2018届高三数学 第56练 向量法求解立体几何问题练习

合集下载

2018版高中数学第三章空间向量与立体几何疑难规律方法学案人教B版2-1

2018版高中数学第三章空间向量与立体几何疑难规律方法学案人教B版2-1

第三章 空间向量与立体几何1 空间向量加减法运用的三个层次空间向量是处理立体几何问题的有力工具,但要用好向量这一工具解题,必须熟练运用加减法运算. 第1层 用已知向量表示未知向量例1 如图所示,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,用向量错误!,错误!,错误!表示错误!和错误!。

解 错误!=错误!+错误!=错误!错误!+错误!错误!=12错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!;错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!。

点评用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.第2层化简向量例2如图,已知空间四边形ABCD,连接AC、BD.设M、G分别是BC、CD的中点,化简下列各表达式,并标出化简结果的向量.(1)错误!+错误!+错误!;(2)错误!+错误!(错误!+错误!);(3)错误!-错误!(错误!+错误!).解(1)错误!+错误!+错误!=错误!+错误!=错误!。

(2)错误!+错误!(错误!+错误!)=错误!+错误!错误!+错误!错误!=错误!+错误!+错误!=错误!.(3) 错误!-错误!(错误!+错误!)=错误!-错误!=错误!。

错误!、错误!、错误!如图所示.点评要求空间若干向量之和,可以通过平移,将它们转化为首尾相接的向量,如果首尾相接的若干向量构成一个封闭图形,则它们的和为0。

2018高考数学(理)专题突破—立体几何中的向量方法

2018高考数学(理)专题突破—立体几何中的向量方法

立体几何中的向量方法【考点梳理】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则(3)面面夹角设平面α,β的夹角为θ(0≤θ<π),【题型突破】题型一、利用空间向量证明平行、垂直关系【例1】如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明: (1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面P AD .【解析】证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以向量AB→=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面PAD ,所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0, 不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量.且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD . 【类题通法】1.利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何定理的条件,如在(2)中忽略BE ⊄平面P AD 而致误. 【对点训练】在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证: (1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .【解析】证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4). 设BA =a ,则A (a ,0,0),所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2). B 1D →·BA →=0,B 1D →·BD →=0+4-4=0, 则B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG →=⎝ ⎛⎭⎪⎫a 2,1,1,EF →=(0,1,1),B 1D →·EG →=0+2-2=0, B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF , 因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .题型二、求线面角或异面直线所成的角【例2】如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明 由AM =2MD ,AD =3. ∴AM =23AD =2.取BP 的中点T ,连接AT ,TN . 由于N 为PC 的中点, 所以TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB . (2)解 取BC 的中点E ,连接AE . 又AB =AC ,得AE ⊥BC ,从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1). 于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525. 所以直线AN 与平面PMN 所成的角的正弦值为8525.【类题通法】1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两方向向量的夹角(或其补角). 【对点训练】将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求三棱锥C -O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.【解析】(1)连接A 1B 1,因为A 1B 1︵=π3,∴∠O 1A 1B 1=∠A 1O 1B 1=π3,∴△O 1A 1B 1为正三角形, ∴S △O 1A 1B 1=12·O 1A 1·O 1B 1·sin π3=34.∴VC -O 1A 1B 1=13·OO 1·S △O 1A 1B 1=13×1×34=312, ∴三棱锥C -O 1A 1B 1的体积为312.(2)以O 为坐标原点建系如图,则A (0,1,0),A 1(0,1,1), B 1⎝ ⎛⎭⎪⎫32,12,1,C ⎝ ⎛⎭⎪⎫32,-12,0. ∴AA 1→=(0,0,1),B 1C →=(0,-1,-1), ∴cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, ∴〈AA 1→,B 1C →〉=3π4,∴异面直线B 1C 与AA 1所成的角为π4.题型三、二面角的计算【例3】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.【解析】(1)证明 取P A 的中点F ,连接EF ,BF , 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD , 由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綉BC , 四边形BCEF 是平行四边形,CE ∥BF , 又BF ⊂平面PAB , CE ⊄平面PAB , 故CE ∥平面PAB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则 A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3), PC→=(1,0,-3),AB →=(1,0,0). 设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的一个法向量, 所以|cos 〈BM→,n 〉|=sin 45°,|z |(x -1)2+y 2+z 2=22,即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM→=⎝ ⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105. 因此二面角M -AB -D 的余弦值为105.【类题通法】1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【对点训练】如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22 3.【解析】(1)证明由于几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P -ABCD的组合体.∴AD⊥AB,又AD⊥AF,AF∩AB=A,∴AD⊥平面ABEF.又AD⊂平面PAD,∴平面PAD⊥平面ABFE.(2)解以A为原点,AB,AE,AD的正方向为x,y,z轴,建立空间直角坐标系A-xyz.设正四棱锥的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),P(1,-h,1),设平面ACF的一个法向量m=(x,y,z),AF →=(2,2,0),AC →=(2,0,2),则⎩⎪⎨⎪⎧m ·AF →=2x +2y =0,m ·AC →=2x +2z =0,取x =1,得m =(1,-1,-1),设平面AFP 的一个法向量n =(a ,b ,c ), AP→=(1,-h ,1), 则⎩⎪⎨⎪⎧n ·AF →=2a +2b =0,n ·AP →=a -hb +c =0,取b =1,则n =(-1,1,1+h ),二面角C -AF -P 的余弦值223,∴|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|-1-1-(1+h )|3·2+(h +1)2=223,解得h =1. ∴当四棱锥的高为1时,二面角C -AF -P 的余弦值为223.题型四、 利用空间向量求解探索性问题【例4】如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面P AC ⊥平面ABC ,P A =PC =AC =2,BC =4,E ,F 分别是PC ,PB 的中点,记平面AEF 与平面ABC 的交线为直线l .(1)证明:直线l ⊥平面PAC ;(2)直线l 上是否存在点Q ,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出AQ 的长;若不存在,请说明理由.【解析】(1)证明 ∵E ,F 分别是PB ,PC 的中点,∴BC ∥EF , 又EF ⊂平面EFA ,BC ⊄平面EFA , ∴BC ∥平面EFA ,又BC ⊂平面ABC ,平面EFA ∩平面ABC =l ,∴BC ∥l ,又BC ⊥AC ,平面PAC ∩平面ABC =AC ,平面PAC ⊥平面ABC ,∴BC ⊥平面PAC ,∴l ⊥平面PAC .(2)解 以C 为坐标原点,CA 为x 轴,CB 为y 轴,过C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,则C (0,0,0),A (2,0,0),B (0,4,0),P (1,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫12,2,32. AE →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(0,2,0), 设Q (2,y ,0),平面AEF 的一个法向量为m =(x ,y ,z ),则⎩⎨⎧AE →·m =-32x +32z =0,EF →·m =2y =0,取z =3,得m =(1,0,3).又PQ →=(1,y ,-3), ||cos 〈PQ →,EF →〉=⎪⎪⎪⎪⎪⎪2y 24+y 2=|y |4+y 2, |cos 〈PQ →,m 〉|=⎪⎪⎪⎪⎪⎪1-324+y 2=14+y2, 依题意,得|cos 〈PQ →,EF →〉|=|cos 〈PQ→,m 〉|,∴y =±1. ∴直线l 上存在点Q ,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,AQ 的长为1.【类题通法】1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【对点训练】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱P A上是否存在点M,使得BM∥平面PCD?若存在,求AMAP的值;若不存在,说明理由.【解析】(1)证明因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,所以PD⊥平面PAB.(2)解取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0, 令z =2,则x =1,y =-2.所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM→=λAP →. 因此点M (0,1-λ,λ),BM→=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM ∥平面PCD , 此时AM AP =14.。

向量法解立体几何及经典例题(上课用)

向量法解立体几何及经典例题(上课用)

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。

设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。

2018届高三数学第一轮复习立体几何中的向量方法专题

2018届高三数学第一轮复习立体几何中的向量方法专题
(1)证明:PE⊥FG; (2)求二面角 PADC 的正切值; (3)求直线 PA 与直线 FG 所成角的余弦值.
第 8 页 共 27 页
2018 届高三数学第一轮复习立体几何中的向量方法专题(word 版可编辑修改)
立体几何中的高考热点题型
1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个 选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计 算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定 义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间 向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点 题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转 化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系 利用向量转化为代数运算).
2018 届高三数学第一轮复习立体几何中的向量方法专题(word 版可编辑修改)
2018 届高三数学第一轮复习立体几何中的向量方法专题(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018 届高三数学第一轮复习 立体几何中的向量方法专题(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时 也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2018 届高三数学第一轮复习立体几何中的向量方法专题(word 版可编辑修改)的全部内容。
1.(1)证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题, 再将“线面垂直”问题转化为“线线垂直”问题.

空间向量解立体几何解答题(高三复习)(共31张PPT)

空间向量解立体几何解答题(高三复习)(共31张PPT)

3 z 0 , BA n x 3 y 3z 0 2
FB n FB n 3 2 .∴ n (3, 3,2)

cos FB, n
∴二面角 B -AD-F 的平面角的余弦值 3
感悟:根据已知符合建立空间直角坐标系的条件,则
练习:如图,在四棱锥 P- ABCD 中,PA⊥ 底面 ABCD,AD⊥AB,AB∥DC,AD=DC =AP= 2,AB=1,点 E 为棱 PC 的中点. (1) 证明:BE⊥DC; (2) 求直线 BE 与平面 PBD 所成角的正弦值; (3) 若 F 为棱 PC 上一点,满足 BF⊥AC,求 二面角 F -AB-P 的余弦值
大家应该有体会,坐标法解题比几何法解题要简单 明了许多,因此一旦你找到三条两两垂直的直线时,不 妨马上尝试建系解题!
【例 1】 (2011 浙文) 如图,在三棱锥 P ABC 中,AB AC ,D 为 BC 的中点,PO ⊥平面 ABC , 垂足 O 落在线段 AD 上. (Ⅰ)证明: AP ⊥ BC ; (Ⅱ)已知 BC 8 , PO 4 , AO 3 , OD 2 . 求二面角 B AP C 的大小.
【例 5】 (2018 宁波 5 月模拟)如图,四边形 ABCD 为梯 AB ∥ CD, C 60, 形, 点 E 在线段 CD 上, 满足 BE CD , 1 且 CE AB CD 2 ,现将 ADE 沿 AE 翻折到 AME 位 4 置,使得 MC 2 10 . (Ⅰ)证明: AE MB ; (Ⅱ)求直线 CM 与面 AME 所成角的正弦值.
注意:求满足一定条件的 点的坐标,常常运用向量 共线来设,而不是直接设 点的坐标!
6 1 = ,解得λ = . 2 6λ2 -8λ+4 3

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

空间向量法解决立体几何问题全面总结


由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x

y y

2z 2z

0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则

A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •

a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).

2018届高考数学二轮温习专题五立体几何课时作业十三空间向量与立体几何理

课时作业(十三)空间向量与立体几何
1.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)判定平面BCE与平面CDE的位置关系,并证明你的结论.
解析:
成立如下图的空间直角坐标系A-xyz,那么A(0,0,0),C(2a,0,0),B(0,0,a),D(a, a,0),E(a, a,2a).
取z1=2,可得平面AEG的一个法向量m=(3,- ,2).
设n=(x2,y2,z2)是平面ACG的一个法向量.
由 可得
取z2=-2,可得平面ACG的一个法向量n=(3,- ,-2).
因此cos〈m,n〉= = .
故所求的角为60°.
5.(2017·天津卷)如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N别离为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(1)证明: =(0,2,0), =(2,0,-2).
设n=(x,y,z)为平面BDE的法向量,
则 即
不妨设z=1,可得n=(1,0,1).
又 =(1,2,-1),可得 ·n=0.
因为MN⊄平面BDE,因此MN∥平面BDE.
(2)易知n1=(1,0,0)为平面CEM的一个法向量.设n2=(x1,y1,z1)为平面EMN的一个法向量,那么
又MF⊂平面BME,PA⊄平面BME,∴PA∥平面BME.
(2)连接PE,那么由题意知PE⊥平面ABCD.
故以E为坐标原点成立如下图空间直角坐标系E-xyz,那么
E(0,0,0),P(0,0, ),
B( ,0,0),C( ,-1,0).

[推荐学习]新课标2018届高考数学二轮复习专题五立体几何专题能力训练15立体几何中的向量方法理

专题能力训练15 立体几何中的向量方法能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.3.(2017山东,理17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由. 5.(2017北京,理16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC ∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.参考答案专题能力训练15立体几何中的向量方法能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则即-不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则即-不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以-,进而有H-,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB,所以AO⊥BE.(2)解取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a), B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即---令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos<n,p>==-由题知二面角F-AE-B为钝角,所以它的余弦值为-(3)解因为BE⊥平面AOC,所以BE⊥OC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0<a<2,解得a=3.解(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=-=2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.-由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),--=(a,0,1),(1)证明=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=--要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP=5.(1)证明设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD ,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD. 如图建立空间直角坐标系O-xyz ,则P (0,0, ),D (2,0,0),B (-2,4,0),=(4,-4,0), =(2,0,- ).设平面BDP 的法向量为n =(x ,y ,z ),则即 - - 令x=1,则y=1,z=于是n =(1,1, 平面PAD 的法向量为p =(0,1,0). 所以cos <n ,p >=由题知二面角B-PD-A 为锐角,所以它的大小为(3)解由题意知M - ,C (2,4,0), -设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n , >|=所以直线MC 与平面BDP 所成角的正弦值为6.(1)证明因为AB 是直径,所以BC ⊥AC.因为CD ⊥平面ABC ,所以CD ⊥BC. 因为CD ∩AC=C ,所以BC ⊥平面ACD. 因为CD ∥BE ,CD=BE ,所以四边形BCDE 是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则即-取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则即-取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),-,所以n=0,n=0,即--令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos<,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又与不共线,与共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=-,||=-=2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则--令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=-,-即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。

备战高考数学复习考点知识与题型讲解56---空间向量与立体几何

备战高考数学复习考点知识与题型讲解第56讲空间向量与立体几何考向预测核心素养考查利用空间向量证明线面关系、求空间角及距离,主要以解答题的形式出现,难度较大.数学运算、数学抽象一、知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为u1,u2l1∥l2u1∥u2⇔u1=λu2l1⊥l2u1⊥u2⇔u1·u2=0直线l的方向向量为u,平面α的法向量为n l∥αu⊥n⇔u·n=0 l⊥αu∥n⇔u=λn平面α,β的法向量分别为n1,n2α∥βn1∥n2⇔n1=λn2α⊥βn1⊥n2⇔n1·n2=03.空间距离(1)点到直线的距离:已知直线l 的单位方向向量为u ,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a ·u )u .在Rt △APQ 中,由勾股定理得PQ =|AP →|2-|AQ →|2=a 2-(a ·u )2.(2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|PA →·n ||n |.4.空间角(1)两条异面直线所成的角的向量求法设异面直线l 1,l 2所成的角为θ,其方向向量分别为u ,v , 则cos θ=|cos 〈u ,v 〉|=⎪⎪⎪⎪⎪⎪u·v |u ||v |=|u·v||u ||v |.(2)直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°;范围:⎣⎢⎡⎦⎥⎤0,π2.②向量求法:直线AB 与平面α相交于B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|=⎪⎪⎪⎪⎪⎪u·n |u ||n |=|u·n||u ||n |.(3)两平面的夹角①定义:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面 β的夹角.②计算:设平面α,β的法向量分别是n 1,n 2,平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=|n 1·n 2||n 1||n 2|.常用结论 1.最小角定理如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2.2.线面距离、面面距离都可以转化为点到面的距离. 二、教材衍化1.(多选)(人A 选择性必修第一册P 35练习T 2改编)在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E 为线段DD 1的中点.F 为线段BB 1的中点.则直线FC 1到平面AB 1E 的距离等于( )A .点F 到平面AB 1E 的距离 B .点C 1到平面AB 1E 的距离 C .直线FC 1到直线AE 的距离D .点B 1到直线FC 1的距离 答案:AB2.(人A 必修第二册P 147例1改编)在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为________.解析:如图所示,连接BD 1交DB 1于点O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角或其补角.因为在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =OM 2+OD 2-DM 22×OM ×OD=12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55.答案:553.(人A 选择性必修第一册P 41练习T 1改编)二面角α-l -β的棱上有A ,B 两点,线段AC ,BD 分别在这个二面角的两个平面内,且都垂直于棱l .已知AB =4,AC =6,BD =8,CD =217,则平面α与平面β的夹角为________.答案:60°一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)点A 到平面α的距离是点A 与α内任一点的线段的最小值.( ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面的夹角.( ) (4)利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.( ) 答案:(1) √ (2)× (3)× (4)√ 二、易错纠偏1.(线面角概念理解不清致误)已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=32,则l 与α所成的角为( )A .30° B.60° C.120°D.150°解析:选B.由于cos 〈m ,n 〉=32,所以〈m ,n 〉=30°,所以直线l 与α所成的角为60°.2.(忽视二面角与向量的夹角的范围致误)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45° B.135° C.45°或135° D.90°答案:C3.(线面距离概念不清致误)在棱长为1的正方体ABCDA 1B 1C 1D 1中,E 为A 1B 1中点,F 为AB 的中点,则CF 到平面AEC 1的距离为________.答案:66考点一 空间距离(多维探究)复习指导:会用空间向量求解空间中点、线、面之间的距离问题. 角度1 点线距和线线距在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E ,F ,M ,N 分别是AB ,C 1D 1,AD ,DD 1的中点.则点A 1到直线EF 的距离为________;直线EF 到直线MN 的距离为________.【解析】建立如图所示的空间直角坐标系D ­xyz ,则A 1(1,0,1),D 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,M ⎝ ⎛⎭⎪⎫12,0,0,N ⎝⎛⎭⎪⎫0,0,12.(1)EA 1→=⎝ ⎛⎭⎪⎫0,-12,1,EF →=(-1,0,1),EF →的单位向量u =EF →|EF →|=⎝ ⎛⎭⎪⎫-22,0,22,所以点A 1到直线EF 的距离d =(EA 1→)2-(EA 1→·u )2=54-12=32.(2)因为MN ∥EF ,所以直线MN 到直线EF 的距离即为点M 到直线EF 的距离. 因为E ⎝ ⎛⎭⎪⎫1,12,0,M ⎝ ⎛⎭⎪⎫12,0,0,所以EM →=⎝ ⎛⎭⎪⎫-12,-12,0.又EF →的单位向量u =⎝ ⎛⎭⎪⎫-22,0,22,所以直线MN 到直线EF 的距离d =(EM →)2-(EM →·u )2=⎝ ⎛⎭⎪⎫14+14-18= 12-18=64. 【答案】3264角度2 点面距和线面距(链接常用结论2)(2022·日照实验高中月考)如图,在△ABC 中,AC =BC =1,∠ACB =120°,O 为△ABC 的外心,PO ⊥平面ABC ,且PO =62. (1)求证:BO ∥平面PAC ;(2)计算BO 与平面PAC 之间的距离. 【解】(1)证明:如图,连接OC ,因为O 为△ABC 的外心,所以OA =OB =OC ,又因为AC =BC =1, 所以△OAC ≌△OBC ,所以∠ACO =∠BCO =12∠ACB =60°,故△OAC 和△OBC 都为等边三角形,可得OA =AC =CB =BO =1, 即四边形OACB 为菱形,所以OB ∥AC ; 又AC ⊂平面PAC ,OB ⊄平面PAC , 所以BO ∥平面PAC . (2)因为BO ∥平面PAC ,所以BO 到平面PAC 的距离即为点O 到平面PAC 的距离,记为d , 由题意知PA =PC =PO 2+OA 2=64+1=102,AC =1, 所以S △PAC =12×1×⎝ ⎛⎭⎪⎫1022-⎝ ⎛⎭⎪⎫122=34,S △OAC =12×1×1×sin 60°=34,又因为V P ­OAC =V O ­PAC ,所以13×S △OAC ×PO =13×S △PAC ×d ,即13×34×62=13×34×d ,解得d =22, 所以BO 与平面PAC 之间的距离为22.空间距离求法(1)点线距的求解步骤:直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.(2)点面距的求解步骤: ①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.|跟踪训练|在棱长均为a 的正三棱柱ABC ­A 1B 1C 1中,D 是侧棱CC 1的中点,则点C 1到平面AB 1D 的距离为( )A.24a B.28a C.324aD.22a 解析:选A.以A 为空间直角坐标原点,以垂直于AC 的直线为x 轴,以AC 为y 轴,以AA 1为z 轴建立空间直角坐标系.由ABC ­A 1B 1C 1是棱长均为a 的正三棱柱,D 是侧棱CC 1的中点, 故A ()0,0,0,B 1⎝ ⎛⎭⎪⎫3a 2,a 2,a ,D ⎝ ⎛⎭⎪⎫0,a ,a 2,C 1(0,a ,a ),所以AB 1→=⎝ ⎛⎭⎪⎫3a 2,a 2,a ,DC 1→=⎝⎛⎭⎪⎫0,0,a 2,AD →=⎝ ⎛⎭⎪⎫0,a ,a 2 设平面AB 1D 的法向量是n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·AB 1→=3a 2x +a 2y +az =0,n ·AD →=ay +a2z =0,取n =(3,1,-2),故点C 1到平面AB 1D 距离d =|DC 1→·n ||n |=a 3+1+4=24a .考点二 空间角(多维探究)复习指导:了解线线角、线面角、面面角的概念并会利用空间向量进行求解. 角度1 用向量求异面直线所成的角(1)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2B.π3C.π4D.π6(2)如图所示,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →,若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为________. 【解析】 (1)以A 为原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),所以D ⎝ ⎛⎭⎪⎫22,22,0,所以AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C →=(0,2,-2),所以cos 〈AD →,A 1C →〉=AD →·A 1C →|AD →||A 1C →|=12,所以〈AD →,A 1C →〉=π3.故选B.(2)以D 为原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系(图略).正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0). 所以D 1E →=(0,2,-1),A 1F →=A 1A →+AF →=A 1A →+λAD →=(0,0,-2)+λ(-2,0,0)=(-2λ,0,-2).则cos 〈A 1F →,D 1E →〉=A 1F →·D 1E →|A 1F →|·|D 1E →|=22λ2+1·5,所以225·λ2+1=3210,解得λ=13(λ=-13舍去).【答案】 (1)B (2)13(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.角度2 线面角(2021·高考浙江卷)如图,在四棱锥P ­ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN与平面PDM所成角的正弦值.【解】(1)证明:因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)方法一:由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,PM⊥DC,MD∩DC=D,所以PM⊥平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=23,连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos∠BAN=15 6.方法二:因为PM⊥MD,PM⊥DC,所以PM⊥平面ABCD.连接AM,则PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以AM =7,又PA=15,所以PM=2 2.由(1)知CD⊥DM,过点M 作ME∥CD交AD于点E,则ME⊥MD.故可以以M为坐标原点,MD,ME,MP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(-3,2,0),P(0,0,22),C(3,-1,0),N(32,-12,2),所以AN→=(332,-52,2).易知平面PDM的一个法向量为n=(0,1,0).设直线AN与平面PDM所成的角为θ,则sin θ=|cos〈AN→,n〉|=|AN→·n||AN→|·|n|=5215=156.故直线AN与平面PDM所成角的正弦值为156.求直线与平面所成角的主要方法(1)定义法:利用定义作出直线和平面所成的角,然后在三角形中利用几何方法求解.(2)向量法:求出直线的方向向量与平面的法向量,先求向量夹角进而求出直线和平面所成的角.角度3 利用空间向量求两个平面的夹角(2021·新高考卷Ⅱ改编)在四棱锥Q­ABCD中,底面ABCD是正方形,若AD=2,QD=QA=5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求平面BDQ与平面QDA夹角的余弦值.【解】(1)证明:取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=5,故QO=5-1=2.在正方形ABCD中,因为AD=2,DO=1,故CO=5,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC.因为OC∩AD=O,AD,OC⊂平面ABCD,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间直角坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ→=(-2,1,2),BD→=(-2,2,0).设平面QBD的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧n ·BQ →=0,n ·BD →=0,即⎩⎨⎧-2x +y +2z =0,-2x +2y =0,取x =1,则y =1,z =12,故n =⎝ ⎛⎭⎪⎫1,1,12.而平面QAD 的一个法向量为m =(1,0,0), 故cos 〈m ,n 〉=11×32=23.所以,所求平面BDQ 与平面QDA 夹角的余弦值为23.用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.|跟踪训练|(2022·安丘过程性测试)如图,在四棱锥P ­ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD = 3.(1)求证:平面MQB ⊥平面PAD ;(2)若平面MBQ 与平面BQC 的夹角为30°,求直线QM 与平面PAD 所成角的正弦值. 解:(1)证明:因为AD ∥BC ,BC =12AD ,Q 为AD 的中点,则QD ∥BC 且QD =BC ,所以四边形BCDQ 为平行四边形,所以CD ∥BQ , 因为∠ADC =90°,所以∠AQB =90°,即BQ ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BQ ⊂平面ABCD , 所以BQ ⊥平面PAD ,因为BQ ⊂平面MQB ,所以平面MQB ⊥平面PAD .(2)因为PA =PD ,Q 为AD 的中点,所以PQ ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PQ ⊂平面PAD ,所以PQ ⊥平面ABCD ,又因为BQ ⊥AD ,所以以Q 为原点,以QA ,QB ,QP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Q ­xyz ,则Q()0,0,0,A()1,0,0,P()0,0,3,B()0,3,0,C ()-1,3,0,设PM →=λPC →=λ()-1,3,-3=()-λ,3λ,-3λ,其中0≤λ≤1, 所以QM →=QP →+PM →=()0,0,3+(-λ,3λ,-3λ)=()-λ,3λ,3-3λ,又QB →=()0,3,0,设平面MBQ 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧m ·QM →=0,m ·QB →=0,所以⎩⎪⎨⎪⎧-λx +3λy +3()1-λz =03y =0,取x =3(1-λ),得m =()3()1-λ,0,λ, 由题意知平面BQC 的一个法向量为n =()0,0,1,因为平面MBQ 与平面BQC 的夹角为30°,所以||cos 〈m ,n 〉=||m ·n ||m ·||n =λ4λ2-6λ+3=32, 因为0≤λ≤1,解得λ=34,所以QM →=⎝ ⎛⎭⎪⎫-34,334,34,易知平面PAD 的一个法向量为u =()0,1,0,sin θ=|cos 〈QM →,u 〉|=|QM →·u |||QM →·||u =334394=31313.所以QM 与平面PAD 所成角的正弦值为31313.[A 基础达标]1.(2022·江淮名校阶段检测)已知平面α的一个法向量是m =(-2,-1,2),点A (3,4,-1)是平面α内的一点,则点P (1,2,-1)到平面α的距离是( )A .1 B.322C.2D.2 2解析:选C.因点A (3,4,-1)是平面α内的一点,而P (1,2,-1),则AP →=(-2,-2,0),又平面α的一个法向量是m =(-2,-1,2),所以点P 到平面α的距离d =|m ·AP →|||m =|4+2|4+1+4=2.2.(2022·上海一模)如图,点A ,B ,C 分别在空间直角坐标系O ­xyz 的三条坐标轴上,OC →=(0,0,2),OA →=(1,0,0),OB →=(0,2,0),设平面CAB 与平面ABO 的夹角为θ,则cos θ=( )A.63B.66C.24D.34解析:选 B.因为OC →=(0,0,2),OA →=(1,0,0),OB →=(0,2,0),所以AB →=(-1,2,0),AC →=(-1,0,2),设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC →·n =0,AB →·n =0即⎩⎨⎧-x +2z =0,-x +2y =0,取n =(2,1,1),又因为平面ABO 的法向量为OC →=(0,0,2), 所以cos θ=|OC →·n ||OC →|·|n |=22×6=66,故选B.3.(多选)如图,三棱锥P ­ABC 中,PA ⊥平面ABC ,AB =2,BC =23,AC =4,A 到平面PBC 的距离为455,则( ) A .PA =4B .三棱锥P ­ABC 的外接球的表面积为32π C .直线AB 与直线PC 所成角的余弦值为216D .AB 与平面PBC 所成角的正弦值为255解析:选ABD.因为AB =2,BC =23,AC =4, 所以AB 2+BC 2=AC 2,即AB ⊥BC , 又因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC ,设AP =a ,根据等体积法V P ­ABC =V A ­PBC ,即13×12×2×23×a =13×12×23×a 2+4×455,解得a =4,所以AP =a =4,故A 选项正确;所以三棱锥P ­ABC 的外接球的半径与以BC ,BA ,AP 为邻边的长方体的外接球的半径相等,所以三棱锥P ­ABC 的外接球的半径为22,所以三棱锥P ­ABC 的外接球的表面积为32π,故B 选项正确; 过点B 作PA 的平行线BD ,则BD ⊥平面ABC ,所以以点B 为坐标原点,BC ,BA ,BD 所在边分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),C (23,0,0),A (0,2,0),P (0,2,4), 所以AB →=(0,-2,0),PC →=(23,-2,-4), 所以cos 〈AB →,PC →〉=AB →·PC →|AB →||PC →|=42×42=24,所以直线AB 与直线PC 所成角的余弦值为24,故C 选项错误;因为BC →=(23,0,0),BP →=(0,2,4), 设平面PBC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·BP →=0,m ·BC →=0,即⎩⎨⎧x =0,y =-2z ,令z =1,所以m =(0,-2,1),由于AB →=(0,-2,0), 故设AB 与平面PBC 所成角为θ, 则sin θ=||cos 〈m ,AB →〉=||AB →·m |m |·|AB →|=42×5=255, 所以AB 与平面PBC 所成角的正弦值为255,故D 选项正确.4.如图所示,在长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为________.解析:如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0). 则D 1E →=(1,1,-1),AC →=(-1,2,0),AD →1=(-1,0,1). 设平面ACD 1的法向量为n =(a ,b ,c ),则⎩⎪⎨⎪⎧n ·AC →=-a +2b =0,n ·AD →1=-a +c =0,取a =2,得n =(2,1,2),所以点E 到平面ACD 1的距离h =|D 1E →·n ||n |=|2+1-2|3=13.答案:135.如图,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面ABC ,AA 1=AC =BC =2,∠ACB =90°,E 是CC 1的中点.(1)求直线BC 1与平面A 1BE 所成角的正弦值; (2)求点C 到平面A 1BE 的距离.解:(1)由AA 1⊥平面ABC ,则在三棱柱ABC ­A 1B 1C 1中CC 1⊥平面ABC , 由AC ,BC ⊂平面ABC ,故CC 1⊥AC ,CC 1⊥BC ,又∠ACB =90°,所以CC 1,AC ,BC 两两垂直,故可构建以C 为原点,CA →,CB →,CC 1→为x 、y 、z 轴正方向的空间直角坐标系(图略),所以B (0,2,0),E (0,0,1),A 1(2,0,2),C 1(0,0,2),则BC 1→=(0,-2,2),BE →=(0,-2,1),EA 1→=(2,0,1),若m =(x ,y ,z )是平面A 1BE 的一个法向量,则⎩⎨⎧-2y +z =0,2x +z =0,令z =2,有m =(-1,1,2),所以|cosBC →1,m|=⎪⎪⎪⎪⎪⎪⎪⎪BC 1→·m |BC 1→||m |=222×6=36,故直线BC 1与平面A 1BE 所成角的正弦值为36. (2)由V C ­A 1BE =V A 1­BCE ,由(1)易知S △BCE =12CE ·BC =1,A 1到面BCE 的距离为A 1C 1=2,若C 到平面A 1BE 的距离为d ,又EA 1=BE =5,BA 1=23,则S △A 1BE =12×23×5-3=6,由13d ·S △A 1BE =13A 1C 1·S △BCE ,可得d =63. 所以点C 到平面A 1BE 的距离为63. 6.如图,在三棱锥P ­ABC 中,△PAC 是正三角形,AC ⊥BC ,AC =BC ,D 是AB 的中点.(1)求证:AC ⊥PD ;(2)若AC =BC =PD =2,求直线PC 与平面PAB 所成的角的正弦值.解:(1)证明:取AC 中点O ,连接OP ,OD ,因为OD ∥CB ,AC ⊥CB ,所以AC ⊥OD , △PAC 为正三角形,所以PO ⊥AC ,⎭⎬⎫AC ⊥ODAC ⊥PO PO ∩OD =O ⇒AC ⊥平面POD ,PD ⊂平面POD ,所以AC ⊥PD . (2)由(1)及PD 2=PO 2+OD 2,知OA ,OP ,OD 两两垂直,建立如图所示的空间直角坐标系:O (0,0,0),A (1,0,0),D (0,1,0),C (-1,0,0),P (0,0,3),PC →=(-1,0,-3),PA →=(1,0,-3),PD →=(0,1,-3),设平面PAB 法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PA →=0n ·PD =0⇒⎩⎪⎨⎪⎧x -3z =0,y -3z =0,令z =1, n =(3,3,1),所以sin θ=|cosPC →,n|=|PC →·n ||PC →|·|n |=|-3-3|2×7=217.即直线PC 与平面PAB 所成的角的正弦值为217. [B 综合应用]7.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD, EF ∥AB ,∠BAF =90°,AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(1)若P 是DF 的中点, ①求证:BF ∥ 平面ACP ;②求异面直线BE 与CP 所成角的余弦值; (2)若平面DAP 与平面APC 夹角的余弦值为63,求PF 的长度. 解:(1)①证明:连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线, 所以BF ∥OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP , 所以BF ∥ 平面ACP . ②因为∠BAF =90°, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,AF ⊂平面ABEF , 所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系A ­xyz .所以B (1,0,0),E ⎝ ⎛⎭⎪⎫12,0,1,P ⎝ ⎛⎭⎪⎫0,1,12,C (1,2,0).所以BE →=⎝ ⎛⎭⎪⎫-12,0,1,CP →=⎝ ⎛⎭⎪⎫-1,-1,12,所以cos 〈BE →,CP →〉=BE →·CP →|BE →|·|CP →|=4515, 即异面直线BE 与CP 所成角的余弦值为4515.(2)因为AB ⊥平面ADF ,所以平面APD 的法向量为n 1=(1,0,0). 设P 点坐标为(0,2-2t ,t )(0<t <1),在平面APC 中,AP →=(0,2-2t ,t ),AC →=(1,2,0), 设平面APC 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AP →=(2-2t )y +tz =0,n 2·AC →=x +2y =0,取y =1,则x =-2,z =2t -2t,得平面APC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫-2,1,2t -2t , 所以cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=2(-2)2+1+⎝⎛⎭⎪⎫2t -2t 2=63, 解得t =23或t =2(舍).所以P ⎝ ⎛⎭⎪⎫0,23,23,所以PF 的长度|PF |=(0-0)2+⎝ ⎛⎭⎪⎫23-02+⎝ ⎛⎭⎪⎫23-12=53.[C 素养提升]8.如图所示,在四棱锥P ­ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 夹角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长. 解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A ­xyz .则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2), A (0,0,0).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1, 所以m =(1,1,1)是平面PCD 的一个法向量, 从而|cos 〈AD →,m 〉|=|AD →·m ||AD →|·|m |=33.所以平面PAB 与平面PCD 夹角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1). 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ). 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →|·|DP →|=1+2λ10λ2+2,设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010,因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值,又因为BP =12+22=5,所以BQ =25BP =255.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第56练 向量法求解立体几何问题
于直线AB ,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP .
(1)设点M 为棱PD 的中点,求证:EM ∥平面ABCD ;
(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值为2
5?若存在,试确
定点N 的位置;若不存在,请说明理由.
2.(2017·上饶月考)如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,
AF =1,M 是线段EF 的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
3.(2017·南昌月考)如图,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D 为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)在线段CC1(不含端点)上,是否存在点E,使得二面角E-B1D-B的余弦值为-
7
14
?若存
在,求出CE
CC1
的值;若不存在,说明理由.
4.(2017·太原质检)如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -
ABCD 组合而成的,AD ⊥AF ,AE =AD =2.
(1)证明:平面PAD ⊥平面ABFE ;
(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是22
3.
答案精析
1.(1)证明 因为平面ABCD ⊥平面ABPE ,且BC ⊥AB ,所以BC ⊥平面ABPE ,所以BA ,BP ,
BC 两两垂直.以B 为原点,BA →,BP →,BC →
的方向分别为x 轴,y 轴,z 轴的正
方向,建立如图所示的空间直角坐标系,则P (0,2,0),D (2,0,1),M ⎝
⎛⎭⎪⎫1,1,12,E (2,1,0),C (0,0,1),
所以EM →=⎝

⎭⎪⎫-1,0,12.
易知平面ABCD 的一个法向量为n =(0,1,0), 所以EM →·n =⎝ ⎛⎭⎪⎫-1,0,12·(0,1,0)=0,所以EM →⊥n .
又EM ⊄平面ABCD ,所以EM ∥平面ABCD .
(2)解 当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为2
5
.
理由如下:因为PD →=(2,-2,1),CD →
=(2,0,0),设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨
⎪⎧
n 1·PD →=0,n 1·CD →=0,
得⎩
⎪⎨
⎪⎧
2x 1-2y 1+z 1=0,
2x 1=0.
取y 1=1,得平面PCD 的一个法向量为n 1=(0,1,2).
假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成角α的正弦值为2
5.
设PN →=λPD →
(0≤λ≤1),
则PN →
=λ(2,-2,1)=(2λ,-2λ,λ), BN →=BP →+PN →
=(2λ,2-2λ,λ).
所以sin α=|cos 〈BN →
,n 1〉|=|BN →
·n 1|
|BN →
|·|n 1|

2
5·(2λ)2
+(2-2λ)2
+λ
2

2
5·9λ2
-8λ+4=25
. 所以9λ2
-8λ+4=5,解得λ=1或λ=-19
(舍去).
因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值为25
. 2.证明 (1)建立如图所示的空间直角坐标系,
设AC ∩BD =N ,连接NE , 则点N ,E 的坐标分别为(
22,2
2
,0),(0,0,1). 所以NE →
=(-22,-22
,1).
又点A ,M 的坐标分别是(2,2,0),(22,2
2
,1), 所以AM →
=(-22,-22,1).
所以NE →=AM →
,且NE 与AM 不共线.
所以NE ∥AM .又因为NE ⊂平面BDE ,AM ⊄平面BDE , 所以AM ∥平面BDE .
(2)由(1)知AM →
=(-22,-22,1),
因为D (2,0,0),F (2,2,1), 所以DF →
=(0,2,1). 所以AM →·DF →=0,所以AM →⊥DF →, 所以AM ⊥DF ,同理AM ⊥BF , 又DF ∩BF =F ,DF ⊂平面BDF ,
BF ⊂平面BDF ,
所以AM ⊥平面BDF .
3.(1)证明 取AB 的中点O ,连接OD ,OB 1.因为B 1B =B 1A ,所以OB 1⊥AB .
又AB ⊥B 1D ,OB 1∩B 1D =B 1,OB 1⊂平面B 1OD ,B 1D ⊂平面B 1OD , 所以AB ⊥平面B 1OD ,
因为OD ⊂平面B 1OD ,所以AB ⊥OD . 由已知条件知,BC ⊥BB 1, 又OD ∥BC ,所以OD ⊥BB 1.
因为AB ∩BB 1=B ,AB ⊂平面ABB 1A 1,BB 1⊂平面ABB 1A 1, 所以OD ⊥平面ABB 1A 1.
因为OD ⊂平面ABC ,所以平面ABB 1A 1⊥平面ABC .
(2)解 由(1)知OB ,OD ,OB 1两两垂直,所以以O 为坐标原点,OB →,OD →,OB 1→
的方向分别为x 轴,y 轴,z 轴的正方向,|OB →
|为单位长度1,建立如图所示的空间直角坐标系,连接B 1C .
由题设知,B 1(0,0,3),B (1,0,0),D (0,1,0),A (-1,0,0),C (1,2,0),C 1(0,2,3), ∴B 1D →=(0,1,-3),B 1B →=(1,0,-3),CC 1→
=(-1,0,3),
B 1
C →=(1,2,-3),设CE →=λCC 1→
(0<λ<1),
由B 1E →=B 1C →+CE →
=(1-λ,2,3(λ-1)),设平面BB 1D 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨
⎪⎧
m ·B 1D →=0,
m ·B 1B →=0,
得⎩⎨

y 1-3z 1=0,x 1-3z 1=0,
令z 1=1,则x 1=y 1=3,
所以平面BB 1D 的法向量为m =(3,3,1).
设平面B 1DE 的法向量为n =(x 2,y 2,z 2),则⎩⎪⎨
⎪⎧
n ·B 1D →=0,
n ·B 1E →=0,
得⎩⎨

y 2-3z 2=0,
(1-λ)x 2+2y 2+3(λ-1)z 2=0,
令z 2=1,则x 2=
3?λ+1?
λ-1
,y 2=3,
所以平面B 1DE 的一个法向量n =(
3(λ+1)
λ-1
,3,1).
设二面角E -B 1D -B 的大小为θ,
则cos θ=
m ·n
|m ||n |
=3λ+3
λ-1+3+17·
3⎝ ⎛⎭
⎪⎫λ+1λ-12+4=-
714
. 解得λ=1
3
.
所以在线段CC 1上存在点E ,使得二面角E -B 1D -B 的余弦值为-
714,此时CE CC 1=13
. 4.(1)证明 在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD . 又AD ⊥AF ,AB ∩AF =A ,AD ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE , 所以AD ⊥平面ABFE . 因为AD ⊂平面PAD ,
所以平面PAD ⊥平面ABFE .
(2)解 由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设h 为点P 到平面ABCD 的距离.
则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h,1),AF →=(2,2,0),AC →=(2,0,2),AP →
=(1,-h,1).
设平面AFC 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨
⎪⎧
m ·AF →=2x 1+2y 1=0,
m ·AC →=2x 1+2z 1=0,
取x 1=1,则y 1=z 1=-1, 所以m =(1,-1,-1).
设平面AFP 的一个法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨
⎪⎧
n ·AF →=2x 2+2y 2=0,
n ·AP →=x 2-hy 2+z 2=0,
取x 2=1,则y 2=-1,z 2=-1-h , 所以n =(1,-1,-1-h ).
因为二面角C -AF -P 的余弦值为22
3

所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+1+1+h |3×2+(h +1)2
=22
3, 解得h =1.。

相关文档
最新文档