2020年中考数学复习核心秘钥之动态问题全覆盖 专题08 动点类题目旋转问题探究(原卷版)
中考数学专题复习之动态问题

中考数学专题复习之动态问题1动态问题的类型及例题动态几何题已成为中考试题的一大热点题型。
在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。
解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。
通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。
下面就动点型、动线型、动面型等几何题作一简要分析。
一. 动点型 1. 单动点型例1. 如图1,在矩形ABCD 中,AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E ,F 分别是垂足,求PE+PF 的长。
分析与略解:P 是AD 边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。
当P 点在D (或A )处时,过D 作DG ⊥AC ,垂足为G ,则PE=0,PF=DG , 故PE+PF=DG , 在Rt △ADC 中,13512DC AD AC 2222=+=+= 由面积公式有:1360AC DC AD DG =⋅=, 再有“静”寻求“动”的一般规律,得到PE+PF=DG=1360。
图12. 双动点型例2. (2003年吉林省)如图2,在矩形ABCD 中,AB=10cm ,BC=8cm ,点P 从A 出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 停止。
若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒bcm ,点Q 的速度为每秒dcm 。
图3是点P 出发x 秒后△APD 的面积)cm (S 21与x (秒)的函数关系图象,图4是点Q 出发x 秒后△AQD 的面积)cm (S 22与x (秒)的函数关系图象。
中考数学动点问题复习(2020年整理).pptx

A.
B.
C.
D.
考点二:动态几何型题目 (一)点动问题. 例 2 如图,梯形ABCD 中,AB∥DC,DE⊥AB,CF⊥AB,且 AE=EF=FB=5,DE=12 动点P 从点A 出发,沿折线 AD-DC-CB 以 每秒 1 个单位长的速度运动到点B 停止.设运动时间为t 秒,y=S△EPF,则 y 与 t 的函数图象大致是( )
A.
B.
C.
D.
2
考点三:动点综合题 动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化
的 全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. (一)因动点产生的等腰三角形问题
例 1 如图 1,在 Rt△ABC 中,∠A=90°,AB=6,AC=8,点 D 为边 BC 的中点,DE⊥BC 交边 AC 于点 E,点 P 为射线 AB 上的一动点,点 Q 为边 AC 上的一动点,且∠ PDQ=90°.
(三)面动问题 例 4 如图所示:边长分别为 1 和 2 的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过
大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s 与 t 的大致图象应为( )
A.
B.
C.
D.
对应训练 4.如图所示,半径为 1 的圆和边长为 3 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时 间为t,正方形除去圆部分的面积为S(阴影部分),则 S 与 t 的大致图象为( )
推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲
解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方 法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化 情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本 思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于 某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关 系.
2020年中考数学动态问题-旋转问题探究(含答案)

专题08 动点类题目旋转问题探究题型一:旋转问题中三点共线问题例1.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A、D、M三点在同一直线上时,求AM的长.②当A、D、M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连接D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.题型二:旋转与全等及直角三角形存在性问题例2.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=142.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.图1 图2 图3题型三:旋转问题中线段比值是否变化问题例3.(2019•德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的值;(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果;若无变化,说明理由.图1 图2 图3题型四:旋转问题中落点规律性问题例4.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ、BN,将△AQB绕点A旋转,使点Q旋转后的对应点Q’落在边AD上. 请判断旋转后B的对应点B’是否落在线段BN上,请说明理由.题型五:旋转问题中函数及落点问题例5.(2019•连云港)如图,在平面直角坐标系xOy中,函数y=﹣x+b的图象与函数y=k x(x<0)的图象相交于点A(﹣1,6),并与x轴交于点C.点D是线段AC上一点,△ODC与△OAC的面积比为2:3.(1)k=,b=;(2)求点D的坐标;(3)若将△ODC绕点O逆时针旋转,得到△OD'C',其中点D'落在x轴负半轴上,判断点C'是否落在函数y=kx(x<0)的图象上,并说明理由.题型六:几何图形旋转中的类比探究例6.(2019•自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG之间的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F 和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.图1 图2 图3题型六:几何图形旋转中的计算题目例7.(2019•潍坊)如图1,菱形ABCD的顶点A、D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB’C’D’. B’C’交对角线AC 于点M,C’D’交直线l于点N,连接MN.(1)当MN∥B’D’时,求α的大小.(2)如图2,对角线B’D’交AC于点H,交直线l于点G,延长C’B’交AB于点E,连接EH. 当△HEB’的周长为2时,求菱形ABCD的周长.答案与解析题型一:旋转问题中三点共线问题 例1.(2019•绍兴)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,AD =30,DM =10.(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,求AM 的长.②当A 、D 、M 三点为同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外的点D 1转到其内的点D 2处,连接D 1D 2,如图2,此时∠AD 2C =135°,CD 2=60,求BD 2的长.【分析】(1)①根据点D 及M 的运动轨迹为圆,根据位置关系判断出点A 、D 、M 三点在同一直线上时有两种情况,点D 在A 与M 之间或点M 在A 与D 之间;②由题意知D 、M 均可能为直角顶点,分类讨论求解;(2)由题意知△AD 1D 2是等腰直角三角形,连接CD 1,△ABD 2≌△ACD 1,由∠D 1D 2C =90°,利用勾股定理求得CD 1的值,即为BD 2的值.【答案】见解析. 【解析】解:(1)①点D 在A 与M 之间时,AM =AD +DM =30+10=40. 点M 在A 与D 之间时,AM =AD -DM =30-10=20. ②当∠ADM =90°时,D D M由勾股定理得AM 221010AD DM +=当∠AMD =90°时, 由勾股定理得AM 22202AD DM -=(2)∵摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外的点D 1转到其内的点D 2处,∴AD 1=AD 2,∠D 1AD 2=90°,∴∠AD 1D 2=∠AD 2D 1=45°,D 1D 2=302∵∠AD 2C =135°, ∴∠D 1D 2C =90°,连接D 1C ,如下图所示,∵∠BAD2+∠D2AC=∠CAD1+∠D2AC=90°,∴∠BAD2=∠CAD1∵AB=AC,AD2=AD1,∴△ABD2≌△ACD1∴BD2= CD1在Rt△D1D2C中,由勾股定理得:D1C=22122306 D D D C+=.题型二:旋转与全等及直角三角形存在性问题例2.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=142.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.图1 图2 图3 【分析】(1)如图1中,首先证明CD=BD=AD,再证明四边形ADFC是平行四边形即可解决问题.(2)①作DT⊥BC于点T,FH⊥BC于H.证明DG是△ABF的中位线,想办法求出BF即可解决问题.②分三种情形情形:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.构建方程解决问题即可.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.构建方程解决问题即可.如图3﹣3中,当∠DGE=90°时,构造相似三角形,利用相似三角形的性质构建方程解决问题即可.【解答】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH ⊥BC于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴=,∴=,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12﹣x),OG=BF=(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=180°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG ∥BF ,∴∠AOG =∠ABF =90°, ∴OG ⊥AB ,∵OG 垂直平分线段AB ,∵CA =CB , ∴O ,G ,C 共线,由△DTE ≌△EHF ,可得EH =DT =BT =2,ET =FH =12﹣x ,BF =(12﹣x ),OG =BF =(12﹣x ),CK =EK =x ,GK =7﹣(12﹣x )﹣x ,由△OGD ∽△KEG ,可得=,∴=,解得x =2,,综上所述,满足条件的EC 的值为6±2或18﹣2或2.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题. 题型三:旋转问题中线段比值是否变化问题 例3.(2019•德州)(1)如图1,菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD =60°,请直接写出HD :GC :EB 的值;(2)将图1中的菱形AEGH 绕点A 旋转一定角度,如图2,求HD :GC :EB ;(3)把图2的菱形都换成矩形,如图3,且AD :AB =AH :AE =1:2,此时HD :GC :EB 的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果;若无变化,说明理由.图1 图2 图3 【答案】见解析.【解析】解:(1)HD :GC :EB =13:1; (2)DABGH O如图,连接AC ,BD 交于点O ,连接AG ,由题意知:AD =AB ,AH =AE ,∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,∴△DAH ≌△BAE ,∴DH =BE ,又∠DAB =60°,ABCD 是菱形,∴∠DAC =30°,AC ⊥BD ,BD =2OD ,AC =2OA ,在Rt △AOD 中,OD :OA∴BD :AC=3, 由△ABD 是等边三角形,得:AD =BD ,即AD :AC同理,得AH :AG∴AD :AC =AH :AG ,又∠DAC =∠HAG ,∠DAH +∠HAC =∠CAG +∠HAC ,即∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴DH :GC=3, ∴HD :GC :EB=1: (3)有变化,HD :GC :EB=1: :2.A BC如上图所示,由题意知:∠1+∠HAB =∠2+∠HAB =90°,∴∠1=∠2,由AH :AE =AD :AB =1:2,得:AH :AD =AE :AB ,∴△ADH ∽△ABE ,∴HD :EB =1:2,连接AG ,AC ,由∠2+∠HAC =∠3+∠HAC ,得:∠2=∠3,AG =5AH ,AC =5AD ,∴AD :AC =AH :AG ,∴△ADH ∽△ACG ,∴HD :GC =1:5,∴HD :GC :EB =1: 5:2.题型四:旋转问题中落点规律性问题例4.(2019•台州)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP =FD .(1)求AF AP的值; (2)如图1,连接EC ,在线段EC 上取一点M ,使EM =EB ,连接MF ,求证:MF =PF ;(3)如图2,过点E 作EN ⊥CD 于点N ,在线段EN 上取一点Q ,使AQ =AP ,连接BQ 、BN ,将△AQB 绕点A 旋转,使点Q 旋转后的对应点Q ’落在边AD 上. 请判断旋转后B 的对应点B ’是否落在线段BN 上,请说明理由.【答案】见解析.【解析】解:(1)∵四边形ABCD 是正方形,边长为2,∴CD ∥AB ,∴∠P =∠FCD ,∴AF AP =tan ∠P =tan ∠FCD =DF CD, 设AF =x ,则DF =AP =2-x , ∴222x x x -=-, 解得:x =35-x =35+,∴AF AP51-. (2)∵E 是正方形ABCD 边AB 的中点,AB =2,∴BE =1,在Rt △BCE 中,由勾股定理得:CE 5,由(1)知:PE =P A +AE1-,∴CE =PE ,∴∠P =∠PCE ,又∠P =∠DCF ,∴∠PCE =∠DCF ,过点F 作FH ⊥CE 于H ,如下图所示,D AE在△CFH 和△CFD 中, °==90D FHC CF CF ⎧⎪⎨⎪=⎩∠∠∠FCH=∠FCD∴△CFH ≌△CFD,∴CH =CD =2,FH =FD1=AP ,∴EH =EC -CH2,∴HM =EM -EH =3=AF∴△APF ≌△HFM ,∴PF =FM .(3)在AD 上截取AQ ’=AQ ,在BN 上截取AB ’=AB ,连接AB ’,B ’Q ’,过点B ’作B ’G ⊥AD 于G ,交EN 于K ,如下图所示,D AEN∵tan ∠NBE =2,AB =AB ’=2,∴BB ’=5∴B ’N =BN -BB ’=55, 由△NB ’K ∽△NBE , 得:B ’K =15,KN =25,B ’G =65,DG =25, ∴Q ’G =1355-, 在Rt △B ’GQ ’中,由勾股定理得:B ’Q 2=B ’G 2+ GQ ’2=662655-, 而()26626551--≠, ∴B ’Q ≠BQ ,即B ’不在BN 上.题型五:旋转问题中函数及落点问题例5.(2019•连云港)如图,在平面直角坐标系xOy 中,函数y =﹣x +b 的图象与函数y =kx(x <0)的图象相交于点A (﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3.(1)k = ,b = ;(2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△OD 'C ',其中点D '落在x 轴负半轴上,判断点C '是否落在函数y =k x(x <0)的图象上,并说明理由.【答案】(1)﹣6,5;(2)(3)见解析.【解析】解:(1)将A (﹣1,6)代入y =﹣x +b ,得,6=1+b ,∴b =5,将A (﹣1,6)代入y =k x, 得k =﹣6,故答案为:﹣6,5;(2)如下图所示,过点D 作DM ⊥x 轴,垂足为M ,过点A 作AN ⊥x 轴,垂足为N ,∵△ODC与△OAC的面积比为2:3∴23 DMAN,又∵点A的坐标为(﹣1,6),∴AN=6,∴DM=4,即点D的纵坐标为4,把y=4代入y=﹣x+5中,得x=1,∴D(1,4);(3)由题意可知,OD'=OD=17,如下图所示,过点C'作C'G⊥x轴,垂足为G,∵S△ODC=S△OD'C',∴OC•DM=OD'•C'G,即5×417'G,∴C'G 2017,在Rt△OC'G中,由勾股定理得:OG517∴C'5172017),∵(﹣51717)×201717≠﹣6,∴点C '不在函数y =﹣6x的图象上. 题型六:几何图形旋转中的类比探究例6.(2019•自贡)(1)如图1,E 是正方形ABCD 边AB 上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G .①线段DB 和DG 之间的数量关系是 ;②写出线段BE ,BF 和DB 之间的数量关系.(2)当四边形ABCD 为菱形,∠ADC =60°,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD 、DE ,将∠BDE 绕点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段AB 上时,请探究线段BE 、BF 和BD 之间的数量关系,写出结论并给出证明;②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ,若BE =1,AB =2,直接写出线段GM 的长度.图1 图2 图3【答案】(1)①DB =DG ②2BE BF BD +=(2)见解析.【解析】解:(1)由旋转知:∠GDB =90°,∵四边形ABCD 是正方形,BD 为对角线,∴∠DBG =45°,∴∠DGB =45°,∴DG =DB ,②在△DBE 和△DGF 中,BDE FDG BD DG DBE G =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DBE ≌△DGF ,∴BE =GF ,由①知,BD =DG ,∠BDG =90°,即△BDG 是等腰直角三角形,∴BG 2,即2BE BF BD +=.(2)①BD BFBE 3=+理由如下:在菱形ABCD 中,∠ABD =∠CBD =21∠ABC =30°, 由旋转可得,∠EDF =∠BDG =120°,∴∠EDF -∠BDF =∠BDG -∠BDF ,即∠FDG =∠BDE .在△DBG 中,∠G =180°-∠BDG -∠DBG =30°, ∴∠DBG =∠G =30°,∴BD =DG .在△BDE 和△GDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DGF DBE DGBD BDEGDF∴△BDE ≌△△GDF (ASA ),∴BE =GF ,∴BE +BF =BF +GF =BG .过点D 作DM ⊥BG 于点M ,如下图所示,∵BD =DG ,∴BG =2BM .在Rt △BMD 中,∠DBM =30°,∴BD =2DM ,设DM =a ,则BD =2a ,BM =a 3.∴BG =a 32,∴3232==a aBD BG∴BF +BE =3BD .②GM 的长度为319.理由:∵GF=BE=1,FC=2CD=4,CM=23BC=43,∴GM=GF+FC+CM=1+4+43=193.题型六:几何图形旋转中的计算题目例7.(2019•潍坊)如图1,菱形ABCD的顶点A、D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB’C’D’. B’C’交对角线AC 于点M,C’D’交直线l于点N,连接MN.(1)当MN∥B’D’时,求α的大小.(2)如图2,对角线B’D’交AC于点H,交直线l于点G,延长C’B’交AB于点E,连接EH. 当△HEB’的周长为2时,求菱形ABCD的周长.【答案】见解析.【解析】解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=12∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.。
专题08 一次函数与反比例函数的实际应用-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题08 一次函数与反比例函数的实际应用(解析版)类型一一次函数的实际应用(1)方案选择问题1.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.思路引领:(1)设某商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,根据条件建立二元一次方程组求出其解即可;(2)设某商店购进A种纪念品x个,购进B种纪念品y个,根据条件的数量关系建立不等式组求出其解即可;(3)设总利润为W元,根据总利润=两种商品的利润之和列出函数解析式,再根据函数的性质求值即可.解:(1)设该商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,由题意,得10a+5b=1000 5a+3b=550,解得a=50b=100,∴该商店购进A种纪念品每件需50元,购进B种纪念品每件需100元;(2)设该商店购进A种纪念品x个,购进B种纪念品y个,根据题意,得50x+100y=10000,由50x+100y=10000得x=200﹣2y,把x=200﹣2y代入x≥6y,解得y≤25,∵y≥20,∴20≤y≤25且为正整数,∴y可取得的正整数值是20,21,22,23,24,25,与y相对应的x可取得的正整数值是160,158,156,154,152,150,∴共有6种进货方案;(3)设总利润为W元,则W=20x+30y=﹣10y+4000,∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值,W最大=﹣10×20+4000=3800(元),∴当购进A种纪念品160件,B种纪念品20件时,可获得最大利润,最大利润是3800元.总结提升:本题考查了一次函数、一元一次不等式解实际问题的运用,解答时求出A,B两种纪念品的单价是关键.2.(2021•东莞市校级二模)某移动通讯公司推出两种移动电话计费方式:方式一:月租费60元,主叫150分钟内不再收费,超过限定时间的部分a元/分钟;被叫免费.方式二:月租费100元,主叫380分钟内不再收费,超过限定时间的部分0.25元/分钟;被叫免费.两种方式的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数图象如图.(1)求a的值;(2)结合题意和函数图象,分别求出函数图象中,射线BC和射线EF对应的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数关系式,并写出对应的t的取值范围;(3)通过计算,写出当月主叫通话时间y(单位:分钟)满足什么条件时,选择方式一省钱.思路引领:(1)利用待定系数法可求出BC的解析式,再根据“方式一”的计费方式,也可求得BC的解析式,比较系数即可.(2)根据两种计费方式可求出射线BC和射线EF对应的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数关系式.(3)根据(2)所求即可得出结论.解:(1)由题图可知,M(350,100),设BC所在直线为y=kt+b,把B(150,60),M(350,100)代入,得:150k+b=60 350k+b=100,解得:k=15b=30.∴y=15t+30(t≥150).当t>150时,y=a(t﹣150)+60=at+60﹣150a,∴a=0.2.(2)由(1)可知射线BC对应的月计费y关于主叫时间t的关系式为,y1=0.2t+30,t≥150min,又∵方式二中超过限定时间的部分0.25元/分钟,∴y2=0.25(t﹣380)+100=0.25t+5.∴射线EF对应的月计费y关于主叫时间t的关系式为,y2=0.25t+5,t≥380min.(3)①0≤t≤150min时,y1=60<y2=100;②150≤t≤350min时,y1=0.2t+30<y2=100;③t≥500min时,y1=0.2t+30<y2=0.25t+5.综上所述,通话时间0≤t≤350min或t≥500min时,方式一省钱.总结提升:考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(2)最大利润问题3.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.思路引领:(1)分当0≤x≤2000时,当x>2000时,利用待定系数法求解即可;(2)根据题意可知,分当1600≤x≤2000时,当2000<x≤4000时,分别列出w与x的函数关系式,根据一次函数的性质可得出结论;(3)根据题意可知,降价后,w与x的关系式,并根据利润不低于15000,可得出a的取值范围.解:(1)当0≤x≤2000时,设y=k′x,根据题意可得,2000k′=30000,解得k′=15,∴y=15x;当x>2000时,设y=kx+b,根据题意可得,2000k+b=30000 4000k+b=56000,解得k=13b=4000,∴y=13x+4000.∴y=15x(0≤x≤2000)13x+4000(x>2000).(2)根据题意可知,购进甲种产品(6000﹣x)千克,∵1600≤x≤4000,当1600≤x≤2000时,w=(12﹣8)×(6000﹣x)+(18﹣15)•x=﹣x+24000,∵﹣1<0,∴当x=1600时,w的最大值为﹣1×1600+24000=22400(元);当2000<x≤4000时,w=(12﹣8)×(6000﹣x)+18x﹣(13x+4000)=x+20000,∵1>0,∴当x=4000时,w的最大值为4000+20000=24000(元),综上,w=―x+24000(1600≤x≤2000) x+20000(2000<x≤4000);当购进甲产品2000千克,乙产品4000千克时,利润最大为24000元.(3)根据题意可知,降价后,w=(12﹣8﹣a)×(6000﹣x)+(18﹣2a)x﹣(13x+4000)=(1﹣a)x+20000﹣6000a,当x=4000时,w取得最大值,∴(1﹣a)×4000+20000﹣6000a≥15000,解得a≤0.9.∴a的最大值为0.9.总结提升:本题考查了一次函数的应用,解题的关键是找准等量关系,正确列出函数关系式.4.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过10.57万元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于12.32万元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?思路引领:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,根据总进价不超过105700元和销售额不低于123200元建立不等式组,求出其解即可;(2)根据利润等于售价﹣进价的数量关系分别表示出购买A型电脑的利润和B型电脑的利润就求其和就可以得出结论.解:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,由题意,得2500x+2800(40―x)≤1057003000x+3200(40―x)≥123200,解得:21≤x≤24,∵x为整数,∴x=21,22,23,24∴有4种购买方案:方案1:购A型电脑21台,B型电脑19台;方案2:购A型电脑22台,B型电脑18台;方案3:购A型电脑23台,B型电脑17台;方案4:购A型电脑24台,B型电脑16台;(2)由题意,得y=(3000﹣2500)x+(3200﹣2800)(40﹣x),=500x+16000﹣400x,=100x+16000.∵k=100>0,∴y随x的增大而增大,∴x=24时,y最大=18400元.答:采用方案4,即购A型电脑24台,B型电脑16台的利润最大,最大利润是18400元.总结提升:此题考查一次函数的应用以及一元一次不等式组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.(3)行程问题5.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B 地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为 米/分钟,乙的速度为 米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x 的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.思路引领:(1)利用速度=路程÷时间,找准甲乙的路程和时间即可得出结论;(2)根据(1)中的计算可得出点G的坐标,设直线FG的解析式为:y=kx+b,将F,G的坐标代入,求解方程组即可;(3)根据题意可知存在三种情况,然后分别计算即可.解:(1)根据题意可知D(1,800),E(2,800),∴乙的速度为:800÷1=800(米/分钟),∴乙从B地到C地用时:2400÷800=3(分钟),∴G(6,2400).∴H(8,2400).∴甲的速度为2400÷8=300(米/分钟),故答案为:300;800;(2)设直线FG的解析式为:y=kx+b(k≠0),且由图象可知F(3,0),由(1)知G(6,2400).∴3k+b=06k+b=2400,解得,k=800b=―2400.∴直线FG的解析式为:y=800x﹣2400(3≤x≤6).(3)由题意可知,AB相距800米,BC相距2400米.∵O(0,0),H(8,2400),∴直线OH的解析式为:y=300x,∵D(1,800),∴直线OD的解析式为:y=800x,当0≤x≤1时,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,即甲乙朝相反方向走,∴令800x+300x=600,解得x=6 11.∵当2≤x≤3时,甲从B继续往C地走,乙从A地往B地走,∴300x+800﹣800(x﹣2)=600解得x=185(不合题意,舍去)∵当x>3时,甲从B继续往C地走,乙从B地往C地走,∴300x+800﹣800(x﹣2)=600或800(x﹣2)﹣(300x+800)=600,解得x=185或x=6.综上,出发611分钟或185分钟或6分钟后,甲乙两人之间的路程相距600米.总结提升:本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,将图象中的信息转化为实际行程问题,属于中考常考题型.6.(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m= ,n= ;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.思路引领:(1)由甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇可求出m=2,根据以另一速度继续匀速行驶4小时到达B地知n=6;(2)用待定系数法可得y=60x+80,(2≤x≤6);(3)求出乙的速度,即可得乙到A地所用时间,即可求得甲车距A地的路程为300千米.解:(1)由题意知:m=200÷100=2,n=m+4=2+4=6,故答案为:2,6;(2)设y=kx+b,将(2,200),(6,440)代入得:2k+b=2006k+b=440,解得k=60 b=80,∴y=60x+80,(2≤x≤6);(3)乙车的速度为(440﹣200)÷2=120(千米/小时),∴乙车到达A地所需时间为440÷120=113(小时),当x=113时,y=60×113+80=300,∴甲车距A地的路程为300千米.总结提升:本题考查一次函数的应用,解题的关键是读懂题意,能正确识图.类型二反比例函数的实际应用7.(2022•广州)某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.思路引领:(1)设底面积S与深度d的反比例函数解析式为S=Vd,把点(20,500)代入解析式求出V的值;(2)由d的范围和图像的性质求出S的范围.解:(1)设底面积S与深度d的反比例函数解析式为S=Vd,把点(20,500)代入解析式得500=V20,∴V=10000.(2)由(1)得S=10000d,∵S随d的增大而减小,∴当16≤d≤25时,400≤S≤625,总结提升:此题主要考查反比例函数的性质和概念,解答此题的关键是找出变量之间的函数关系,难易程度适中.8.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式.(2)若火焰的像高为3cm,求小孔到蜡烛的距离.思路引领:(1)根据待定法得出反比例函数的解析式即可;(2)根据解析式代入数值解答即可.解:(1)由题意设:y=k x ,把x=6,y=2代入,得k=6×2=12,∴y关于x的函数解析式为:y=12 x;(2)把y=3代入y=12x,得,x=4,∴小孔到蜡烛的距离为4cm.总结提升:此题考查反比例函数的应用,关键是根据待定系数法得出反比例函数的解析式解答.类型三一次函数与反比例函数的综合运用9.(2022•卧龙区模拟)通过心理专家实验研究发现:初中生在数学课上听课注意力指标指标)随上课时间的变化而变化,指标达到36为认真听讲,学生注意力指标y随时间x(分钟)变化的函数图象如图所示.当0≤x<10和10≤x<20时,图象是线段,当20≤x≤45时是反比例函数的一部分.(1)求点A对应的指标值.(2)李老师在一节课上讲一道数学综合题需17分钟,他能否经过适当安排.使学生在认真听讲时,进行讲解,请说明理由.思路引领:(1)设反比例函数的解析式为y =k x,由C (20,45)求出k ,可得D 坐标,从而求出A 的指标值;(2)求出AB 解析式,得到y ≥36时,x ≥325,由反比例函数y =900x可得y ≥36时,x ≤25,根据25―325=935>17,即可得到答案.解:(1)设当20≤x ≤45时,反比例函数的解析式为y =k x,将C (20,45)代入得:45=k 20,解得k =900,∴反比例函数的解析式为y =900x ,当x =45时,y =20,∴D (45,20),∴A (0,20),即A 对应的指标值为20;(2)设当0≤x <10时,AB 的解析式为y =mx +n ,将A (0,20)、B (10,45)代入得:20=n 45=10m +n ,解得m =52n =20,∴AB 的解析式为y =52x +20,当y ≥36时,52x +20≥36,解得x ≥325,由(1)得反比例函数的解析式为y =900x,当y ≥36时,900x≥36,解得x ≤25,∴325≤x ≤25时,注意力指标都不低于36,∵指标达到36为认真听讲,而25―325=935>17,∴李老师能经过适当的安排,使学生在认真听讲时,进行讲解.总结提升:本题考查函数图象的应用,涉及一次函数、反比例函数及不等式等知识,解题的关键是求出0≤x <10和20≤x ≤45时的解析式.10.(2021秋•东平县校级月考)教室里的饮水机接通电就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y (℃)与开机后用时x (min )成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电,水温y (℃)与时间x (min )的关系如图所示:(1)分别写出水温上升和下降阶段y 与x 之间的函数关系式并注明自变量的取值范围;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待 min ?思路引领:(1)根据题意和函数图象可以求得a 的值;根据函数图象和题意可以求得y 关于x 的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.解:(1)观察图象,可知:当x =7(min )时,水温y =100(℃),当0≤x ≤7时,设y 关于x 的函数关系式为:y =kx +b ,b =307k +b =100,解得k =10b =30,即当0≤x ≤7时,y 关于x 的函数关系式为y =10x +30,当x >7时,设y =a x ,100=a7,得a=700,即当x>7时,y关于x的函数关系式为y=700 x,当y=30时,x=70 3,∴y与x的函数关系式为:y=30(0≤x≤7)(7<x≤703),y与x的函数关系式每703分钟重复出现一次;(2)将y=50代入y=10x+30,得x=2,将y=50代入y=700x,得x=14,∵14﹣2=12,703―12=343,∴怡萱同学想喝高于50℃的水,她最多需要等待343min,故答案为:34 3.总结提升:本题考查反比例函数的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.第二部分专题提优训练1.(2019•淮安)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是( )A.B.C.D.思路引领:根据题意得到xy=矩形面积(定值),故y与x之间的函数图象为反比例函数,且根据x、y 实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=矩形面积(定值),∴y是x的反比例函数,(x>0,y>0).故选:B.总结提升:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2.(2021•宜昌)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=mV,能够反映两个变量p和V函数关系的图象是( )A.B.C.D.思路引领:直接利用反比例函数的性质,结合p,V的取值范围得出其函数图象分布在第一象限,即可得出答案.解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=mV(V,p都大于零),∴能够反映两个变量p和V函数关系的图象是:.故选:B.总结提升:此题主要考查了反比例函数的应用,正确掌握反比例函数图象分布规律是解题关键.3.(2022•鄂州一模)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)a= ,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地90千米处时,求甲、乙两车之间的路程.思路引领:(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a、b的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B地90千米处时行驶的时间,代入(2)的结论解答即可.解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=kx+b,根据题意得:2k+b=03.6k+b=216,解得k=135b=―270,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.5时,y=60x,∴y=135x―270(2<x≤3.6) 60x(3.6<x≤4.5).(3)∵甲车到达距B地90千米处时,x=270―9060=3,∴将x=3代入y=135x﹣270,得y=135×3﹣270=135,即当甲车到达距B地90千米处时,甲、乙两车之间的路程是135千米.总结提升:本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.4.(2022春•孝感期末)民生超市计划购进甲、乙两种商品共90件进行销售,有关信息如表,商品甲乙进价(元/件)6050售价(元/件)100100(其中一次性销售超过20件时,超出部分每件再让利20元)设乙种商品有x(件),销售完两种商品的总销售额为y(元).(1)求y与x的函数关系式;(2)若购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元.①问共有多少种购进方案?②直接写出总利润的最大值(总利润=总销售额﹣总进货费用).思路引领:(1)分两种情况:当0≤x≤20时和当20<x≤90时,分别根据已知列出函数关系式即可;(2)①由购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元,得x≤4560(90―x)+50x≤5000,即可解得共有6种购进方案;②设总利润为w元,可得w=(﹣20x+9400)﹣[60(90﹣x)+50x]=﹣10x+4000,由一次函数性质可得总利润的最大值是3600元.解:(1)当0≤x≤20时,y=100(90﹣x)+100x=9000,当20<x≤90时,y=100(90﹣x)+20×100+(100﹣20)×(x﹣20)=﹣20x+9400,∴y=9000(0≤x≤20)―20x+9400(20<x≤90);(2)①∵购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元,∴x≤4560(90―x)+50x≤5000,解得40≤x≤45,∵x是整数,∴x可取40,41,42,43,44,45,∴共有6种购进方案;②设总利润为w元,∵40≤x≤45,∴总销售额y=﹣20x+9400,∴w=(﹣20x+9400)﹣[60(90﹣x)+50x]=﹣10x+4000,∵﹣10<0,∴w随x的增大而减小,∴x=40时,w取最大值,最大值为﹣10×40+4000=3600(元),答:总利润的最大值是3600元.总结提升:本题考查一次函数的应用,解题的关键是读懂题意,列出函数关系式.。
2020年中考数学必考高分考点:动态问题(教师版)

专题34 动态问题专题知识回顾一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型:1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型:1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2020年中考数学压轴题-专题08 动点产生的平行四边形(解析版)

专题08 动点产生的平行四边形教学重难点1.理解平行四边形的性质和判定;2.能应用平行四边形的性质和判定进行相关计算和证明;3.培养学生能在点的运动过程中寻找平行四边形,继而解决相关问题;4.培养学生分类讨论的能力,能应用分类讨论思想解决相关问题;5.体验运动过程,培养学生动态数学思维能力。
【备注】:1.根据后面两个图让学生回顾平行四边形的性质和判定,为后面的例题讲解做好准备;2.部分地方引导学生填空,让学生自己回顾。
时间大概5分钟。
平行四边形的性质:平行四边形的判定:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。
1.(2019·辽宁中考真题)如图1,在平面直角坐标系中,一次函数y =﹣34x +3的图象与x 轴交于点A ,与y 轴交于B 点,抛物线y =﹣x 2+bx +c 经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC ⊥x 轴于点C ,交直线AB 于点E .(1)求抛物线的函数表达式(2)是否存在点D ,使得⊥BDE 和⊥ACE 相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标. 【整体分析】(1)根据334y x =-+,求出A ,B 的坐标,再代入抛物线解析式中即可求得抛物线解析式;(2)⊥BDE 和⊥ACE 相似,要分两种情况进行讨论: ⊥⊥BDE⊥⊥ACE ,求得13(4D ,3);⊥⊥DBE⊥⊥ACE ,求得23(12D ,50)9; (3)由DEGF 是平行四边形,可得DE⊥FG ,DE=FG ,设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,根据平行四边形周长公式可得:DEGF 周长=23892()48m --+,由此可求得点G 的坐标. 【满分解答】(1)在334y x =-+中,令0x =,得3y =,令0y =,得4x =,(4,0)A ∴,(0,3)B ,将(4,0)A ,(0,3)B 分别代入抛物线2y x bx c =-++中,得:24403b c c ⎧-++=⎨=⎩,解得:1343b c ⎧=⎪⎨⎪=⎩,∴抛物线的函数表达式为:21334y x x =-++. (2)存在.如图1,过点B 作BH CD ⊥于H ,设(,0)C t ,则213(,3)4D t t t -++,3(,3)4E t t -+,(,3)H t ;334EC t ∴=-+,4AC t =-,BH t =,2134DH t t =-+,24DE t t =-+BDE ∆∵和ACE ∆相似,BED AEC ∠=∠BDE ACE ∴∆∆∽或DBE ACE ∆∆∽⊥当BDE ACE ∆∆∽时,90BDE ACE ∠=∠=︒,∴BD AC DE CE=,即:BD CE AC DE =g g 23(3)(4)(4)4t t t t t ∴-+=-⨯-+,解得:10t =(舍去),24t =(舍去),3134t =,13(4D ∴,3)⊥当DBE ACE ∆∆∽时,BDE CAE ∠=∠ BH CD ⊥Q90BHD ∴∠=︒,∴tan tan BH CEBDE CAE DH AC=∠=∠=,即:BH AC CE DH =g g 2313(4)(3)()44t t t t t ∴-=-+-+,解得:10t =(舍),24t =(舍),32312t =,23(12D ∴,50)9; 综上所述,点D 的坐标为13(4,3)或23(12,50)9;(3)如图3,Q 四边形DEGF 是平行四边形 //DE FG ∴,DE FG =设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,则:24DE m m =-+,24FG n n =-+,2244m m n n ∴-+=-+,即:()(4)0m n m n -+-=,0m n -≠Q 40m n ∴+-=,即:4m n +=过点G 作GK CD ⊥于K ,则//GK AC EGK BAO ∴∠=∠∴cos cos GK AOEGK BAO EG AB=∠=∠=,即:GK AB AO EG =g g 5()4n m EG ∴-=,即:5()4EG n m =-DEGF ∴周长2253892()2[(4)()]2()448DE EG m m n m m =+=-++-=--+20-<Q ,∴当34m =时,DEGF ∴Y 周长最大值898=, 13(4G ∴,9)16【点睛】此题考查二次函数综合题,综合难度较大,解答关键在于结合函数图形进行计算,再利用待定系数法求解析式,配合辅助线利用相似三角形的性质进行解答.2.如图,在平面直角坐标系中,直线b kx y +=分别与x 轴负半轴交于点A ,与y 轴的正半轴交于点B ,⊙P 经过点A 、点B (圆心P 在x 轴负半轴上),已知AB=10,425=AP 。
中考数学专题复习——动态变化问题(经典题型)
中考数学专题复习——动态变化问题(经典题型)【专题点拨】动态型问题一般是指以几何知识和图形为背景,渗透运动变化观点的一类试题,常见的运动对象有点动、线动和面动;其运动形式而言就是平移、旋转、翻折和滚动等。
动态型试题其特点是集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活,多变,动中有静,动静结合,能够在运动变化中发展同学们的空间想象能力。
解答动态型试题的策略是:(1)动中求静,即在运动变化中探索问题中的不变性;(2)动静互化,抓住静的瞬间。
找到导致图形或者变化规律发生改变的特殊时刻,同时在运动变化的过程中寻找不变性及其变化规律。
【典例赏析】【例题1】(2017黑龙江佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG 交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】(2017黑龙江佳木斯)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.【例题3】(2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD 在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B 两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC 交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t<7时,如图1,∵C(0,﹣4),D(2,0),∴直线CD的解析式为:y=2x﹣4,∵E′F′∥AB,BF′∥AE′∴BF′=AE=t,∴F′(t﹣3,﹣4),直线E′F′的解析式为:y=﹣2x+2t﹣10,解得,∴G(,t﹣7),∴S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,综上所述:S关于t的函数解析式为:S=;(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),∵PM⊥直线BC于M,交x轴于n,∴M(m,﹣4),N(m,0),∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作FK⊥x轴于K,则KF=4,由△TKF∽△PNT得, =2,∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=﹣6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.【能力检测】1.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AF G=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.2.(2017乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x 轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.3.(2017黑龙江鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 5 .【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.4.(2017黑龙江鹤岗)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.5.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC 的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【考点】FI:一次函数综合题.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N 点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S﹣S四边形BNN′B′,可分别得到S与t的函数关系式.△OGN′【解答】解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BN N′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.。
人教版数学七年级上学期专题08 线段上动点问题的三种考法(原卷版+解析版)(人教版)
专题08 线段上动点问题的三种考法类型一、求值问题例.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n ()m n <,点C 在B 的右侧,2AC AB -=.(1)如图1,若多项式()371231mn x x x +--+-是关于x 的二次三项式,请直接写出m ,n 的值:(2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m ,n 的式子表示); ②若24AD BD +=,试求线段AB 的长.【变式训练1】如图1,点C在线段AB上,图中共有三条线段AB,AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB=15cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动;点Q从点B出发,以1cm/s的速度沿BA向点A匀速运动,点P,Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t(s),当t=__s时,Q为A,P的“巧点”.【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【变式训练3】如图,数轴上有两点,A B ,点C 从原点O 出发,以每秒1cm 的速度在线段OA 上运动,点D 从点B 出发,以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC =,若点M 为直线OA 上一点,且AM BM OM -=,则ABOM的值为_______.类型二、证明定值问题例.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC -是定值,②PA PBPC+是定值,请选择你认为正确的一个并加以说明.【变式训练1】已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.(1)m=,n=;(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.【变式训练2】如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【变式训练3】(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.类型三、数量关系例.数轴上A B 、两点对应的数分别是4,12-,线段CE 在数轴上运动,点C 在点E 的左边,且8,CE =点F 是AE 的中点.(1)如图1,当线段CE 运动到点,C E 均在,A B 之间时,若1CF =,则AB =_________,点C 对应的数为________,BE =________;(2)如图2,当线段CE 运动到点A 在C E 、之间时,画出草图并求BE 与CF 的数量关系.【变式训练1】如图,已知线段AB,延长线段BA至C,使CB=43 AB.(1)请根据题意将图形补充完整.直接写出ACAB=_______;(2)设AB=9cm,点D从点B出发,点E从点A出发,分别以3cm/s,1cm/s的速度沿直线AB向左运动.①当点D在线段AB上运动,求ADCE的值;②在点D,E沿直线AB向左运动的过程中,M,N分别是线段DE、AB的中点.当点C恰好为线段BD的三等分点时,求MN的长.【变式训练2】已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB=.课后作业1.已知有理数a ,b ,c 在数轴上对应的点从左到右顺次为A ,B ,C ,其中b 是最小的正整数,a 在最大的负整数左侧1个单位长度,BC=2AB . (1)填空:a= ,b= ,c=(2)点D 从点A 开始,点E 从点B 开始, 点F 从点C 开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F 追上点D 时停止动,设运动时间为t 秒.试问: ①当三点开始运动以后,t 为何值时,这三个点中恰好有一点为另外两点的中点?②F 在追上E 点前,是否存在常数k ,使得DF k EF +⋅的值与它们的运动时间无关,为定值.若存在,请求出k 和这个定值;若不存在,请说明理由.2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.3.已知线段AB ,点C 在直线AB 上,D 为线段BC 的中点.(1)若8AB =,2AC =,求线段CD 的长.(2)若点E 是线段AC 的中点,请写出线段DE 和AB 的数量关系并说明理由.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB =11cm ,当点C 、D 运动了1s ,求AC +MD 的值. (2)若点C 、D 运动时,总有MD =3AC ,直接填空:AM = BM . (3)在(2)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求2MN3AB的值.5.如图,在数轴上A 点表示的数为a ,B 点表示的数为b ,C 点表示的数为c ,b 是最大的负整数,且a ,c 满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ________,b =________,c =________.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13PA PB PC ++=,求x 的值. (3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.6.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考.(1)发现:C E F在线段AB上,当点,E F是线段AC和线段BC的中点时,线段EF的长为如图1,线段12AB ,点,,_________;若点C在线段AB的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF与线段AB之间的数量关系为_________.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB,其左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF. 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF,请你尝试着“复原”他们的做法:①在图中标出点E、点F的位置,并简述画图方法;②请说明①题中所标示,E F点的理由.7.问题背景整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析,把握它们之间的关联,进行有目的、有意识的整体处理,整体思想在代数和几何中都有很广泛的应用.(1)如图1,A、B、O三点在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC,则∠DOE的度数为(直接写出答案).(2)当x=1时,代数式a3x+bx+2021的值为2020,当x=﹣1时,求代数式a3x+bx+2021的值.(3)①如图2,点C是线段AB上一定点,点D从点A、点E从点B同时出发分别沿直线AB向左、向右匀速运动,若点E的运动速度是点D运动速度的3倍,且整个运动过程中始终满足CE=3CD,求ACAB的值;②如图3,在①的条件下,若点E沿直线AB向左运动,其它条件均不变.在点D、E运动过程中,点P、Q分别是AE、CE的中点,若运动到某一时刻,恰好CE=4PQ,求此时ADAB的值.8.已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空) (2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空) (4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MNAB的值.9.如图,数轴正半轴上的A ,B 两点分别表示有理数a ,b ,O 为原点,若3a =,线段5OB OA =.(1)=a ______,b =______;(2)若点P 从点A 出发,以每秒2个单位长度向x 轴正半轴运动,求运动时间为多少时;点P 到点A 的距离是点P 到点B 距离的3倍;(3)数轴上还有一点C 表示的数为32,若点P 和点Q 同时从点A 和点B 出发,分别以每秒2个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4.10.已知数轴上三点M,O,N对应的数分别为-3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等.(直接写出答案)11.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.专题08 线段上动点问题的三种考法类型一、求值问题例.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n ()m n <,点C 在B 的右侧,2AC AB -=.(1)如图1,若多项式()371231mn x x x +--+-是关于x 的二次三项式,请直接写出m ,n 的值: (2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由; (3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m ,n 的式子表示); ②若24AD BD +=,试求线段AB 的长.【答案】(1)5m =-,1n =;(2)不变化,理由见解析;(3)①12m n ++;②103【解析】(1)解:由题可知,n -1=0,7+m =2, ∠1n =,5m =-故答案为:5m =-,1n =(2)解:MN 的长不发生变化,理由如下: 由题意,得点C 表示的数为3,设点E 表示的数为x ,则点F 表示的数为1x +∠6AB = ,2BC = ,5AE x =+ ,6AF x =+ ,3EC x =- ,BF x =-, ∠点M 是EC 的中点,N 是BF 的中点 ∠32x MC ME -==,2x NF -=,即311222x x MN ME EF FN --=--=--=(3)解:①∠A ,B 表示的数分别为m ,n ()m n <又点C 在B 的右侧,∠AB =n -m ∠2AC AB -=,∠AC = n -m +2∠点D 是AC 的中点,∠AD =12AC = 12(n -m +2)∠D 表示的数为:m +12(n -m +2)=12m n ++ ②依题意,点C 表示的数分别为2n + ∠AB n m =-,1122m n n mAD m +-=+-=+ ∠1122m n m n BD n +-=+-=+,22122m nBD m n -=+=-+ ∠24AD BD +=,即1242n mm n -++-+= 当20m n -+>时.()1242n mm n -++-+=,2m n -= ∠m n <,∠2m n -=不符合题意,舍去 当20m n -+<时.()1242n m m n -+--+=,103n m -= 综上所述,线段AB 的长为103.【变式训练1】如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB =15cm .动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设移动的时间为t (s ),当t =__s 时,Q 为A ,P 的“巧点”.【答案】是 7.5或457【解析】(1)若线段中点为C 点,AB =2AC ,所以中点是这条线段“巧点”(2)设A 点为数轴原点,作数轴,设运动时间为t 秒;t 最大=7.5,A :0,P :0+2t =2t ,Q :15﹣t ,①Q为AP中点,20152tt+-=,∠t=7.5;②AQ=2PQ,AQ=15﹣t﹣0=15﹣t,PQ=2t﹣(15﹣t)=3t﹣15,∠AQ=2PQ,∠15﹣t=2(3t﹣15),∠457t=;③PQ=2AQ,得3t﹣15=2(15﹣t),∠t=9>7.5(舍去).综上所述:t=7.5或457.故答案为:(1)是;(2)7.5或457.【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm ∠AB=11cm,CM=1cm,BD=3cm∠AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∠AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∠BM﹣3t=3AM﹣3t,即BM=3AM,∠AM=13 BM故答案为:13.(3)解:由(2)可得:∠BM=AB﹣AM∠AB﹣AM=3AM,∠AM=14 AB,①当点N在线段AB上时,如图∠AN ﹣BN =MN ,又∠AN ﹣AM =MN ,∠BN =AM =14AB ,∠MN =12AB ,即2MN 3AB =13. ②当点N 在线段AB 的延长线上时,如图∠AN ﹣BN =MN ,又∠AN ﹣BN =AB ,∠MN =AB ,∠MNAB=1,即2MN 3AB =23.综上所述2MN 3AB =13或23【变式训练3】如图,数轴上有两点,A B ,点C 从原点O 出发,以每秒1cm 的速度在线段OA 上运动,点D 从点B 出发,以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC =,若点M 为直线OA 上一点,且AM BM OM -=,则ABOM的值为_______.【答案】1或53【解析】设运动的时间为t 秒,点M 表示的数为m则OC=t ,BD=4t ,即点C 在数轴上表示的数为-t ,点D 在数轴上表示的数为b -4t , ∠AC=-t -a ,OD=b -4t ,由OD=4AC 得,b -4t=4(-t -a ),即:b=-4a , ①若点M 在点B 的右侧时,如图1所示:由AM -BM=OM 得,m -a -(m -b )=m ,即:m=b -a ; ∠=1b a B O mA m M m-== ②若点M 在线段BO 上时,如图2所示:由AM -BM=OM 得,m -a -(b -m )=m ,即:m=a+b ;∠=4543b a b a a a m a AB b a a OM ----===+- ③若点M 在线段OA 上时,如图3所示:由AM -BM=OM 得,m -a -(b -m )=-m ,即:433a b a am a +-===- ∠此时m <0,a <0,∠此种情况不符合题意舍去; ④若点M 在点A 的左侧时,如图4所示:由AM -BM=OM 得,a -m -(b -m )=-m ,即:m=b -a=-5a ;而m <0,b -a >0, 因此,不符合题意舍去, 综上所述,AB OM 的值为1或53. 类型二、证明定值问题例.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC -是定值,②PA PBPC+是定值,请选择你认为正确的一个并加以说明.【答案】(1)12AB =,6CD =;(2)9;(3)②正确,2PA PBPC+=,见解析 【解析】(1)由()21260m n -+-=,()212600m n ≥--≥,,12=06=0m n --,, 得12m =,6n =,所以12AB =,6CD =; (2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =, 所以()()1124118222AM AC AB BC ==+⨯+==,()()111645222DN BD CD BC ===++=, 又因为124622AD AB BC CD =++=++=, 所以22859MN AD AM DN =--=--=, 当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点, 所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==, 所以126414AD AB CD BC =+-=+-= 所以14419MN AD AM DN =--=--=. 综上,线段MN 的长为9; (3)②正确,且2PA PBPC+=.理由如下: 因为点D 与点B 重合,所以BC DC =,所以6AC AB BC AB DC =-=-=,所以AC BC =, 所以()()222PC AC PC BC PA PB PC AC BC PCPC PC PC PC++-++-====.【变式训练1】已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 的左侧,C 在D 的左侧),且m ,n 满足|m -12|+(n -4)2=0. (1)m = ,n = ;(2)点D 与点B 重合时,线段CD 以2个单位长度/秒的速度向左运动.①如图1,点C 在线段AB 上,若M 是线段AC 的中点,N 是线段BD 的中点,求线段MN的长;②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.【解析】(1)∠|m-12|+(n-4)2=0,∠m-12=0,n-4=0,∠m=12,n=4;故答案为:12;4.(2)由题意,①∠AB=12,CD=4,∠M是线段AC的中点,N是线段BD的中点,∠AM=CM=12AC ,DN=BN=12BD∠MN=CM+CD+DN=12AC +CD+12BD=12AC +12CD+12BD+12CD=12(AC +CD+BD)+12CD=12(AB +CD)=8;②如图,设PA=a,则PC=8+a,PE=10+a,依题意有:81013231a a,解得:a=2,在整个运动的过程中:BD=2t,BC=4+2t,∠E是线段BC的中点,∠CE= BE=12BC=2+t;∠.如图1,F,C相遇,即t=2时F,C重合,D,E重合,则FC=0,DE=0,∠FC-5 DE =0;∠.如图2,F,C相遇前,即t<2时FC =10-5t,DE =BE-BD=2+t-2t=2-t,∠FC-5 DE =10-5t -5(2-t)=0;∠.如图3,F,C相遇后,即t>2时FC =5t-10,DE = BD - BE=2t –(2+t)= t-2,∠FC-5 DE =5t-10 -5(t-2)=0;综合上述:在整个运动的过程中,FC-5 DE的值为定值,且定值为0.【变式训练2】如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【答案】(1)6;6;(2)不发生改变,MN为定值6,过程见解析【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∠M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∠MP=23AP=4,NP=23BP=2,∠MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∠M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∠MP=23AP=8,NP=23BP=2,∠MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∠M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∠MP=23AP=23(a+6),NP=23BP=23(3-a),∠MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∠M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∠MP=23AP=23(a+6),NP=23BP=23(a-3),∠MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【变式训练3】(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.【答案】(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析;(2)见解析.【详解】解:(1)①∠关于x 的方程()46n x n -=-无解.∠4n -=0,解得:n=4.故AB=4. ②线段MN 的长与点P 在线段AB 上的位置无关,理由如下: ∠M 为线段PB 的中点,∠PM= 12PB .同理:PN=12AP ..∠MN=PN+PM= 12(PB+AP )=12AB=12×4=2.∠线段MN 的长与点P 在线段AB 上的位置无关. (2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b . ∠C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+,2212PA PB a bPC a b ++∴==+, 所以PA PBPC+的值不变.类型三、数量关系 例.数轴上A B 、两点对应的数分别是4,12-,线段CE 在数轴上运动,点C 在点E 的左边,且8,CE =点F 是AE 的中点.(1)如图1,当线段CE 运动到点,C E 均在,A B 之间时,若1CF =,则AB =_________,点C 对应的数为________,BE =________;(2)如图2,当线段CE 运动到点A 在C E 、之间时,画出草图并求BE 与CF 的数量关系.【答案】(1)16;2;2;(2)2BE CF =,画图见解析. 【解析】(1)数轴上A B 、两点对应的数分别是4,12-,12(4)16AB ∴=--=8,1CE CF ==7EF CE CF ∴=-=点F 是AE 的中点,7AF EF ∴==,6AC AF CF ∴=-=6AC AO CO =+=,2CO ∴=,C ∴对应的数是2,2BE AB AF EF ∴=--=故答案为:16;2;2; (2),BE AB AE CF CE EF =-=-,点F 是AE 的中点,2AE EF ∴=162,8BE AB AE EF CF CE EF EF ∴=-=-=-=-,2BE CF ∴=故答案为:(1)16;2;2;(2)2BE CF =,画图见解析.【变式训练1】如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出ACAB= _______; (2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D在线段AB 上运动,求ADCE的值; ②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长. 【答案】(1)13,(2)3,(3)12cm 或24cm .【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=,13AC AB =,故答案为:13; (2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒, (93)DA t =-cm ,(3)CE t =-cm ,93=33AD tCE t-=-,②当3BD CD =时,∠AB = 9cm , 3CA =cm ,∠212CB CD ==cm , ∠6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∠M ,N 分别是线段DE 、AB 的中点.∠ 1.5DM =cm , 4.5BN =cm , 12MN BD DM BN =--=cm ,当3BD CB =时,∠AB = 9cm , 3CA =cm ,∠12CB =cm ,∠336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm , ∠M ,N 分别是线段DE 、AB 的中点.∠7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【变式训练2】已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若AB =18,DE =8,线段DE 在线段AB 上移动, ①如图1,当E 为BC 中点时,求AD 的长; ②当点C 是线段DE 的三等分点时,求AD 的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB=.【答案】(1)①AD=7;②AD=203或283;(2)1742或116【详解】解:(1)∠AC=2BC,AB=18,∠BC=6,AC=12,①∠E为BC中点,∠CE=3,∠DE=8,∠CD=5,∠AD=AC﹣CD=12﹣5=7;②∠点C是线段DE的三等分点,DE=8,∠CE=13DE=83或CE=23DE=163,∠CD=163或CD=83,∠AD=AC﹣CD=12﹣163=203或12-83=283;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∠AB=3x,∠AB=2DE,∠DE=1.5x,设CE=y,∠AE=2x+y,BE=x﹣y,∠AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∠32AD ECBE+=,∠0.532x y yx y++=-,∠y=27x,∠CD=1.5x﹣27x=1714x,∠171714342==xCDAB x;当点E在点A的左侧,如图,设BC=x,则DE=1.5x,设CE=y,∠DC=EC+DE=y+1.5x,∠AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,∠32AD ECBE+=,BE=EC+BC=x+y,∠0.532y x yx y-+=+,∠y=4x,∠CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,∠AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x,∠5.51136==CD x AB x , 当点E 在线段AC 上及点E 在点B 右侧时,无解, 综上所述CD AB 的值为1742或116. 故答案为:1742或116. 课后作业1.已知有理数a ,b ,c 在数轴上对应的点从左到右顺次为A ,B ,C ,其中b 是最小的正整数,a 在最大的负整数左侧1个单位长度,BC=2AB . (1)填空:a= ,b= ,c=(2)点D 从点A 开始,点E 从点B 开始, 点F 从点C 开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F 追上点D 时停止动,设运动时间为t 秒.试问:①当三点开始运动以后,t 为何值时,这三个点中恰好有一点为另外两点的中点? ②F 在追上E 点前,是否存在常数k ,使得DF k EF +⋅的值与它们的运动时间无关,为定值.若存在,请求出k 和这个定值;若不存在,请说明理由. 【答案】(1)-2,1,7;(2)①t=1或t=52;②k=-1 【解析】(1)∠最小正数为1.最大的负整数为小-1,a 在最大的负整数左侧1个单位长度 ∠点A 表示的数a 为-1-1=-2,点B 表示的数b 为1, ∠AB=1-(-2)=3∠223=6BC AB ==⨯,∠点C 表示的数为c=1+6=7, 故答案为:-2,1,7;(2)①依题意,点F 的运动距离为4t ,点D 、E 运动的距离为t,∠点D 、E 、F 分别表示的数为-2-t ,1-t , 7-4t,当点F 追上点D 时,必将超过点B , ∠存在两种情况,即DE=EF 和DF=EF ,如图,当DE=EF ,即E 为DF 的中点时,()21=274t t t ----+,解得,t=1,如图,当EF=DF ,即F 为DE 中点时,()74=21t t t ---+-2,解得t=52,综上所述,当t=1秒和t=52时,满足题意. ②存在,理由:点D 、E 、F 分别表示的数为-2-t ,1-t ,7-4t,如图,F 在追上E 点前, ()74-2=93DF t t t =----,()74-1=63EF t t t =---, ()()93639633DF k EF t k t k k t +⋅=-+-=+-+,当DF k EF +⋅与t 无关时,需满足3+3k=0, 即k=-1时,满足条件.故答案为:(1)-2,1,7;(2)①t=1或t=52;②k=-1 2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长. 【答案】(1)7;(2)3或5【解析】(1)2AC BC =,18AB =,6BC ∴=,12AC =, 如图1,E 为BC 中点,3CE BE ∴==,8DE =,∴8311BD DE BE =+=+=,∴18117AD AB DB =-=-=,(2)Ⅰ、当点E 在点F 的左侧,如图2,或∵3CE EF +=,6BC =,∴点F 是BC 的中点, ∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==,∵3CE EF +=,故图2(b )这种情况求不出; Ⅱ、如图3,当点E 在点F 的右侧,或12AC ,3CE EF CF +==,∴9AF AC CF =-=, ∴39AF AD ==, 3AD ∴=.∵3CE EF +=,故图3(b )这种情况求不出; 综上所述:AD 的长为3或5.3.已知线段AB ,点C 在直线AB 上,D 为线段BC 的中点.(1)若8AB =,2AC =,求线段CD 的长.(2)若点E 是线段AC 的中点,请写出线段DE 和AB 的数量关系并说明理由. 【答案】(1)3或5(2)2AB DE =,理由见解析【解析】(1)解:如图1,当C 在点A 右侧时,∠8AB =,2AC =,∠6C AB C B A =-=, ∠D 是线段BC 的中点,:∠132CD BC ==; 如图2,当C 在点A 左侧时,∠8AB =,2AC =,∠10BC AB AC =+=, ∠D 是线段BC 的中点,∠152CD BC ==;综上所述,3CD =或5; (2)解:2AB DE =.理由是:如图3,当C 在点A 和点B 之间时,∠E 是AC 的中点,D 是BC 的中点,∠2AC EC =,2BC CD =, ∠222AB AC BC EC CD DE =+=+=; 如图4,当C 在点A 左侧时,同理可得:()2222AB BC AC CD CE CD CE DE =-=-=-=; 如图5,当C 在点B 右侧时,同理可得:()2222AB AC BC EC CD EC CD DE =-=-=-=.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB =11cm ,当点C 、D 运动了1s ,求AC +MD 的值. (2)若点C 、D 运动时,总有MD =3AC ,直接填空:AM = BM . (3)在(2)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求2MN3AB的值. 【答案】(1)7cm ;(2)13;(3)13或23【解析】(1)解:当点C 、D 运动了1s 时,CM =1cm ,BD =3cm ∠AB =11cm ,CM =1cm ,BD =3cm∠AC +MD =AB ﹣CM ﹣BD =11﹣1﹣3=7cm .(2)解:设运动时间为t ,则CM =t ,BD =3t ,∠AC =AM ﹣t ,MD =BM ﹣3t , 又MD =3AC ,∠BM ﹣3t =3AM ﹣3t ,即BM =3AM ,∠AM =13BM ,故答案为:13.(3)解:由(2)可得:∠BM =AB ﹣AM ,∠AB ﹣AM =3AM ,∠AM =14AB ,①当点N 在线段AB 上时,如图∠AN ﹣BN =MN ,又∠AN ﹣AM =MN ,∠BN =AM =14AB ,∠MN =12AB ,即2MN 3AB =13. ②当点N 在线段AB 的延长线上时,如图∠AN ﹣BN =MN ,又∠AN ﹣BN =AB ,∠MN =AB ,,∠MNAB=1,即2MN 3AB =23.综上所述2MN 3AB =13或235.如图,在数轴上A 点表示的数为a ,B 点表示的数为b ,C 点表示的数为c ,b 是最大的负整数,且a ,c 满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ________,b =________,c =________.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13PA PB PC ++=,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.【答案】(1)3-,1-,9;(2)13x =或1x =或53x =或233x =;(3)167t =,1,2617,8,12【详解】解:(1)∠b 是最大的负整数,且a ,c 满足()2390a c ++-=, ∠b=-1,a+3=0,c -9=0, ∠a=-3,c=9.故答案为:-3;-1;9.(2)由题意知,此过程中,当点P 在AB 上时. ∠PA+PB=AB=b -a=-1-(-3)=2. ∠()13-=13-2=11PC PA PB =+.又∠BC=c-b=9-(-1)=10.∠PB=PC-BC=11-10=1.当P从B到A时,如图所示:∠PB=1,可以列方程为:3x=1,解得:x=1;当P从A到C时,分两种情况讨论:①当P在线段AB之间时,如图所示:可以列方程为:3x=3,解得:x=1,②当P在线段BC之间时,如图所示:∠PA+PB+PC=13,AB=2,BC=10,∠PB+PC=10∠PA=13-10=3,∠PB=PA-AB=3-2=1,可列方程为:3x=5,解得:53x=.当P从C到B时,如图所示:可列方程为:3x=23,解得:233x=.综上所述,13x=或1x=或53x=或233x=.(3)当点从为PN中点时,当0<t<23时,点P向A运动,.此时,P=-1-3t,M=-3+4t,N=9-5t.(-1-3t)+(9-5t)=2(-3+4t),解得t=78(舍去).当23≤t≤43时,点P从A返回向B运动.此时,P=-3+3(t-23)=3t-5.3t-5+9-5t=2(-3+4t),解得t=1.当P为MN中点时,t>43.(9-5t)+(-3+4t)=2(3t-5),解得t=167.当点N为PM中点时,t>43.(-3+4t)+(3t-5)=2(9-5t),解得t=2617.综上所述,t的值为1,167或2617.6.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考.(1)发现:如图1,线段12AB=,点,,C E F在线段AB上,当点,E F是线段AC和线段BC的中点时,线段EF的长为_________;若点C在线段AB的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF与线段AB之间的数量关系为_________.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB,其左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF. 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF,请你尝试着“复原”他们的做法:①在图中标出点E、点F的位置,并简述画图方法;②请说明①题中所标示,E F点的理由.【答案】(1)6;补图见解析,12EF AB=(2)①见解析(答案不唯一)②见解析.【详解】解:(1)点,,C E F在线段AB上时,因为点E是线段AC的中点,所以CE=12AC,因为点F是线段BC的中点,所以CF=12BC,所以EF=CE+CF=12AC+12BC=12AB,又AB=12,所以EF=6.。
中考数学重难考点突破—动态题型分类解析(动点、动线、动面)
中考数学重难考点突破—动态题型分类解析解决动态几何间题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变从结论入手,分析结论要成立需具备的典型特征条件是什么?然后利用函数与方程的思想和方法将这个需具备的典型特征条件(或所求图形面积)直接转化为函数或方程。
类型一点动型动态题1.如图1,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过___3__秒,四边形APQC的面积最小.图1解:设经过x秒四边形APQCD面积最小由题意得:AP=2x,BQ=4x,则PB=12—2x,△PBQ的面积=1/2×BQ×PB=1/2×4x×(12—2x)=—4(x—3)2+36当x=3时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小。
点评:本题中由于四边形APQC在动点运动中,无法确定其形态,也就无法应用面积公式。
而P、B、Q三点,根据题意始终组成一个直角三角形△PBQ,故从求直角三角形面积入手便可解决问题。
2.如图2,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在哪条边上相遇?图2解:(1)①∵t=1秒,∴BP=CQ=3×1=3(厘米).∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP.②∵v P ≠v Q ,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,则BP =PC =4,CQ =BD =5, ∴点P ,点Q 运动的时间t =BP 3=43(秒), ∴v Q =CQ t =543=154(厘米/秒).(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x =3x +2×10,解得x =803(秒). ∴点P 共运动了803×3=80(厘米).∵80=2×28+24,∴点P 、Q 在AB 边上相遇, ∴经过803 秒点P 与点Q 第一次在边AB 上相遇. 类型二 线动型动态题3.已知二次函数y =x 2-(2m +2)x +(m 2+4m -3)中,m 为不小于0的整数,它的图象与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD =AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值.图3解:(1)∵二次函数的图象与x轴有两个交点,∴Δ=[]-2m+22-4(m2+4m-3)=-8m+16>0,∴m<2.∵m为不小于0的整数,∴m取0、1.当m=1时,y=x2-4x+2,图象与x轴的两个交点在原点的同侧,不合题意,舍去;当m=0时,y=x2-2x-3,符合题意.∴二次函数的解析式为y=x2-2x-3.(2)∵AC=AD,∴∠ADC=∠ACD.∵CD垂直平分PQ,∴DP=DQ,∴∠ADC=∠CDQ.∴∠ACD=∠CDQ,∴DQ∥AC,∴△BDQ∽△BAC,∴DQAC=BDAB.∵AC=10,BD=4-10,AB=4.∴DQ=10-52,∴PD=10-52.∴AP=AD-PD=52,∴t=52÷1=52.类型三面动型动态题4.如图4,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H 重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( B)图4解析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案。
中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用
中考数学专题08 勾股定理在动动点题是近年来中考的形存在性问题是这类题目考查数学思想方法,尤其对勾股定基本思路是什么,解答的难点直角三角形是一类特殊三角形在求线段的长度等方面有广泛需掌握以下几个基本图形需掌握以下几个基本图形:题1. 如图1-1,在Rt △ABC 射线BC 以1m /s 的速度移动(1)求BC 边的长;(2)当△ABP 为直角三角形时【答案】(1)4m ;(2)见解析1考数学总复习知识点专题讲解理在动点直角三角形存在性问题中考的一个热点问题也是难点问题,而因动点产目考查的重点. 解这类题目要掌握转化、分类讨论勾股定理的运用炉火纯青,才能准确、快速的解答的难点在哪?我们将通过以下几个例题加以说明三角形,有着丰富的性质,角的关系、边的关系有广泛的应用.:BC 中,∠C =90°,AB =5m ,AC =3m ,动点移动,设运动的时间为t s .图1-1形时,求t 的值.见解析【解析】解:(1)∵∠C =90°在Rt △ABC 中,由勾股定理得4BC ==∴BC =4m .(2)由题意可知,∠ABP ≠90①当∠APB =90°时,此时P由(1)知BP =4,所以t =4②当∠BAP =90°时,如图1-由题意得:BP =t ,CP =t -4在Rt △ABP 中,由勾股定理得AP 2=BP 2-AB 2在Rt △ACP 中,由勾股定理得AP 2=AC 2+CP 2所以BP 2-AB 2=AC 2+CP 2即:()2222534t t −=+−解得:254t = 综上所述,当△ABP 为直角三【点睛】直角三角形存在性问和∠BAP 为直角时,进行分类题2. 如图2-1,在四边形ABC 若点P 是线段AD 上一动点【答案】见解析.【解析】解:∵∠D =90°,∴∠A =90°过B 作BE ⊥CD 于E ,如图则四边形ABED 为矩形所以BE =AD =7,DE =AB =3在Rt △BCE 中,由勾股定理得直角三角形时,t =4或254t =. 在性问题,分类讨论的出发角度是直角的位置行分类讨论,准确画出图形,根据勾股定理列方ABCD 中,∠D =90°,AB ∥DC ,AB =3,动点,当AP 为何值时,△BCP 是直角三角形图2-1AB ∥DC ,如图2-2所示.,CE =CD -DE =1图2-2定理得:BA D C E 位置,此题分∠APB 理列方程求解. DC =4,AD =7. 角形?BC2=CE2+BE2=50.因为∠C<90°,P在线段AD两种情况讨论:①当∠BPC=90°时,如图2-设AP=x,则PD=7-x在Rt△ABP中,由勾股定理得BP2=AP2+AB2=x2+9.在Rt△DCP中,由勾股定理得PC2=PD2+CD2= (7-x) 2+16.在Rt△BCP中,由勾股定理得PC2=PB2+BC2=x2+9+50.(7∴-x)2+16= x2+9+50解得:37 x=.即AP=3 7 .②当∠PBC=90°时,如图2-设AP =x ,则PD =7-x在Rt △ABP 中,由勾股定理得BP 2=AP 2+AB 2=x 2+9.在Rt △DCP 中,由勾股定理得PC 2=PD 2+CD 2= (7-x ) 2+16. 在Rt △BCP 中,由勾股定理得PC 2= BC 2-PB 2 = 50-x 2-9.(7∴-x )2+16=50- x 2-9解得:1234x x ==,.即AP =3或4.综上所述,当AP 为37或3【点睛】直角三角形的存在性位置进行讨论,解题方法除了以图2-4为例,是典型的“一线易知△ABP ∽△DPC ,所以即374x x =−,解得13x =因此在日常学习过程中,我们 图2-4定理得:定理得:定理得:或4时,△BCP 是直角三角形. 存在性问题用到的数学方法是分类讨论,针对直法除了利用勾股定理外,也可用相似三角形、一线三直角”模型.所以AB AP DP CD = 24x =,. 我们要针对每一个题多思考,有没有多种求解BA D C P针对直角所在不同的、三角函数等求解. 种求解方法,这样对拓展眼界有很大的好处.题3. 如图3-1,在△ABC 中向B 以1 cm /s 的速度运动,A ,B 同时出发.(1)经过多少秒,△BMN 为等边(2)经过多少秒,△BMN 为直角【答案】见解析.【解析】解:(1)设经过则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10.所以经过10 s ,△BMN 为等边(2)设经过x 秒,△BMN 根据题意分两种情况讨论:中,AB =30 cm ,BC =35 cm ,∠B =60°,,动点N 自B 向C 以2 cm /s 的速度运动. 若点为等边三角形; 为直角三角形.图3-1x 秒,△BMN 为等边三角形,为等边三角形.MN 是直角三角形.:图3-2①当∠NMB =90°时,如图3∵∠B =60°,∴∠BNM =30°,∴BN =2BM ,即2x =2 (30-x ),解得x =15;②当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BM =2BN ,即30-x =解得x =6,即经过6秒或15秒,△【点睛】(1)设时间为x ,用解之可得;(2)分①∠BNM 可得;②∠BMN =90°时,题4. 已知在Rt △ABC 中,∠(1)如图4-1,点O 是AB 的中点(2)如图4-2,若∠A =30°,AB3-2所示.图3-32×2x ,BMN 是直角三角形.x 表示出AM 、BN 、BM ,根据等边三角形的判=90°时,即可知∠BMN =30°,依据2BN =∠BNM =30°,依据2BM =BNERROR: undefinedOFFENDING COMMAND: F4S63YFF STACK:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 动点类题目旋转问题探究
题型一:旋转问题中三点共线问题
例1.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.
(1)在旋转过程中,
①当A、D、M三点在同一直线上时,求AM的长.
②当A、D、M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连接D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
题型二:旋转与全等及直角三角形存在性问题
例2.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=点D,E分别在边AB,BC 上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.
图1 图2 图3
题型三:旋转问题中线段比值是否变化问题
例3.(2019•德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的值;
(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;
(3)把图2的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果;若无变化,说明理由.
图1 图2 图3
例4.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC 交AD于点F,AP=FD.
(1)求AF
AP
的值;
(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;
(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ、BN,将△AQB绕点A旋转,使点Q旋转后的对应点Q’落在边AD上. 请判断旋转后B的对应点B’是否落在线段BN上,请说明理由.
例5.(2019•连云港)如图,在平面直角坐标系xOy中,函数y=﹣x+b的图象与函数y=k
x
(x<0)的图
象相交于点
A(﹣1,6),并与x轴交于点C.点D是线段AC上一点,△ODC与△OAC的面积比为2:3.
(1)k=,b=;
(2)求点D的坐标;
(3)若将△ODC绕点O逆时针旋转,得到△OD'C',其中点D'落在x轴负半轴上,判断点C'是否落在函数
y=k
x
(x<0)的图象上,并说明理由.
例6.(2019•自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.
①线段DB和DG之间的数量关系是;
②写出线段BE,BF和DB之间的数量关系.
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
图1 图2 图3
例7.(2019•潍坊)如图1,菱形ABCD的顶点A、D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB’C’D’. B’C’交对角线AC于点M,C’D’交直线l于点N,连接MN.
(1)当MN∥B’D’时,求α的大小.
(2)如图2,对角线B’D’交AC于点H,交直线l于点G,延长C’B’交AB于点E,连接EH. 当△HEB’的周长为2时,求菱形ABCD的周长.。