高中数学 2.1.1指数与指数幂的运算(二)教案 新人教A版必修1

合集下载

【成才之路】2014-2015学年高中数学 2.1.1 指数与指数幂的运算 第2课时 分数指数幂课件 新人教A版必修1

【成才之路】2014-2015学年高中数学 2.1.1 指数与指数幂的运算 第2课时 分数指数幂课件 新人教A版必修1

4
B. a-1 D. 1 4 a-1
[答案] B
[解析] 要使原式有意义,则 a-1>0 . 4 1-a ·
2

3 1 - (a - 1) 4 = (a - 1)· (a - 1) 3 = |1 - a|· a-1

3 4
=(a-1)
1 4
= a-1.
4
随堂测评
1. 若 a>0, 且 m, n 为整数, 则下列各式中正确的是( A.a ÷ a =a
1 -22=(-2)3 3 x3y3=xy4
2 2
)
4 3
(x>0,y>0)
1 -b 3
C. a -b
1 =a3
3 x y 1 - D. y=(x) 3
(x≠0,y≠0)
[答案] D
5.若10x=3,10y=4,则10x-y=________.
[答案] 3 4
x 10 3 x-y [解析] 10 =10y=4.
m n
m n
)
B.am· an=am+n D.1-an=a0-n
C.(am)n=am+n
[答案] B
2. a-2可化为( A.a

5
)
5 B.a2 5 D.-a2
2 5
2 C.a5
[答案] A
4 3.a5
的根式为(
4 4
) B. a5
5
A. a C.
5
4
a5
D.
a4
[答案] A
4.下列各式中正确的是( A. B. 6
规律总结: 在将根式化分数指数幂的形式时,关键
是分清指数中分子、分母的位置.
1
将下列根式与分数指数幂进行互化.

浙江省嘉兴市北京师范大学南湖附属学校高中数学 2.1.1指数教案 新人教A版必修1

浙江省嘉兴市北京师范大学南湖附属学校高中数学 2.1.1指数教案 新人教A版必修1

浙江省嘉兴市北京师范大学南湖附属学校高中数学 2.1.1指数教案新人教A版必修1教学目的:(1)掌握根式的概念;(2)规定分数指数幂的意义;(3)学会根式与分数指数幂之间的相互转化;(4)理解有理指数幂的含义及其运算性质;(5)了解无理数指数幂的意义教学重点:分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质教学难点:根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂.教学过程:一、引入课题1.以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性2.由实例引入,了解指数指数概念提出的背景,体会引入指数的必要性;3.复习初中整数指数幂的运算性质;4.初中根式的概念;如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根;二、新课教学(一)指数与指数幂的运算1.根式的概念一般地,如果ax n=,那么x叫做a的n次方根(n th root),其中n>1,且n∈N*.当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示.式子n a叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n次方根用符号n a表示,负的n次方根用符号-n a表示.正的n次方根与负的n次方根可以合并成±n a(a>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作0n.0=思考:(课本P58探究问题)n n a=a一定成立吗?.(学生活动)结论:当n 是奇数时,a a n n =当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n 例1.(教材P 58例1).解:(略)巩固练习:(教材P 58例1)2.分数指数幂正数的分数指数幂的意义规定:0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.有理指数幂的运算性质(1)r a ·s r r a a +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题例2.(教材P 60例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用.巩固练习:(教材P 63练习1-3)4. 无理指数幂结合教材P 62实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.思考:(教材P 63练习4)巩固练习思考::(教材P 62思考题)例3.(新题讲解)从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出31升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?解:(略)点评:本题还可以进一步推广,说明可以用指数的运算来解决生活中的实际问题.三、 归纳小结,强化思想。

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

数,负数没有 n 次方根。此时正数 a 的 n 次方根可表示为: n a (a 0)
其中 n a 表示 a 的正的 n 次方根, n a 表示 a 的负的 n 次方根。
例 3.根据 n 次方根的概念,分别求出 0 的 3 次方根, 0 的 4 次方根。 解:因为不论 n 为奇数,还是偶数,都有 0n=0,所以 0 的 3 次方根, 0 的 4 次方根均为 0。
当 n 为奇数时,由 n 次方根定义得: a n a n
当 n 为偶数时,由 n 次方根定义得: a n an
则 |a | | n an | n an
综上所述: (n a) n
a, n为奇数 | a |, n为偶数
注意:性质②有一定变化,大家应重点掌握。 (III )例题讲解 例 1.求下列各式的值:
am an
am
n
;又因为
( a )n 可看作 a m a n ,所以
b
(a)n b
an bn
可以 归入性质
( ab) n
an bn (n ∈ Z) ) , 这是为下面学习分数指数幂的概念和性
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
质做准备。为了学习分数指数幂,先要学习
n 次根式( n N * )的概念。
(2)填空( 3),( 4)复习了平方根、立方根这两个概念。如:
22=4 ,( -2 )2=4
2
, -2 叫 4 的平方根
23=8
2 叫 8 的立方根;
(-2 ) 3=-8 -2 叫-8 的立方根
25=32
2 叫 32 的 5 次方根

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算
有理指数幂的运算性质,对于无理数指数幂都适用
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1

a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

2.1.1指数与指数幂的运算(第二课时)(胡文娟)一、教学目标 (一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础. (二)学习目标1.理解有理数指数幂的含义及其运算性质. 2.运用有理数指数幂运算性质进行计算. (三)学习重点1.有理数指数幂的运算性质. 2.运用有理数指数幂的性质进行计算. (四)学习难点有理数指数幂的运算性质及其应用 二、教学设计 (一)课前设计 1.预习任务(1)求下列各式的值:①0232)2017(2)8(--⋅--;②21)62581(-详解:①原式014164121)8(3232=-⋅=-⋅-=; ②原式925)53()53(2214==⎥⎦⎤⎢⎣⎡=--.(2)计算下列各式.①=⋅2222 ,=⋅212122 ; ②=22)2( ,=221)2( ; ③=⨯2)32( ,=⨯21)32( ;观察上面的计算结果,你能得出什么结论? 结论: . 详解: ①16222242222===⋅+,222221212121==⋅+;②1622)2(42222===⨯,22)2(221221==⨯;③3632)32(222=⨯=⨯,632)32(212121=⨯=⨯.结论:整数指数幂的运算性质对于有理数指数幂也适用.2.预习自测(1)对于0>a ,Q ,∈s r ,以下运算中正确的是( ) A .rs s r a a a =⋅B .s r s r a a +=)(C .r r r b a ba-=)(D .s r s r ab b a +=)(【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】s r s r a a a +=⋅,A 选项错;rs s r a a =)(,B 选项错;由有理数指数幂的运算性质得D 选项不成立.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】C .(2)下列各式正确的是( ) A .y x y x 3223=B .)0()(2<=-x x xC .x x x =⋅52D .35332x x x =⋅【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】32x y = A (0)x x =-< B 59x == D 错.【思路点拨】根据根式与分数指数幂的互化进行判断. 【答案】C .(3)将33611xx x ⋅(0>x )化简,结果正确的是( )A .xB .611x C .6xD .1【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】【解题过程】103123611312361133611===⋅=⋅--x xxx xxx x【思路点拨】运用根式与分数指数幂的互化关系以及有理数指数幂的运算性质进行化简. 【答案】D . (4)计算2231224-+⋅的结果是( )A .16B .32C .64D .128【知识点】有理数指数幂的运算性质及其化简求值. 【数学思想】 【解题过程】322224522322222312===⋅-++-+.【思路点拨】运用有理数指数幂的运算性质,同底数的幂相乘底数不变指数相加. 【答案】B . (二)课堂设计 1.知识回顾正整数指数幂的运算性质:*0,,r s r sa a a a r s +=>∈N () *0,,r s rs a a a r s =>∈N ()() *0,0,r r r ab a b a b r =>>∈N ()()2.问题探究探究一 有理数指数幂的含义及其运算性质★ ●活动① 有理数指数幂的含义前面我们学习了正数的正指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n m nm 也规定了正数的负指数幂的意义:1*()0,,,1)m m nnaa a m n N n --==>∈>在规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 【设计意图】通过回顾已学知识归纳总结,加深学生对有理数指数幂的理解. ●活动② 有理数指数幂的运算性质回顾整数指数幂的运算性质,在规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质对于有理数指数幂是否仍然适用呢?(学生讨论给出结论)答案是肯定的,整数指数幂的运算性质对于有理数指数幂也同样适用,即对于任意有理数r ,s ,均有下面的运算性质:0,,Q r s r sa a a a r s +=>∈() 0,,Q r s rs a a a r s =>∈()() 0,0,Q r r r ab a b a b r =>>∈()()【设计意图】通过学生自己思考得出整数指数幂的运算性质对于有理数指数幂也同样适用的结论,为后面运用有理数指数幂的运算性质进行化简计算做铺垫. ●活动③ 有理数指数幂的化简求值阅读教材51页至52页,从书中的例子中,我们可以总结得出有理数指数幂的化简求值的一般步骤有:第一步找同底数幂,调换位置时注意做到不重不漏;第二步合并同类项,同底数的幂相乘,底数不变,指数相加,同底数的幂相除则底数不变指数相减;第三步同底数幂相加减,能合并的就合并,不能合并就按照升幂或降幂排列.【设计意图】强调学生在进行有理数指数幂的化简求值时要注意正确步骤,更容易得出正确结果.探究二 运用有理数指数幂运算性质进行计算★▲ ●活动① 巩固基础,检查反馈例1 如果a >0,b >0,m ,n 都是有理数,下列各式错误的是( ) A .mn n m a a =)( B .n m n m a a a --=C .n n n b a ba-⋅=)( D .n m n m a a a +=+【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】D 选项不成立.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】D .同类训练 对任意实数a ,下列关系式不正确的是( ). A .a a =2132)( B .313221)(a a = C .513153)(a a =-- D .515331)(a a =【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】A 选项中312132)(a a =.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】A .例2 若210x =25,则10x -等于( )A .-51B .51C .501 D .6251 【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】221025(10)25105x x x =∴=∴=Q ,,或510-=x (舍去),5110110==∴-x x . 【思路点拨】利用有理数指数幂的运算法则进行化简. 【答案】B .同类训练 已知31=+aa ,则2121-+a a 等于()A .2B .5C .5-D .5±【知识点】有理数指数幂的化简求值.【数学思想】【解题过程】52122121=++=+-aa a a )(. 【思路点拨】利用有理数指数幂的运算法则进行化简. 【答案】B .●活动② 强化提升、灵活应用例3 用分数指数幂的形式表示下列各式(a >0): (1)a a ⋅3(2)322a a ⋅ (3)3a a【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】转化与化归思想. 【解题过程】(1)272133a a a a a =⋅=⋅(2)38322322a a a a a =⋅=⋅(3)3221313a a a a a =⋅=⋅)( 【思路点拨】熟练掌握根式与分数指数幂的互化关系. 【答案】(1)27a ,(2)38a ,(3)32a . 同类训练 用分数指数幂表示下列各式.(1))0(4>a a a ; (2))0()(542≥++⋅+n m n m n m )(;(3)3x x )0(≥x . 【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质及其化简求值. 【数学思想】转化与化归思想.【解题过程】(1)272144a a a aa =⋅=- (2)32542542)()()()()(n m n m n m n m n m +=+⋅+=+⋅+(3)2131213)(x x x x x =⋅=【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】(1)27a ,(2)3)(n m +,(3)21x . 例4 求值25.04245.0081)2()4(5.7])43[(+-+⨯--【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】转化与化归思想.【解题过程】原式5316151)3(2)4(21514144241=++-=+-+⨯-=)(【思路点拨】运用根式与分数指数幂的互化和有理数指数幂的运算性质进行化简求值. 【答案】5.同类训练 计算:5.02120)01.0()416(2)532(-⋅+--【知识点】有理数指数幂的运算性质及其化简. 【数学思想】【解题过程】111020.52222311251(2)2(6)(0.01)1()()5424100---+⋅-=+⋅-1211111145101010=+⋅-=+-=.【思路点拨】根据有理数指数幂的运算性质直接进行计算. 【答案】1.【设计意图】加强学生对有理数指数幂的运算性质的应用的掌握. ●活动③ 强化提升、灵活应用 例5 化简:)00()65)(41(561312112132>>-----y x y x y x yx ,.【知识点】有理数指数幂的运算性质及其化简. 【数学思想】转化与化归思想. 【解题过程】原式61313221326121311213224242455y yx y x yx y x ===---+--【思路点拨】熟练运用有理数指数幂的化简性质进行计算. 【答案】6124y . 同类训练 化简:)00()(3131421413223>>⋅-b a ba b a ab b a ,【知识点】有理数指数幂的运算性质及其化简. 【数学思想】转化与化归思想.【解题过程】原式b aab ba ba ab b a b a ===⋅⋅=---++-+-13123113116123313122132213123)()(【思路点拨】熟练运用有理数指数幂的化简性质进行计算.【答案】ba.例6 先化简,再求值1111111111()(244) 2.11x x x x x x x ---------+---=+-,其中【知识点】有理数指数幂的化简求值. 【数学思想】转化与化归思想. 【解题过程】原式)1)(1()442(4)442()1)(1()1()1(11111111111112121-+---=---++--=---------------x x x x x x x x x x x xxx x x x x x x x x +-=+-=-+-=-+++-=---------1111)1)(1()1()1)(1(121111211121,当2=x 时,原式31-=. 【思路点拨】通过有理数指数幂的运算性质以及平方差公式和完全平方公式将原式化简,再求值即可.【答案】31-.同类训练 已知8=x ,求111113131313132--++++++-x xx x x x x x 的值.【知识点】有理数指数幂的运算性质及其化简. 【数学思想】【解题过程】∵8=x ,∴231=x ,原式101228121812418=--++++++-=.【思路点拨】根据有理数指数幂的运算性质直接带值进行计算. 【答案】10.【设计意图】加强学生对有理数指数幂的运算性质的应用的掌握. 3.课堂总结 知识梳理(1)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.(2)分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式. 重难点归纳(1)运用有理数幂运算性质进行化简,求值,要掌握解题技巧,注意同底数的幂的运算法则.(2)在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的.(3)对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. (三)课后作业 基础型 自主突破1.=⋅2255)()(( ). A .5 B .5 C .25 D .25 【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】222222255555=⋅=⋅)()(.【思路点拨】直接根据有理数指数幂的运算性质计算. 【答案】C .2.⋅3a 6a -等于( )A .-a -B .-aC .a -D .a【知识点】根式的化简运算,根式与分数指数幂的互化. 【数学思想】分类讨论思想【解题过程】⋅3a 6a -=-⋅31)(a -61)(a -=-21)(a -=-a -.【思路点拨】掌握根式的化简运算以及根式与分数指数幂之间的互化关系. 【答案】A .3.以下各式的化简错误的是( ) A .11513152=-aa aB .()643296b a b a ---=C .y y x y x y x =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--322132413141D .ac cb a cb a 532515433121433121-=---【知识点】有理数指数幂的运算性质及其化简求值. 【数学思想】【解题过程】由有理数指数幂的运算性质可知,A ,B ,C 均正确. 【思路点拨】正确运用有理数指数幂的运算性质. 【答案】D .4.已知2-x +2x =22且x >1,则2x -2-x 的值为( ) A .2或-2B .-2C .6D .2【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】2x -2-x =(x +1-x )(x -1-x )=21)(-+x x 21)(--x x =⋅222-++x x =222-+-x x ⋅222+222-=2. 【思路点拨】运用有理数指数幂的运算性质. 【答案】D .5.若210=m,310=n,则2310nm -=___________.【知识点】幂的运算性质,有理数指数幂的化简. 【数学思想】【解题过程】2310n m -=n m n m -=10·101033-=36231·2101·)10(33==n m .【思路点拨】运用幂的运算性质. 【答案】362. 6.计算下列各式 (1)4325)12525(÷- (2))0(322>⋅a aa a【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质与化简求值. 【数学思想】【解题过程】(1)555555525)12525(66121233243-=-=⨯-=÷--)(.(2)6532212322a aa a aa a =⋅=⋅【思路点拨】运用根式的化简法则和有理数指数幂的运算性质. 【答案】(1)556-,(2)65a . 能力型 师生共研7.已知23--+=b a x , 求46322--+-a x a x 的值. 【知识点】根式与分数指数幂的互化及其化简求值. 【数学思想】转化与化归思想【解题过程】4234632)(2----=+-a x a x a x ,因为23--+=b a x ,所以bb a x 1)(1423==---.【思路点拨】运用分数指数幂进行根式计算.【答案】b 1.8. 化简:=⋅÷--3353225a a a a____________.【知识点】有理数指数幂的运算性质及其化简.【数学思想】 【解题过程】673221313531653353225a aa a aaa a aaa=÷=⋅÷⋅=⋅÷-----.【思路点拨】根据根式的运算性质直接进行计算. 【答案】67a 探究型 多维突破 9.化简:)21)(21)(21)(21(214181161----++++【知识点】有理数指数幂的化简求值. 【数学思想】转化与化归思想. 【解题过程】原式1612141818116121418116116121)21)(21)(21)(21(21)21)(21)(21)(21)(21(------------+++-=-++++-=11611612121161214141)21(2121)21)(21(21)21)(21)(21(----------=-+-=-++-=【思路点拨】分子分母同时乘以16121--.【答案】1161)21(21---.10.已知)00)((21>>+=b a a b b a x ,,求11222---x x x b .【知识点】有理数指数幂的运算性质及其化简运算. 【数学思想】分类讨论思想. 【解题过程】因为)00)((21>>+=b a abb a x ,,所以222)(411)(411a b b a a b b a x -=-+=-,①当0>≥b a 时,)(2112abb a x -=- b a x x =-+12,b a x x x b x x x b -=-+-=---∴)1(121122222;②当b a <<0时,)(2112b a a b x -=-,a b x x =-+12,)1(121122222-+-=---x x x b x x x b aab b -=2 【思路点拨】运用根式与分数指数幂的互化和有理数指数幂的运算性质进行化简求值.【答案】当0>≥b a 时,b a x x x b -=---∴11222;当b a <<0时,11222---x x x b a ab b -=2. 自助餐1.化简()43325⎥⎦⎤⎢⎣⎡-的结果为( )A .5B .5C .5-D .-5【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】【解题过程】()55552143324332===⎥⎦⎤⎢⎣⎡-)(.【思路点拨】根据根式与分数指数幂的互化以及有理数指数幂的运算性质直接进行计算. 【答案】B .2.若522=+-x x ,则=+-x x 44( ) A .29B .27C .25D .23【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】2344,25244222=+∴=++=+---x x x x x x )(.【思路点拨】根据有理数指数幂的运算性质直接进行计算. 【答案】D .3.已知0>a ,则=a aa2121__________.【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】 【解题过程】a a a a a a a aa=⋅=⋅⋅=212121212121212121)()(.【思路点拨】当n 为偶数时,n n a =a ..4.已知9,12==+xy y x ,且y x <,求21212121yx y x +-的值是_______________.【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】9212)(02212121212121--=--=-<-∴<y x y x y x y x ,, 6-=,同理239212)(02212121212121=+=+=+>+y x y x y x ,,故3321212121-=+-yx y x . 【思路点拨】运用有理数指数幂的运算性质. 【答案】33-. 5.已知0>x .(1)化简⨯53xx ⨯35xx 35xx ; (2)若4=x ,求342x x ⋅的值.【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质及其化简求值. 【数学思想】 【解题过程】(1)⨯53xx ⨯35xx =⨯⨯=⨯⨯10151101301151101301===⋅⋅=-+---x xxx x.(2)4331493493412342)(xx xxxx x===⋅=⋅,当4=x 时,22644444343===【思路点拨】运用根式与分数指数幂的互化进行化简运算. 【答案】(1)1;(2).6.计算下列各式(式中字母都是正数) (1))3()6)(2(656131212132b a b a b a -÷- (2)mn n m ⋅-88341)(【知识点】根式与分数指数幂的互化,有理数指数幂的化简求值. 【数学思想】转化与化归思想.【解题过程】(1)a b a b a b a b a b a 4)3(12)3()6)(2(65616567656131212132=-÷-=-÷-)( (2)252521213288341)(---=⋅=⋅n m n m n m mn n m 【思路点拨】正确运用有理数指数幂的运算法则. 【答案】(1)4a ;(2)2525-n m .。

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

备用
1.要使
(5x
1
)
3 4
(x
2
1) 3
有意义,则x的取
值范围是 2
2.计算:1
(a 2
1
a2
1
)(a 2
1
a2
)(a
a2
a1)
a2
3.求值: 3 2 5 12 3 2 2
2.1.1 指数与指数幂的运算
第3课时
指数式的计算与化简
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
(2)在 根 式n am中,若 根 指 数n与 幂 指 数m有 公 约 数 时, 当a 0时 可约 分.当a 0时 不可 随意 约 分. 如8 32 4 3, 10 (2)2 5 2而15 (2)5 3 2.
课堂练习:课本 P54中练习第3题
课外作业:课本 P59习题2.1中A组第2,3,4题
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
小结
1.n次方根的定义:
一般地,如果xn a,那么x叫做a的n次方根, 其中n 1且n N .
2.根式的简单性质: 1) 当n 1, n N *时,总有 (n a )n a.
(1)a a1 7; (2)a2 a2 47;
3
a2 (3) 1
3
a 2
1
(a
1 2
1
a2
)(a
1
a1
1
1
a2
1
a2
)

人教A高中数学必修一2.1.1指数与指数幂的运算


练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?

山东省宁阳实验中学高中数学《2.2指数与指数幂的运算(

山东省宁阳实验中学高中数学《2.2指数与指数幂的运算(二)》学案 新人教A 版必修1第一部分:三维目标 知识与技能目标 能力目标 情感价值观目标 1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.培养学生观察分析、抽象类比的能力 培养学生严谨的思维和科学正确的计算能力.第二部分:自主性学习1. 旧知识铺垫 复习1:一般地,若n x a =,则x 叫做a 的 ,其中1n >,n *∈N . 简记为: . 像n a 的式子就叫做 ,具有如下运算性质:()n n a = ;n n a = .复习2:整数指数幂的运算性质.r s aa ⋅= ;)(a r s = ;)(ab r = .. 2. 新知识学习 1.正整数指数幂:一个非零实数的零次幂的意义是: .负整数指数幂的意义是: . 2.分数指数幂:正数的正分数指数幂的意义是: .正数的负分数指数幂的意义是: .0的正分数指数幂的意义是: . 0的负分数指数幂的意义是: . 3.有理指数幂的运算性质:如果a>0,b>0,r,s∈Q,那么r s a a ⋅= ;)(a r s = ;)(ab r = . 4.根式的运算,可以先把根式化成分数指数幂,然后利用 的运算性质进行运算.5.无理数指数幂的意义一般地,无理数指数幂a α(0a >且α是无理数)是一个确切的实数.3. 我的疑难问题:……第三部分:重难点解析 例1(1)将下列根式写成分数指数幂形式: 253= ; 345= ;m a = (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.例2.化简下列各式(1) 34a a ⋅ (2)a a a例3.计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b -÷-(2)31884()m n -例4.计算下列各式(1)3425125)25(2232(.a a a >0)第四部分:知识整理与框架梳理…………第五部分:习题设计1.基础巩固性习题1. 若0a >,且,m n 为整数,则下列各式中正确的是( ). A. m m n n a a a ÷= B. m n mn a a a ⋅=C. ()n m m n a a +=D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算()1222--⎡⎤-⎢⎥⎣⎦的结果是( ). A .2 B .2- C.22 D .22-4. 化简2327-= . 5. 若102,104m n ==,则3210m n-= .2.能力提升性习题…… 1.下列各式中正确的是( )A.1)1(0-=- B.1)1(1-=-- C.a a 22313=- D.x x x 235)()(=-- 2. 44366399a a 等于( )A 、16aB 、8aC 、4aD 、2a 3.下列互化中正确的是( )A.)0(()21≠=--x x x B.)0(3162<=y y yC.)0,((4343)()≠=-y x x y y x D.331x x -=4.若1,0a b ><,且22b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、2 5.使)23(243x x ---有意义的x的取值范围是( ) A.R B.1≠x 且3≠x C.-3<X<1 D.X<-3或x>1。

高中数学新人教版A版精品教案《2.1.1 指数与指数幂的运算》

2.1.1 指数与指数幂的运算一、教材分析及学情分析:本节是高中数学新人教版必修1的第二章指数函数的内容。

在第一章学完函数概念和基本性质后第二章学习具体的指数函数模型从中学会研究函数的基本方法。

首先需要将指数范围从整数推广到实数。

为指数函数定义域好知识铺垫。

二、三维目标1.知识与技能(1)理解n次方根与根式的概念;(2)理解有理数指数幂的含义,正确运用根式运算性质化简、求值;(3)会根式与分数指数幂的互化。

2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出次方根的概念,进而学习根式的性质引导学生反复理解正分数指数幂的意义。

它不表示相同因式的乘积,而是根式的一种新的写法。

通过两者互化,巩固。

加深对概念的理解。

3.情感、态度与价值观(1)归纳的思想,(2)分类的思想(3)推广的思想(4)逼近的思想三、教学重点(1)根式概念的理解;(2)分数指数幂的意义四、教学难点(1)根式概念的理解(2)分数指数幂与根式的互化。

五、教学策略(发现教学法)1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律2在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内由此让学生体会发现规律,并由特殊推广到一般的研究方法六、教学过程:1由引例发现分数指数幂的存在,从而激发学生探究新知的欲望。

2由二次方根和三次方根的概念推广到n次方根的概念。

3观察归纳得到根式与分数指数幂的互化理解分数指数幂的意义。

4了解用有理数指数幂逼近无理数指数幂得到无理数指数幂的近似值。

5将指数整数推广到实数。

七、小结八、作业。

高中数学 2_1_1 指数与指数幂的运算教案 新人教版必修1

黑龙江省鸡西市高中数学 2.1.1 指数与指数幂的运算教案新人教版必修1课题:§2.1.1指数及指数幂的运算启发式模式与方法教学使学生理根式的概念,掌握n次方根的性质。

目的重点指数的运算难点指数的运算教学内容师生活动及时间分配一,引入课题为了讲解指数函数,需要把指数的概念扩充到实数指数幂,本小节主要学习分数指数幂的概念和运算性质,并给出了无理数指数幂的概念和性质。

2.为了学习分数指数的概念,首先要介绍根式的概念,学生在初中已学习了数的开平方、开立方和二次根式,根式的内容是这些已学内容的推广。

因此要结合这些已学内容引入根式的概念和n次方根的性质。

二、探索新知(一)引出根式的概念。

需要注意的是,当n是奇数时,表示a的n次方根;当n是偶数时,.a≥0,表示正的n次方根或0。

在两种情况下,。

也就是说,先开方,再乘方(同次),结果为被开方数,如果先乘方,再开方(同次),结果是什么呢?可让学生分别求出的结果,然后指出,一般地,当n 为奇数时,,当n为偶数时,。

可向学生说明,当n 是偶数时。

的结果为|a|,是因为≥0时,而则是根据绝对值的意义得出的。

课堂练习: 1、填空:(1)25的平方根是 (2)27的立方根是(3)-32的五次方根为 (4)16的四次方根是2、若244(),a a a -=-则a 的取值范围是 3、求下列各式的值(1)2(5) (2)33(2)- (3)44(2)- (4)2(3)π-.四,小结:教师引导学生总结并补充教师引导学生复习初中所学的公式及相关知识引导讨论x 的范围 加深对于公式的理解及应用欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.1 指数(分数指数幂)
第二课时
提问:
1.习初中时的整数指数幂,运算性质?
00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义
1
(0)n n a a a -=≠
;()m n m n m n mn a a a a a +⋅==
(),()n m mn n n n a a ab a b ==
什么叫实数? 有理数,无理数统称实数.
2.观察以下式子,并总结出规律:a >0

1025a a === ②
842a a === ③
1234a a ===
1025
a a === 小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式). 根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:
23
(0)a a ==>
1
2(0)b b ==>
54(0)c c ==>
*(0,,1)m n a a n N n =>∈>
为此,我们规定正数的分数指数幂的意义为:
*0,,)m
n a a m n N =>∈
正数的定负分数指数幂的意义与负整数幂的意义相同. 即:*1
(0,,)m
n m
n a a m n N a -=>∈
规定:0的正分数指数幂等于0,0的负分数指数幂无意义. 说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n m m m m a a a a a =⋅⋅⋅⋅>
由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂
的运算性质,可以推广到有理数指数幂,即:
(1)(0,,)r s r s a a a
a r s Q +⋅=>∈ (2)()(0,,)r S rs a a a r s Q =>∈
(3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈
若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.

.
当的过剩似值从大于时,方向逼近
(如课本图所示)
所以,的实数. 一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂
的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.
思考: 由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: (0,,)r s r s a a a a r R s R +⋅=>∈∈
()(0,,)r s rs a a a r R s R =>∈∈
()(0,)r r r a b a b a r R ⋅=>∈
3.例题
(1).(P 60,例2)求值
解:① 2223323338(2)2
24⨯==== ② 1
1
12()21222125(5)555
--⨯--====
③ 5151(5)1
()(2)2322----⨯-=== ④33
4()
344162227
()()()81338-⨯--===
(2).(P 60,例3)用分数指数幂的形式表或下列各式(a >0)
解:11
7
333222a a a a a +=⋅==
228
222333a a a a a +⋅==
42
1332()a a ====
分析:先把根式化为分数指数幂,再由运算性质来运算.
课堂练习:P 63练习 第 1,2,3,4题
补充练习:
1. 计算:1221
21(2)()2
48n n n ++-⋅的结果
2. 若1
3
10731033
3,384,[()]n a a a a a -==⋅求的值
小结:
1.分数指数是根式的另一种写法.
2.无理数指数幂表示一个确定的实数.
3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的. 作业:P 69 习题 2.1 第2题。

相关文档
最新文档