】先根据条件画出可行域,设z=5y﹣x,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线,过可行域内的点B(8,0)时的最小值,过点A(4,4)时,5y﹣x最大,从而得到a﹣b的值.【解答】解:满足约束条件的可行域如图所示在坐标系中画出可行域,平移直线5y﹣x=0,经过点B(8,0)时,5y﹣x最小,最小值为:﹣8,则目标函数z=5y﹣x的最小值为﹣8.经过点A(4,4)时,5y﹣x最大,最大值为:16,则目标函数z=5y﹣x的最大值为16.z=5y﹣x的最大值为a,最小值为b,则a﹣b的值是:24.故选:C.【点评】借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.9.(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.【分析】依题意,可求得点P的坐标P(﹣c,),由AB∥OP⇒k AB=k OP⇒b=c,从而可得答案.【解答】解:依题意,设P(﹣c,y0)(y0>0),则+=1,∴y0=,∴P(﹣c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选:C.【点评】本题考查椭圆的简单性质,求得点P的坐标(﹣c,)是关键,考查分析与运算能力,属于中档题.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]【分析】根据题意,问题转化为“存在b∈[0,1],使f(b)=f﹣1(b)”,即y=f(x)的图象与函数y=f﹣1(x)的图象有交点,且交点的横坐标b∈[0,1].由y=f(x)的图象与y=f﹣1(x)的图象关于直线y=x对称,得到函数y=f(x)的图象与y=x有交点,且交点横坐标b∈[0,1].因此,将方程化简整理得e x=x2﹣x+a,记F(x)=e x,G(x)=x2﹣x+a,由零点存在性定理建立关于a的不等式组,解之即可得到实数a的取值范围.【解答】解:由f(f(b))=b,可得f(b)=f﹣1(b)其中f﹣1(x)是函数f(x)的反函数因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为“存在b∈[0,1],使f(b)=f﹣1(b)”,即y=f(x)的图象与函数y=f﹣1(x)的图象有交点,且交点的横坐标b∈[0,1],∵y=f(x)的图象与y=f﹣1(x)的图象关于直线y=x对称,∴y=f(x)的图象与函数y=f﹣1(x)的图象的交点必定在直线y=x上,由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],根据,化简整理得e x=x2﹣x+a记F(x)=e x,G(x)=x2﹣x+a,在同一坐标系内作出它们的图象,可得,即,解之得1≤a≤e即实数a的取值范围为[1,e]故选:A.【点评】本题给出含有根号与指数式的基本初等函数,在存在b∈[0,1]使f(f(b))=b成立的情况下,求参数a的取值范围.着重考查了基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征等知识,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)lg+lg的值是1.【分析】直接利用对数的运算性质求解即可.【解答】解:==1.故答案为:1.【点评】本题考查对数的运算性质,基本知识的考查.12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【分析】依题意,+=,而=2,从而可得答案.【解答】解:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.【点评】本题考查平面向量的基本定理及其意义,属于基础题.13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=36.【分析】由题设函数在x=3时取得最小值,可得f′(3)=0,解此方程即可得出a的值.【解答】解:由题设函数在x=3时取得最小值,∵x∈(0,+∞),∴得x=3必定是函数的极值点,∴f′(3)=0,f′(x)=4﹣,即4﹣=0,解得a=36.故答案为:36.【点评】本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.14.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.【分析】已知等式左边利用二倍角的正弦函数公式化简,根据sinα不为0求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,所求式子利用二倍角的正切函数公式化简后,将tanα的值代入计算即可求出值.【解答】解:∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.【点评】此题考查了二倍角的正弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和最小的点的坐标是(2,4).【分析】如图,设平面直角坐标系中任一点P,利用三角形中两边之和大于第三边得PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,从而得到四边形ABCD 对角线的交点Q即为所求距离之和最小的点.再利用两点式方程求解对角线所在的直线方程,联立方程组求交点坐标即可.【解答】解:如图,设平面直角坐标系中任一点P,P到点A(1,2),B(1,5),C(3,6),D(7,﹣1)的距离之和为:PA+PB+PC+PD=PB+PD+PA+PC ≥BD+AC=QA+QB+QC+QD,故四边形ABCD对角线的交点Q即为所求距离之和最小的点.∵A(1,2),B(1,5),C(3,6),D(7,﹣1),∴AC,BD的方程分别为:,,即2x﹣y=0,x+y﹣6=0.解方程组得Q(2,4).故答案为:(2,4).【点评】本小题主要考查直线方程的应用、三角形的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{a n}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及前n项和.【分析】等比数列的公比为q,由已知可得,a1q﹣a1=2,4,解方程可求q,a1,然后代入等比数列的求和公式可求【解答】解:设等比数列的公比为q,由已知可得,a1q﹣a1=2,4联立可得,a1(q﹣1)=2,q2﹣4q+3=0∴或q=1(舍去)∴=【点评】本题主要考查了等比数列的通项公式及等差中项等基础知识,考查运算求解的能力17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A﹣B)cosB﹣sin(A ﹣B)sin(A+C)=﹣.(Ⅰ)求sinA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小,然后求解向量在方向上的投影.【解答】解:(Ⅰ)由,可得,即,即,因为0<A <π,所以.(Ⅱ)由正弦定理,,所以=,由题意可知a >b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.【点评】本题考查两角和的余弦函数,正弦定理以及余弦定理同角三角函数的基本关系式等基本知识,考查计算能力转化思想.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610 (210)1027376697乙的频数统计表(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117…………2101051696353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i (i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【分析】(I)由题意可知,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,当x从6,12,18,24这4个数中产生时,输出y的值为3,从而得出输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;(II)当n=2100时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.【解答】解:(I)当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P1=;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=;∴输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;(II)当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:输出y的值为1的频率输出y的值为2的频率输出y的值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.【点评】本题综合考查程序框图、古典概型及其概率计算公式等基础知识,考查运算求解能力,属于基础题.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:,其中S为底面面积,h为高)【分析】(Ⅰ)在平面ABC内,过点P作直线l和BC平行,根据直线和平面平行的判定定理可得直线l与平面A1BC平行.等腰三角形ABC中,根据等腰三角形中线的性质可得AD⊥BC,故l⊥AD.再由AA1⊥底面ABC,可得AA1⊥l.再利用直线和平面垂直的判定定理可得直线l⊥平面ADD1A1 .(Ⅱ)过点D作DE⊥AC,证明DE⊥平面AA1C1C.直角三角形ACD中,求出AD的值,可得DE 的值,从而求得=的值,再根据三棱锥A1﹣QC1D的体积==••DE,运算求得结果.【解答】解:(Ⅰ)在平面ABC内,过点P作直线l和BC平行,由于直线l不在平面A1BC内,而BC在平面A1BC内,故直线l与平面A1BC平行.三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD ⊥BC,∴l⊥AD.再由AA1⊥底面ABC,可得AA1⊥l.而AA1∩AD=A,∴直线l⊥平面ADD1A1 .(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,∵侧棱AA1⊥底面ABC,故三棱柱ABC﹣A1B1C为直三棱柱,故DE⊥平面AA1C1C.直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=.∵===1,∴三棱锥A1﹣QC1D的体积==••DE=×1×=.【点评】本题主要考查直线和平面平行、垂直的判定定理的应用,用等体积法求三棱锥的体积,属于中档题.20.(13分)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx 与圆C交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.【分析】(Ⅰ)将直线l方程与圆C方程联立消去y得到关于x的一元二次方程,根据两函数图象有两个交点,得到根的判别式的值大于0,列出关于k的不等式,求出不等式的解集即可得到k的取值范围;(Ⅱ)由M、N在直线l上,设点M、N坐标分别为(x1,kx1),(x2,kx2),利用两点间的距离公式表示出|OM|2与|ON|2,以及|OQ|2,代入已知等式中变形,再利用根与系数的关系求出x1+x2与x1x2,用k表示出m,由Q在直线y=kx上,将Q坐标代入直线y=kx中表示出k,代入得出的关系式中,用m表示出n即可得出n关于m的函数解析式,并求出m的范围即可.【解答】解:(Ⅰ)将y=kx代入x2+(y﹣4)2=4中,得:(1+k2)x2﹣8kx+12=0(*),根据题意得:△=(﹣8k)2﹣4(1+k2)×12>0,即k2>3,则k的取值范围为(﹣∞,﹣)∪(,+∞);(Ⅱ)由M、N、Q在直线l上,可设M、N坐标分别为(x1,kx1),(x2,kx2),∴|OM|2=(1+k2)x12,|ON|2=(1+k2)x22,|OQ|2=m2+n2=(1+k2)m2,代入=+得:=+,即=+=,由(*)得到x1+x2=,x1x2=,代入得:=,即m2=,∵点Q在直线y=kx上,∴n=km,即k=,代入m2=,化简得5n2﹣3m2=36,由m2=及k2>3,得到0<m2<3,即m∈(﹣,0)∪(0,),根据题意得点Q在圆内,即n>0,∴n==,则n与m的函数关系式为n=(m∈(﹣,0)∪(0,)).【点评】此题考查了直线与圆的位置关系,涉及的知识有:根的判别式,根与系数的关系,两点间的距离公式,以及函数与方程的综合运用,本题计算量较大,是一道综合性较强的中档题.21.(14分)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【分析】(I)根据分段函数中两段解析式,结合二次函数及对数函数的性质,即可得出函数f(x)的单调区间;(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),再利用f(x)的图象在点A,B处的切线互相垂直时,斜率之积等于﹣1,得出(2x1+2)(2x2+2)=﹣1,最后利用基本不等式即可证得x2﹣x1≥1;(III)先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出a=lnx2+()2﹣1,最后利用导数研究它的单调性和最值,即可得出a的取值范围.【解答】解:(I)函数f(x)的单调减区间(﹣∞,﹣1),函数f(x)的单调增区间[﹣1,0),(0,+∞);(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=﹣1,当x<0时,(2x1+2)(2x2+2)=﹣1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,∴x2﹣x1=[﹣(2x1+2)+(2x2+2)]≥=1,∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2﹣x1≥1;(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y﹣(x+2x1+a)=(2x1+2)(x﹣x1);当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y﹣lnx2=(x﹣x2);两直线重合的充要条件是,由①及x1<0<x2得0<<2,由①②得a=lnx2+()2﹣1=﹣ln+()2﹣1,令t=,则0<t<2,且a=t2﹣t﹣lnt,设h(t)=t2﹣t﹣lnt,(0<t<2)则h′(t)=t﹣1﹣=,∴h(t)在(0,2)为减函数,则h(t)>h(2)=﹣ln2﹣1,∴a>﹣ln2﹣1,∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(﹣ln2﹣1,+∞).【点评】本题以函数为载体,考查分段函数的解析式,考查函数的单调性,考查直线的位置关系的处理,注意利用导数求函数的最值.。
2013四川德阳初中毕业学业考试数学试题(word版,含答案)

德阳市2013年初中毕业生学业考试与高中阶段学校招生考试数学试卷说明:1.本试卷分第I卷和第B卷.第I卷为选择题,第B卷为非选择题.全春共5页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回,2.本试卷满分120分,答题时间为120分钟.第I卷(选择,共36分)一、选择题(本大共12个小,每小3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1一5的绝对值是A. 5B. 15C. -15D. -52.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为A: 0. 000124B.0.0124 C.一0.00124 D、0.001243、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是4.下列计算正确的是5.如图.圆O的直径CD过弦EF的中点G, ∠DCF=20°.,则∠EOD等于A. 10°B. 20°C. 40°D. 80°6.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部c的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为A. 40D. 1607,某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款清况如下(单位:元):10, 8,12, 15,ro,12,11,9,13,10,则这组数据的A,众数是10.5 B.方差是3.8 C.极差是8D,中位数是108.适合不等式组的全部整数解的和是A.一1 B、0 C.1 D.29.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是A. 5. 5 B、5 C.4.5 D.410.如图.在ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BD=CEF的面积是A、B C、D、11.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问中,下列说法:①这6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200,其中说法正确的有A: 4个 B. 3个 C. 2个D: 1个12.如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆0半径为52,tan∠ABC=34,则CQ的最大值是A、5B、154C、253D、203德阳市2013年初中毕业生学业考试与高中阶段学校招生考试第II 卷(非选择,共84分)二、填空题(每小3分,共18分,将答案填在答卡对应的号后的横线上)13.从1-9这9个自然数中,任取一个,是3的倍数的概率是___14.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是___ 15.已知关于s 的方程22x m x +-=3的解是正数,则m 的取值范围是____16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的 半径是____17.2210b b -+=,则221||a b a +-=_____ 18.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0; ②b <a +c; ③4a +2b+c>0④2c <3b ;⑤a +b <m (am +b)(m ≠1的实数)其中正确结论的序号有______三、解答题(共66分解答应写出文字说明、证明过程或(推演步骤)19.(7分)计算:一12013+(12)一2一|33tan60°20,(10分)为了了解学生对体育活动的喜爱情况,某校对参加足球、篮球、乒乓球、 羽毛球这四个课外活动小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两 幅不完整的统计图,请根据图中提供的信息,解答下面问(l )此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中的篮球部分的圆心角的度数。
四川省德阳市高三第一次诊断考试 数学(文)试题

四川省德阳市2015届高三第一次诊断考试数学(文)试题说明1.本试卷分第1卷和第Ⅱ卷,2.本试眷满分150分,120钟完卷。
第I卷(选择题共50分一、选择题本题共10个小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符台题目要求的1.如果复数为虚数单位,b为实数)的实部和虚部互为相反散,那么b=2.下列命题中,真命题是3.如图,若N=5时,则输出的数等于4.在等差数列的值为A.20 B.22 C.24 D.285.要得到函数的图象,可以将函数的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位6.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为7.在则面积为8.设的取值范围为第II卷二、填空题:本大题共5小题,每小题5分,共25分。
11.计算12.已知抛物线的焦点是双曲线的右焦点F,且双曲线的右顶点A到点F的距离为1,则p –m = 。
13.已知实数的最大值为。
14.已知则cosC= 。
15.已知上的奇函数,则下列命题中正确的是(填出所有正确命题的序号)三、解答题:本大题共6个小题,共75分。
16.已知向量且(1)求数列的通项公式;(2)若数列17.已知函数的直线的斜率记为(1)求的解棉式及其单增区间。
(2)若的值。
20.已知数列为常数成等差数列。
(1)求P的值及数列的通项公式;(2)设数列的最大项。
21.已知函数(1)求曲线处的切线方程;(2)求函数的极值。
(3)对恒成立,求实数b的取值范围;。
2013年全国大纲高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2010年德阳市高中2013级第一学期期末考试(数学)
2010年德阳市高中2013级第一学期期末考试满分100分,120分钟完卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集U R =,若集合{|37},{|210}A x x B x x =≤<=<<,则()R A B =.{|210}.{|27}.{|37}.{|210}A x x x B x x x C x x x D x x ≤≥≤≥<≥<<或或或2、cos600的值是11 (22)A B C D -- 3、函数2()lg(34)f x x =+的定义域是 4414141.(,).(,).(,].(,)(,)3323232A B C D -+∞---∞-+∞4、下列函数中,定义域和值域不同的是 111232....A y x B y x C y x D y x -==== 5、函数2()2(1)2f x x a x =-+--在(3,)+∞上是减函数,则实数a 的范围是.3.3.4.4A a B a C a D a <≥<≤6、函数log (3)1(0,1)a y x a a =+->≠且的图象经过的定点坐标是.(2,0).(2,1).(2,1).(3,1)A B C D ------7、设50.350.3,log 0.3,5a b c ===,则....A a b c B c a b C b c a D a c b>>>>>>>>8、(3,)p y 为α终边上一点,3cos 5α=,则tan α= 3434 (4343)A B C D -±± 9、若cos 0,sin 20θθ<>且,则θ的终边所在象限是....A B C D 第一象限第二象限第三象限第四象限10、已知函数sin()(0,0,||)2y A x B A πωϕωϕ=++>><的一部分图象如图所示,那么..16.4.4A B C A D B πϕϕ====11、函数()ln 12f x x x =-+的零点一定位于区间111.(1,2).(2,3).(,1).(,)242A B C D 12、函数()sin(2)3f x x π=+的图象向右平移3π个单位,再将图象上各点的横坐标压缩为原来的12,那么所得图象的函数表达式为 .sin .sin(4).sin().sin(4)33A y x B y x C y x D y x πππ==-=-=-二、填空题(本大题共4小题,每小题3分,共12分)13、某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的有______________________人14 、已知函数2log 0()30x x x f x x >⎧=⎨≤⎩,则1[()]8f f 的值为________________ 15、已知扇形的圆心角为3π,弧长为π,那么扇形的面积为_________________ 16、关于函数212log (412)y x x =+-有以下4个结论: ①定义域为(,2)(6,)-∞-+∞ ②递增区间为(,2)-∞-③是非奇非偶函数 ④值域是(,)-∞+∞则正确的结论个数是__________________三、解答题(本大题共6小题,共52分,解答应写出文字说明及演算步骤)17、(本小题满分8分)已知集合1200.256337{| 1.5()86A x x -=≤⨯-+- 集合2{|lg 5lg 2lg50}B x x =>+⋅,求A B 18、(本小题满分7分) 已知函数()(0)af x x a x =+≠(1) 求函数的定义域,并判断函数的奇偶性(2) 若函数过点(2,4),试确定a 的值,并证明该函数在区间(0,2)上是减函数。
四川省绵阳市2013届高三数学第一次诊断性考试试题 文(含解析)新人教A版
2013年四川省绵阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•绵阳一模)设集合A={2,3,4},B={0,1,2},则A∩B等于()A.{0} B.{0,1,2,3,4} C.{2} D.∅考点:交集及其运算.专题:阅读型.分析:集合A与集合B都是含有三个元素的集合,且有一个公共元素2,所以A∩B可求.解答:解:因为集合A={2,3,4},B={0,1,2},所以A∩B={2}.故选C.点评:本题考查了交集及其运算,两个集合的交集是有两个集合的公共元素组成的集合,是基础题.2.(5分)(2013•绵阳一模)命题P:“∀x∈R,cosx≥1”,则¬p是()A.∃x∈R,cos≥1B.∀x∈R,cos<1 C.∃x∈R,cosx<1 D.∀x∈R,cosx>1 考点:特称命题;命题的否定.专题:计算题.分析:利用全称命题:∀x∈M,p(x);的否定是特称命题∃x∈M,p(x)直接得到结果.解答:解:因为全称命题:∀x∈M,p(x);的否定是特称命题∃x∈M,p(x).所以命题P:“∀x∈R,cosx≥1”,则¬p是∃x∈R,cosx<1.故选C.点评:本题考查命题的否定,全称命题:∀x∈M,p(x);与特称命题∃x∈M,p(x)互为命题的否定.3.(5分)(2013•绵阳一模)已知数列{a n}为等差数列,且a6+a8=,则tan(a5+a9)的值为()A.B.﹣C.±D.﹣考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的性质可得,a5+a9=a6+a8=,然后求解正切函数值即可解答:解:由等差数列的性质可得,a5+a9=a6+a8=,∴tan(a5+a9)=tan=故选B点评:本题主要考查了等差数列的性质及特殊角的正切函数值的求解,属于基础试题4.(5分)(2009•湖南)如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则()A.++=0 B.﹣+=0 C.+﹣=0 D.﹣﹣=0考点:向量加减混合运算及其几何意义.分析:模相等、方向相同的向量为相等向量,得出图中的相等向量,再由向量加法法则得选项.解答:解:由图可知=,==在△DBE中,++=0,即++=0.故选项为A.点评:考查向量相等的定义及向量加法的三角形法则.5.(5分)(2013•绵阳一模)己知f(x)=xsinx,则f′(π)=()A.O B.﹣1 C.πD.﹣π考点:导数的乘法与除法法则.专题:导数的概念及应用.分析:先对函数f(x)求导,进而可求出f′(π)的值.解答:解:∵f′(x)=sinx+xcosx,∴f′(π)=sinπ+πcosπ=﹣π.故选D.点评:本题考查导数的值,正确求导是解决问题的关键.6.(5分)(2013•绵阳一模)函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2)C.(0,1)D.(2,3)考点:函数零点的判定定理.专题:计算题.分析:将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.解答:解:因为f(1)=e﹣3<0,f(2)=e2﹣e﹣2>0,所以零点在区间(1,2)上,故选:B.点评:本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.7.(5分)(2013•绵阳一模)设,则()A.c<b<a B.c<a<b C.a<b<c D.b<a<c考点:根式与分数指数幂的互化及其化简运算.专题:计算题.分析:利用幂函数的性质比较两个正数a,b的大小,然后推出a,b,c的大小即可.解答:解:因为y=是增函数,所以所以c<a<b故选B点评:本题考查根式与分数指数幂的互化及其化简运算,考查计算推理能力,是基础题.8.(5分)(2013•绵阳一模)已知函数f(x)=Asin(ωx+φ)(A>0,w>0,|φ|<),其导数f′(x)的部分图象如下图所示,则函数f(x)的解析式为:()A .f (x )=sin (2x+) B .f (x )=2in (2x+) C .f (x )=sin (2x ﹣) D .f (x )=2in (2x ﹣)考点: 由y=Asin (ωx+φ)的部分图象确定其解析式. 专题: 计算题. 分析: 通过导函数的图象求出Aω=2,T ,利用周期公式求出ω,通过函数图象经过的特殊点,求出φ,得到函数的解析式. 解答:解:由函数的图象可得Aω=2,T=4×=π,所以ω=2,A=1, 由导函数的图象,可知函数的图象经过(﹣),所以0=sin (﹣φ),所以φ=, 所以函数的解析式为:f (x )=sin (2x+).故选A . 点评: 本题是中档题,考查三角函数以及导函数的图象的应用,考查学生的视图能力、分析问题解决问题的能力,计算能力. 9.(5分)(2013•绵阳一模)已知定义在R 上的奇函数f (x )是(﹣∞,0]上的增函数,且f (1)=2,f (﹣2)=﹣4,设P={x|f (x+t )﹣4<0},Q={x|f (x )<﹣2}.若“x∈P”是“x∈Q”的充分不必要条件,则实数t 的取值范围是( )( ) A . t ≤﹣1 B . t >﹣1 C . t ≥3 D . t >3 考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题. 分析: 根据定义在R 上的奇函数f (x )是(﹣∞,0]上的增函数,且f (1)=2,f (﹣2)=﹣4,可以画出f (x )的图象,然后再求出P 和Q 集合,根据“x∈P”是“x∈Q”的充分不必要条件可得P ⊆Q ,从而求出t 的范围;解答:解:∵定义在R上的奇函数f(x)是(﹣∞,0]上的增函数,且f(1)=2,f(﹣2)=﹣4,可得f(﹣1)=﹣2,f(2)=4,画出f(x)的图象:∵P={x|f(x+t)﹣4<0},Q={x|f(x)<﹣2},解得P={x|x<2﹣t},Q={x|x<﹣1},∵“x∈P”是“x∈Q”的充分不必要条件,∴P⊆Q,∴2﹣t<﹣1,解得t>3,当t=3,可得P=Q,不满足“x∈P”是“x∈Q”的充分不必要条件,∴t>3,故选D;点评:此题主要考查奇函数的定义及其应用,考查的知识点比较全面,利用了数形结合的方法,是一道中档题;10.(5分)(2009•四川)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元考点:简单线性规划的应用.专题:应用题;压轴题.分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.解答:解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故选D.点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.11.(5分)(2013•绵阳一模)已知偶函数f(x)在区间[0,+∞)上满足f′(x)>0,则满足f(x2﹣2x)<f(x)的X的取值范围是()A.(1,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,3)D.(﹣3,1)考点:利用导数研究函数的单调性;奇偶性与单调性的综合.专题:函数的性质及应用;导数的概念及应用.分析:根据导数符号可判断函数的单调性,再利用条件偶函数可把f(x2﹣2x)<f(x)转化为x2﹣2x与x间不等式,从而得到x的取值范围.解答:解:因为函数f(x)为偶函数,所以f(x2﹣2x)<f(x)等价于f(|x2﹣2x|)<f (|x|).又函数f(x)在区间[0,+∞)上满足f′(x)>0,所以函数f(x)在区间[0,+∞)上单调递增.所以|x2﹣2x|<|x|,两边平方并化简得x2(x﹣1)(x﹣3)<0,解得1<x<3.故选A.点评:本题为函数奇偶性、单调性及导数的综合题,考查了相关的基础知识及分析问题、解决问题的能力.解决本题的关键是去掉符号“f”,转化为自变量间的不等关系.12.(5分)(2013•绵阳一模)已知定义在R上的函数f(x)满足f(1)=1,f(1﹣x)=1﹣f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f()等于()A.B.C.D.考点:函数的值.专题:计算题.分析:先求出f(),然后根据条件求出f,,最后根据函数的单调性,以及两边夹的性质可求出所求.解答:解:∵f(1)=1,f(1﹣x)=1﹣f(x)令x=得f()+f()=1即f()=∵2f(x)=f(4x)∴f(x)=f(4x)在f(x)=f(4x)中,令x=可得f()==在f(1﹣x)+f(x)=1中,令x=可得f()+f()=1即f()=同理可求f()=,f()=1﹣f()==,f()=1﹣f()==,f()=1﹣f()===,f()=1﹣=∵当0≤x1≤x2≤1时,f(x1)≤f(x2),∴==∴f=故选B点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2013•绵阳一模)已知∥,则x= ﹣4 .考点:平行向量与共线向量.分析:用两向量共线坐标形式的充要条件公式:坐标交叉相乘相等.解答:解:∵,∴2×(﹣6)=3x∴x=﹣4故答案为﹣4点评:考查两向量共线坐标形式的充要条件公式.14.(4分)(2013•绵阳一模)已知偶函数f(x)=(n∈Z)在(0,+∞)上是增函数,则n= 2 .考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:结合幂函数在(0,+∞)上的单调性与指数的关系,我们可以求出n的取值范围为1,2,3,结合幂函数的奇偶性讨论后,可得答案.解答:解:若幂函数f(x)=(n∈Z)在(0,+∞)上是增函数,则>0,即4n﹣n2>0,又∵n∈Z∴n∈{1,2,3}又∵n=1,或n=3时=,此时幂函数f(x)为非奇非偶函数n=2时=2,幂函数f(x)=x2为偶函数满足要求故答案为:2点评:本题考查的知识点是幂函数的奇偶性和单调性及幂函数解析式的求法,幂函数是新课标的新增内容,本题是求幂函数解析式的经典例题,从单调性入手进行解答是解答本题的关键.15.(4分)(2013•绵阳一模)已知{a n}是递增数列,且对于任意的n∈N*,a n=n2+λn恒成立,则实数λ的取值范围是(﹣3,+∞).考点:数列与函数的综合.专计算题.题:分析:由对于任意的n∈N*,a n=n2+λn恒成立,知a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ,由{a n}是递增数列,知a n+1﹣a n>a2﹣a1=3+λ>0,由此能求出实数λ的取值范围.解答:解:∵对于任意的n∈N*,a n=n2+λn恒成立,a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ,∵{a n}是递增数列,∴a n+1﹣a n>0,又a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ∴当n=1时,a n+1﹣a n最小,∴a n+1﹣a n>a2﹣a1=3+λ>0,∴λ>﹣3.故答案为:(﹣3,+∞).点评:本题考查实数的取值范围的求法,具体涉及到数列的性质,解题时要认真审题,注意函数思想的灵活运用,是基础题.16.(4分)(2013•绵阳一模)设所有可表示为两整数的平方差的整数组成集合M.给出下列命题:①所有奇数都属于M.②若偶数2k属于M,则k∈M.③若a∈M,b∈M,则ab∈M.④把所有不属于M的正整数从小到大依次排成一个数列,则它的前n项和S n∈M.其中正确命题的序号是①③.(写出所有正确命题的序号)考点:命题的真假判断与应用.分析:根据已知中集合M的定义,根据集合元素与集合关系的判断,我们分别推证①③正确,举反例推翻②④可得答案.解答:解:∵所有可表示为两整数的平方差的整数组成集合M.设奇数2k+1 (k∈Z)则:2k+1=(k+1)2﹣k2,故①所有奇数都属于M正确;由12=42﹣22得,12∈M,但6∉M,故②若偶数2k属于M,则k∈M错误;∵a∈M,b∈M,设a=m2﹣n2,b=p2﹣q2,则ab=(m2﹣n2)(p2﹣q2)=(mp)2+(nq)2﹣(mq)2﹣(pn)2=(mp+nq)2﹣(mq+np)2∈M,故③正确;当n=1时,S n即为第一个不属于M的正整数,此时S n∉M,故④错误;故答案为:①③点评:本题考查的知识点是命题的真假判断与应用,其中熟练掌握集合M的元素的特征是解答的关键.三、解答题:本大题共6小题,共74分.解答应写出文说明、证明过程或演算步骤. 17.(12分)(2013•绵阳一模)设向量=(cos2x,1),=(1,sin2x),x∈R,函数f (x)=•.(I )求函数f(x)的最小正周期及对称轴方程;(II)当x∈[0,]时,求函数f(x)的值域.考点:三角函数中的恒等变换应用;数量积的坐标表达式;复合三角函数的单调性.专题:计算题;三角函数的求值.分析:(Ⅰ)通过向量的数量积,利用两角和的正弦函数,化简函数为一个角的一个三角函数的形式,即可求出函数f(x)的最小正周期及对称轴方程.(Ⅱ)通过x的范围求出2x+的范围,利用正弦函数的值域,求解函数的值域即可.解答:解:(Ⅰ)f (x)=•=(cos2x,1)•(1,sin2x)=sin2x+cos2x=2 sin(2x+),…(6分)∴最小正周期T=,令2x+=k,k∈Z,解得x=,k∈Z,即f (x)的对称轴方程为x=,k∈Z.…(8分)(Ⅱ)当x∈[0,]时,即0≤x≤,可得≤2x+≤,∴当2x+=,即x=时,f (x)取得最大值f ()=2;当2x+=,即x=时,f (x)取得最小值f ()=﹣1.即f (x)的值域为[﹣1,2].…(12分)点评:本题以向量为依托,考查三角函数的两角和的正弦函数的应用,函数的周期,值域的求法,考查计算能力.18.(12分)(2013•绵阳一模)已知数列{a n}是等比数列且a3=,a6=2.(I)求数列{a n}的通项公式;(II)若数列{a n}满足b n=3log2a n,且数列{b n}的前“项和为T n,问当n为何值时,T n取最小值,并求出该最小值.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(I)由已知中数列{a n}是等比数列且a3=,a6=2.求出数列的公比,易得数列的通项(II)根据(I)及b n=3log2a n,可得数列{b n}的通项公式,进而结合二次函数的性质,及n∈N+,可求出当n为何值时,T n取最小值.解答:解:(Ⅰ)设公比为q,由已知a6=2,a3=,得a1q5=2,a1q2=,两式相除得q3=8,解得q=2,a1=,∴a n=×2n﹣1=2n﹣5(Ⅱ)b n=3log2a n=3log2(2n﹣5)=3n﹣15,∴T n=,又∵n∈N+当n=4或5时,T n取得最小值,最小值为﹣30点评:本题考查的知识点是数列求和,等比数列的通项公式,其中分别求出数列{a n}和{b n}的通项公式是解答的关键.19.(12分)(2013•绵阳一模)在△ABC中,角A,B,C的对边分别是a,b,c若asinA=(a ﹣b)sinB+csinC.(I )求角C的值;(II)若△ABC的面积为,求a,b的值.考点:解三角形.专题:计算题;解三角形.分析:(Ⅰ)把已知结合正弦定理整理可得a2+b2﹣c2=ab,然后利用余弦定理CosC=可求cosC,结合C 的范围可求C(Ⅱ)由三角形的面积公式可得,结合c=2,及由(Ⅰ)a2+b2﹣4=ab,可求a+b,联立方程可求a,b解答:解:(Ⅰ)∵asinA=(a﹣b)sinB+csinC,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得CosC==,结合0<C<π,得C=.…(6分)(Ⅱ)∵△ABC的面积为,即,化简得ab=4,①又c=2,由(Ⅰ)知,a2+b2﹣4=ab,∴(a+b)2=3ab+4=16,得a+b=4,②由①②得a=b=2.…(12分)点评:本题主要考查了三角形的正弦定理、余弦定理及三角形的面积公式的综合应用,属于知识的综合应用20.(12分)(2013•绵阳一模)己知二次函数y=f(x)的图象过点(1,﹣4),且不等式f (x)<0的解集是(O,5).(I )求函数f(x)的解析式;(II)设g(x)=x3﹣(4k﹣10)x+5,若函数h(x)=2f(x)+g(x)在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,求y=h(x)在[﹣3,1]上的最大值和最小值..考点:二次函数的性质;二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)根据函数零点,方程根与不等式解集端点之间的关系,结合二次函数y=f(x)的图象过点(1,﹣4),可求出函数f(x)的解析式;(II)由(I)可求出函数h(x)的解析式(含参数k),进而由函数极大值点为﹣2,求出k值,结合导数法求最值的步骤,可得答案.解答:解:(Ⅰ)由已知y=f (x)是二次函数,且f (x)<0的解集是(0,5),可得f (x)=0的两根为0,5,于是设二次函数f (x)=ax(x﹣5),代入点(1,﹣4),得﹣4=a×1×(1﹣5),解得a=1,∴f (x)=x(x﹣5).…(4分)(Ⅱ)h(x)=2f (x)+g(x)=2x(x﹣5)+x3﹣(4k﹣10)x+5=x3+2x2﹣4kx+5,于是h′(x)=3x2+4x﹣4k,∵h(x)在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,∴x=﹣2是h(x)的极大值点,∴h′(2)=3×(﹣2)2+4×(﹣2)﹣4k=0,解得k=1.…(6分)∴h(x)=x3+2x2﹣4x+5,进而得h′(x)=3x2+4x﹣4.令h′(x)=3x2+4x﹣4=0,得x=﹣2,或x=.由下表:x (﹣3,﹣2)﹣2(﹣2,)(,1)h′(x) + 0 ﹣0 +h(x)↗极大↘极小↗可知:h(﹣2)=(﹣2)3+2×(﹣2)2﹣4×(﹣2)+5=13,h(1)=13+2×12﹣4×1+5=4,h(﹣3)=(﹣3)3+2×(﹣3)2﹣4×(﹣3)+5=8,h()=()3+2×()2﹣4×+5=,∴h(x)的最大值为13,最小值为.…(12分)点评:本题考查的知识点是二次函数的性质,函数零点,方程根与不等式解集端点的关系,导数法求函数的极值与最值,其中求出函数h(x)的解析式是解答的关键.21.(12分)(2013•绵阳一模)设数列{a n}的前n项和为S n,且(t﹣1)S n=2ta n﹣t﹣1(其中t为常数,t>0,且t≠1).(I)求证:数列{a n}为等比数列;(II)若数列{a n}的公比q=f(t),数列{b n}满足b1=a1,bn+1=f(b n),求数列{}的通项公式;(III)设t=,对(II)中的数列{a n},在数列{a n}的任意相邻两项a k与a k+1之间插入k个(k∈N*)后,得到一个新的数列:a1,,a2,,,a3,,,,a4…,记此数列为{c n}.求数列{c n}的前50项之和.考点:数列递推式;等比关系的确定;数列的求和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用数列递推式,再写一式,两式相减,即可证得数列{a n}是以1为首项,为公比的等比数列;(Ⅱ)确定数列{}是以1为首项,1为公差的等差数列,可求数列{}的通项公式;(III)确定数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…,再分组求和,即可求得数列{c n}的前50项之和.解答:(Ⅰ)证明:由题设知(t﹣1)S1=2ta1﹣t﹣1,解得a1=1,由(t﹣1)S n=2ta n﹣t﹣1,得(t﹣1)S n+1=2ta n+1﹣t﹣1,两式相减得(t﹣1)a n+1=2ta n+1﹣2ta n,∴(常数).∴数列{a n}是以1为首项,为公比的等比数列.…(4分)(Ⅱ)解:∵q=f (t)=,b1=a1=1,b n+1= f (b n)=,∴=+1,∴数列{}是以1为首项,1为公差的等差数列,∴.…(8分)(III)解:当t=时,由(I)知a n=,于是数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…设数列{a n}的第k项是数列{c n}的第m k项,即a k=,当k≥2时,m k=k+[1+2+3+…+(k﹣1)]=,∴m9=﹣45.设S n表示数列{c n}的前n项和,则S45=[1+++…+]+[﹣1+(﹣1)2×2×2+(﹣1)3×3×3+…+(﹣1)8×8×8].∵1+++…+==2﹣,﹣1+(﹣1)2×2×2+(﹣1)3×3×3+…+(﹣1)8×8×8=﹣1+22﹣32+42﹣52+62﹣72+82 =(2+1)(2﹣1)+(4+3)(4﹣3)+(6+5)(6﹣5)+(8+7)(8﹣7)=3+7+11+15=36.∴S45=2﹣+36=38﹣.∴S50=S45+(c46+c47+c48+c49+c50)=38﹣+5×(﹣1)9×9=﹣7.即数列{c n}的前50项之和为﹣7.…(12分)点评:本题考查等比数列与等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.22.(14分)(2013•绵阳一模)已知函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣.(I)求实数a的值及函数f(x)的单调区间;(II)设g(x)=kx+1,对∀x∈(0,+∞),f(x)≤g(x)恒成立,求实数k的取值范围;(III)设b n=,证明:b1+b2+…+b n<1+ln2(n∈N*,n≥2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求导数,利用函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣,可确定a的值,利用导数的正负,可得函数f(x)的单调区间;(Ⅱ)∀x∈(0,+∞),f (x)≤g(x),即lnx﹣(k+1)x≤0恒成立,构造函数h(x)=lnx﹣(k+1)x,利用h(x)max≤0,即可求得k的取值范围;(Ⅲ)先证明当n≥2时,有ln(n+1)<n,再利用放缩法,裂项法,即可证得结论.解答:(Ⅰ)解:由已知:(x>0),∵函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣.∴,∴a=1.∴,当x∈(0,1)时,f′(x)>0,f (x)为增函数,当x∈(1,+∞)时,f′(x)<0,f (x)为减函数,∴f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).…(5分)(Ⅱ)解:∀x∈(0,+∞),f (x)≤g(x),即lnx﹣(k+1)x≤0恒成立,设h(x)=lnx﹣(k+1)x,有.①当k+1≤0,即k≤﹣1时,h′(x)>0,此时h(1)=ln1﹣(k+1)≥0与h(x)≤0矛盾.②当k+1>0,即k>﹣1时,令h′(x)=0,解得,∴,h′(x)>0,h(x)为增函数,,h′(x)<0,h(x)为减函数,∴h(x)max=h()=ln﹣1≤0,即ln(k+1)≥﹣1,解得k≥.综合k>﹣1,知k≥.∴综上所述,k的取值范围为[,+∞).…(10分)(Ⅲ)证明:由(Ⅰ)知f (x)在(0,1)上是增函数,在(1,+∞)上是减函数,∴f (x)≤f (1)=0,∴lnx≤x﹣1.当n=1时,b1=ln(1+1)=ln2,当n≥2时,有ln(n+1)<n,∵b n=<=<=,∴b1+b2+…+b n<b1+()+…+()=ln2+(1﹣)<1+ln2.…(14分)点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.。
2013年高考数学全国卷1(完整试题+答案+解析)
输出 a
1
1
第 14 题图
如图。F,H 是上下底的中心,O 是 FH 中点。则:
i i1 结束
AB=2 AE=√3, AF=2√3/3 OF=1/2
第13题图
OA=√﹙AF ²+O F ²﹙=√﹙1/ /12﹙
球的表面积=4π﹙1/ /12﹙=19 π/3≈1/ .89 675﹙面积单位﹙
向左转|向右转
∴ f (x)
cos(
2 3
sin(x
6)
1 2
2x) cos 2( 3
1,即sin(x ) 1 62
x) 2 cos2 ( x) 1 3
4 分 …………………………………………
2 sin 2 (x ) 1 1
6
2
6 分 …………………………………………
(Ⅱ)已知 2a cosC c 2b
由正弦定理得:
162
12
为双曲线上不同于 A1, A2 的任意一点,直线 A1P, A2 P 与直线 x a 分别交于两点 M , N ,若
FM FN 0 ,则 a 的值为(B)
16 A. 9
9 B. 5
25 C. 9
双曲线 x^2/9-y^2/16=1, 右焦点 F(5.0),A1(-3,0),A2(3,0) 设 P(x,y) M (a,m),N(a,n) ∵P,A1,M 三点共线, ∴m/(a+3)=y/(x+3) ∴m=y(a+3)/(x+3) ∵P,A2,N 三点共线, ∴n/(a-3)=y/(x-3) ∴n=y(a-3)/(x-3) ∵x^2/9-y^2/16=1 ∴(x^2-9)/9=y^2/16 ∴y^2/(x^2-9)=16/9 FM 向量=(a-5,y(a+3)/(x+3)) FN 向量=(a-5,y(a-3)/(x-3)) FM 向量*FN 向量 =(a-5)^2+y^2(a^2-9)/(x^2-9) =(a-5)^2+16(a^2-9)/9 ∵FM 向量*FN 向量=0 ∴(a-5)^2+16(a^2-9)/9=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德阳市高中2013级“一诊”考试
数学试卷(文科)
说明:
1. 本试卷分第I卷和第II卷,第I卷1-2页,第II卷-4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,将答题卡交回.-
2. 本试卷满分150分,120分钟完卷.
第I卷(选择题共60分)
一、选择题(本大题共12个小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合題目要求的.)
1. 已知集合,那么=
A{0,-1} B. {1,-1}. C. {1} D.
{-1}
2. 已知-是纯虚数,是实数,那么Z =
A.2i
B. i
C. -i
D. - 2i
3. 各项均为正数的等比数列中,成等差数列,那么=
A. B. C. D.
4. 在中,“”是“厶ABC为钝角三角形”的______条件
A.充分不必要
B.必要不充分
C.充分必要 .
D.既不充分也不必要
5. 已知中,AB = 3,AC = 4,,AD丄 BC于 D,E在ΔABC内任意移动,则E位于ΔACD内的概率为
A. B.
C. D.
6. 一个如图所示的流程图,若要使输人的-值与输出的y值相等,则
这样的$值的个数是
A.4
B. 3
C. 2
D. 1
7. 若函数在一个周期内的图象如图,M、N分别是这段图象的最高点和最低
点,且,那么=
A. B.
C. D.
8. 下列命题中是假命题的是
A. ,函数都不是偶函数
B. 有零点
C. 若的图象关于某点对称,那么使得是奇函数
D. ,使是幂函数,且在上递减
9. 函数的图象是如图所示的折线段0AB,其中
,那么函数的单调增区间为
A. B.
C. D.
10. 已知函敫,若数列满足,且是递减数列,则实数a的取值范围是
A. B. C. D.
11.设集合
,若动点,则的取值范围是
A. B. C. D.
12.已知是定义在R上的函数,且满足.则关于-的不等式
的解集为
A. B. C. D.
第II卷(非选择题共90分)
二、填空题(共4小题,每小题4分,共16分.将答案填在题中横线上)
13.为了解某校高三学生到学校运动场参加体育锻炼的
情况.现采用简单随机抽样的方法,从高三的 1500名同学
中抽取50名同学,调查他们在一学期内到学校运动场参
加体育锻炼的次数,结果用茎叶图表示 (如图).据此可以
估计本学期该校1500名高三同学中,到学校运动场参加
体育锻炼次数在[23,43)内的人数为_________
14..已知且,则实数的最小值是______
15. 投掷两颗骰子,得到其向上的点数分别为m,n设a= (m t n),则满足的概率为_______
16. 已知.是过原点且与图象恰有三个交点的直线,这三个交点的横坐标分别为0,,那么下列结论中正确的有______.(填正确结论的序号)
的解集为;
在上单减;
f
④当时,取得最小值.
三、解答题(本大题共6个小题,满分74分)解答应写出文字说明及演算步骤.
17. (本小题满分12分)•
已知函数为偶函数,且函数图象上相邻两对称轴间的距离为
(1) 求的解析式及单减区间;
(2) 的三内角为A、B、C,若,求.
18. (本小题满分12分)
某校一个甲类班I名学生在2012年某次数学测试中,成绩全部介于90分与140分之间,将测试结果按如下方式分成五组,第一组[90,100);第二组[100,110)…第五组[130,140),下表是按上述分组方法得到的频率分布表:
(1) 求x及分布表中m,n、t的值;
(2) 设a,b是从第一组或笫五组中任意抽取的两名学生的数学卿试成绩,列举出所有可能情况并求事件“”的概率.
19. (本小题满分12分)
已知等差数列的前n项和为,且.
(1) 求数列的通项公式;
(2) 设,求数列的前n项和
20. (本小题满分12分)
对于两个定义域相同的函数,若存在实数m,n使得,则称函数是“函数的一个线性表达”.
(1) 若偶函数是“函数的一个线性表达”,求
;
(2) 若是“函
数.的—个线性表达”,求a +2b的取值范围.
21. (本小题满分12分)
已知数列满足:
⑴求;- .
(2) 设,求证:数列是等差数列,并求的通项公式;
(3) 设,若不等式恒成立时,求实数a
的取值范围.
22. (本小题满分14分)
已知函数
(1) 当a> 1时,讨论f(x)在区间(0,1)上的单调性;
(2) 当a>0时,求f(x)的极值;.
(3) 当时,曲线上总存在不同两点,使得曲线
在P、Q两点处的切线互相平行,证明:。