2018年新观察中考数学复习交流卷 (六)(word版)

合集下载

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释一、选择题(本大题共10小题,共30.0分)-1/7的绝对值是( )A. 1/7B. -1/7C. 7D. -7据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×〖10〗^n,则n等于( )A. 10B. 11C. 12D. 13如图所示的几何体的俯视图是( )分式方程3/(x(x+1))=1-3/(x+1)的根为( )A. -1或3B. -1C. 3D. 1或-3在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是( )A. 47,46B. 48,47C. 48.5,49D. 49,49下列方程是关于x的一元二次方程的是( )A. x^2+1/x=1B. ax^2+bx+c=0C. (x+1)(x+2)=1D. 3x^2-2xy-5y=0如图所示,有一张一个角为〖60〗^∘的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A. 邻边不等的矩形B. 等腰梯形C. 有一个角是锐角的菱形D. 正方形三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A. 1/3B. 2/3C. 1/6D. 1/9如图,在Rt△ABC中,∠C=〖90〗^∘,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x 之间函数关系的图象大致是( )如图,在Rt△ABC中,∠C=〖90〗^∘,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',A'C'交AB于点E,若AD=BE,则△A'DE的面积是( )A. 3二、填空题(本大题共5小题,共15.0分)计算:(-2)^0-∛8=______.不等式组{■(3x+6≥0@4-2x>0)┤的所有整数解的和为______.已知点P(a,b)在反比例函数y=2/x的图象上,若点P关于y轴对称的点在反比例函数y=k/x的图象上,则k的值为______.如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P'(2,-2),点A的对应点为A',则抛物线上PA段扫过的区域(阴影部分)的面积为______.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处.当△CEB'为直角三角形时,BE的长为______.三、解答题(本大题共2小题,共75.0分)先化简,再求值:(x+y)^2-2y(x+y),其中x=√2-1,y=√3.如图,在四边形OABC中,BC//AO,∠AOC=〖90〗^∘,点A,B的坐标分别为(5,0),(2,6),点D为AB 上一点,且AD/BD=1/2,双曲线y=k/x(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27/300=108”,请你判断这种说法是否正确,并说明理由.如图,在Rt△ABC中,∠ABC=〖90〗^∘,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=______;②连接OD,OE,当∠A的度数为______时,四边形ODME是菱形.如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为〖45〗^∘,塔顶C点的仰角为〖60〗^∘.已测得小山坡的坡角为〖30〗^∘,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:√2≈1.414,√3≈1.732)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=〖90〗^∘,点A,D,E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=〖90〗^∘,请直接写出点A到BP的距离.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax^2+bx 过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE ⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t 为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.答案和解析【答案】1. A2. B3.D4.C5.C6.C7. D8. A 9. A 10. D11. -112. -213. -214. 1215. 3/2或316. 解:原式=x^2+2xy+y^2-2xy-2y^2=x^2-y^2,当x=√2-1,y=√3时,原式=3-2√2-3=-2√2.17. 解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN//BM,∴△ADN∽△ABM,∴DN/BM=AN/AM=AD/AB,即DN/6=AN/3=1/3,∴DN=2,AN=1,∴ON=OA-AN=4,∴D点坐标为(4,2),把D(4,2)代入y=k/x得k=2×4=8,∴反比例函数解析式为y=8/x;(2)S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)=1/2×(2+5)×6-1/2×|8|-1/2×5×2=12.18. 〖144〗^∘19. 2;〖60〗^∘20. 解:如图,过点P作PE⊥AM于E,PF⊥AB于F.在Rt△PME中,∵∠PME=〖30〗^∘,PM=40,∴PE=20.∵四边形AEPF是矩形,∴FA=PE=20.设BF=x米.∵∠FPB=〖45〗^∘,∴FP=BF=x.∵∠FPC=〖60〗^∘,∴CF=PFtan〖60〗^∘=√3 x.∵CB=80,∴80+x=√3 x.解得x=40(√3+1).∴AB=40(√3+1)+20=60+40√3≈129(米).答:山高AB约为129米.21. 解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.22. 〖60〗^∘;AD=BE23. 解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD//x轴,AB//y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax^2+bx 得{■(16a+4b=8@64a+8b=0)┤,解得a=-1/2,b=4.故抛物线的解析式为:y=-1/2 x^2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE/AP=BC/AB,即PE/AP=4/8.∴PE=1/2 AP=1/2 t.PB=8-t.∴点E的坐标为(4+1/2 t,8-t).∴点G的纵坐标为:-1/2(4+1/2 t)^2+4(4+1/2 t)=-1/8 t^2+8.∴EG=-1/8 t^2+8-(8-t)=-1/8 t^2+t.∵-1/8<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+1/2 t,8-t),QC=t,所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=t^2.整理得13t^2-144t+320=0,解得t=40/13或t=104/13=8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+1/2 t,8-t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+1/2 t-8)^2+(8-t)^2=t^2.整理得t^2-80t+320=0,t=40-16√5,t=40+16√5>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+1/2 t,8-t),C(8,0),所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=(4+1/2 t-8)^2+(8-t)^2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=16/3.于是t_1=16/3,t_2=40/13,t_3=40-16√5.【解析】1. 解:根据负数的绝对值等于它的相反数,得|-1/7|=1/7.故选:A.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.考查了绝对值的性质.2. 解:3875.5亿=387550000000=3.8755×〖10〗^11,故选:B.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 解:从上往下看,该几何体的俯视图与选项D 所示视图一致.故选:D.找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4. 解:去分母得:3=x^2+x-3x,解得:x=-1或x=3,经检验x=-1是增根,分式方程的根为x=3,故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5. 解:这8个数据的中位数是第4、5个数据的平均数,即中位数为(48+49)/2=48.5,由于49出现次数最多,又3次,所以众数为49,故选:C.根据中位数与众数的定义,从小到大排列后,中位数是第4、5个数据的平均数,众数是出现次数最多的一个,解答即可.本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.6. 解:A、x^2+1/x=1是分式方程,故此选项错误;B、ax^2+bx+c=0(a≠0),故此选项错误;C、(x+1)(x+2)=1是一元二次方程,故此选项正确;D、3x^2-2xy-5y=0是二元二次方程,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握定义是解题关键.7. 解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为〖60〗^∘,则另一个角为〖30〗^∘,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为〖60〗^∘;(3)为等腰梯形.故选:D.可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻炼了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.8. 解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=2/6=1/3.故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9. 解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=√(AC^2+PC^2 ),即y=√(1+(x-1)^2 ),则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+√5时,y=√5+3-x=-x+3+√5,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y 与x的函数关系式,由关系式选择图象.本题考查了动点问题的函数图象.此题涉及到了函数y=√(1+(x-1)^2 )的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.10. 解:Rt△ABC中,AB=√(AC^2+BC^2 )=10,由旋转的性质,设AD=A'D=BE=x,则DE=10-2x,∵△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',∴∠A'=∠A,∠A'DE=∠C=〖90〗^∘,∴△A'DE∽△ACB,,即(10-2x)/x=8/6,解得x=3,∴S_(△A'DE)=1/2 DE×A'D=1/2×(10-2×3)×3=6,故选:D.在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A'D,设AD=A'D=BE=x,则DE=10-2x,根据旋转〖90〗^∘可证△A'DE∽△ACB,利用相似比求x,再求△A'DE的面积.本题考查了相似三角形的判定与性质,勾股定理及旋转的性质的运用.关键是根据旋转的性质得出相似三角形,利用相似比求解.11. 解:原式=1-2=-1.故答案为:-1.分别进行零指数幂、开立方的运算,然后合并.本题考查了实数的运算,涉及了零指数幂、开立方等知识,属于基础题.12. 解:{■(3x+6≥0 ①@4-2x>0 ②)┤,由①得:x≥-2,由②得:x<2,∴-2≤x<2,∴不等式组的整数解为:-2,-1,0,1.所有整数解的和为-2-1+0+1=-2.故答案为:-2.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13. 解:∵点P(a,b)在反比例函数y=2/x的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(-a,b),∴k=-ab=-2.故答案为:-2.本题需先根据已知条件,求出ab的值,再根据点P 关于y轴对称并且点P关于y轴对称的点在反比例函数y=k/x的图象上即可求出点K的值.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的特征求出k的值是本题的关键.14. 解:连接AP,A'P',过点A作AD⊥PP'于点D,由题意可得出:AP//A'P',AP=A'P',∴四边形APP'A'是平行四边形,∵抛物线的顶点为P(-2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P'(2,-2),∴PO=√(2^2+2^2 )=2√2,∠AOP=〖45〗^∘,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP'=2√2×2=4√2,∴AD=DO=sin〖45〗^∘⋅OA=√2/2×3= (3√2)/2,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4√2×(3√2)/2=12.故答案为:12.根据平移的性质得出四边形APP'A'是平行四边形,进而得出AD,PP'的长,求出面积即可.此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP'是解题关键.15. 解:当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√(4^2+3^2 )=5,∵∠B沿AE折叠,使点B落在点B'处,∴∠AB'E=∠B=〖90〗^∘,当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,∴点A、B'、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,∴EB=EB',AB=AB'=3,∴CB'=5-3=2,设BE=x,则EB'=x,CE=4-x,在Rt△CEB'中,∵EB'^2+CB'^2=CE^2,∴x^2+2^2=(4-x)^2,解得x=3/2,∴BE=3/2;②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形,∴BE=AB=3.综上所述,BE的长为3/2或3.故答案为:3/2或3.当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB'E=∠B=〖90〗^∘,而当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,所以点A、B'、C 共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,则EB=EB',AB=AB'=3,可计算出CB'=2,设BE=x,则EB'=x,CE=4-x,然后在Rt△CEB'中运用勾股定理可计算出x.②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16. 原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17. (1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D 点坐标代入y=k/x中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)进行计算.本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.18. 解:(1)〖360〗^∘×(1-15%-45%)=〖360〗^∘×40%=〖144〗^∘;故答案为:〖144〗^∘;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120-27-33-20=120-80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40/300=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.(1)用“经常参加”所占的百分比乘以〖360〗^∘计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. (1)证明:∵∠ABC=〖90〗^∘,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=〖180〗^∘,又∠ADE+∠MDE=〖180〗^∘,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE//AB,∴DE/AB=MD/MA,∵AD=2DM,∴DM:MA=1:3,∴DE=1/3 AB=1/3×6=2.故答案为2.②当∠A=〖60〗^∘时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=〖60〗^∘,∴△AOD是等边三角形,∴∠AOD=〖60〗^∘,∵DE//AB,∴∠ODE=∠AOD=〖60〗^∘,∠MDE=∠MED=∠A=〖60〗^∘,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为〖60〗^∘.(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE//AB,得DE/AB=MD/MA即可解决问题.②当∠A=〖60〗^∘时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.20. 首先分析图形:根据题意构造直角三角形;本题涉多个直角三角形,应利用其公共边构造关系式,进而可求出答案.本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21. (1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.22. 解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖60〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(AC=BC@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=〖60〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖120〗^∘.∴∠BEC=〖120〗^∘.∴∠AEB=∠BEC-∠CED=〖60〗^∘.故答案为:〖60〗^∘.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=〖90〗^∘,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖90〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(CA=CB@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=〖45〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖135〗^∘.∴∠BEC=〖135〗^∘.∴∠AEB=∠BEC-∠CED=〖90〗^∘.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=〖90〗^∘,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为(√3-1)/2或(√3+1)/2.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=〖90〗^∘,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=〖45〗^∘.AB=AD=DC=BC=√2,∠BAD=〖90〗^∘.∴BD=2.∵DP=1,∴BP=√3.∵∠BPD=∠BAD=〖90〗^∘,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=〖45〗^∘.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴√3=2AH+1.∴AH=(√3-1)/2.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH-PD.∴√3=2AH-1.∴AH=(√3+1)/2.综上所述:点A到BP的距离为(√3-1)/2或(√3+1)/2.(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=〖90〗^∘可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23. (1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

【真题】2018年武汉市中考数学试卷含答案(Word版)

【真题】2018年武汉市中考数学试卷含答案(Word版)

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

浙江省杭州市萧山区2018届数学中考模拟试卷(6月份)及参考答案

浙江省杭州市萧山区2018届数学中考模拟试卷(6月份)及参考答案
学中考模拟试卷(6月份)
一、单选题 1. 相反数不大于它本身的数是( ) A . 正 数 B . 负数 C . 非正数 D . 非负数 2. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是(

A.3B.4C.5D.6 3. 下列计算中,不正确的是( )
(3) 应用拓展: 如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC 的 倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
三、填空题
18. 某同学期中考试数学考了100分,则他期末考试数学考100分属于________事件.(选填“不可能”“可能”或“必然”) 19. 如图,已知∠1=∠2,∠3=65°,则∠4=________ .
通过学习,同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探 究,会使你大开眼界,并获得成功的喜悦.
(例)用简便方法计算995×1005.
解:995×1005
=(1000﹣5)(1000+5)① =10002﹣52②
=999975.
(1) 例题求解过程中,第②步变形是利用(填乘法公式的名称); (2) 用简便方法计算: ①9×11×101×10 001; ②(2+1)(22+1)(24+1)…(232+1)+1.
(1) 概念理解: 如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2) 问题探究: 如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线B C于点D.若点B是△AA′C的重心,求 的值.

2024年湖北省武汉市新观察中考模拟数学试题(六)

2024年湖北省武汉市新观察中考模拟数学试题(六)

2024年湖北省武汉市新观察中考模拟数学试题(六)一、单选题1.2-的相反数是( ) A .2B .2-C .12D .12-2.我国古代典籍《周易》用“卦”描述世间万象的变化.下图为部分“卦”的符号,其中是中心对称图形的是( )A .B .C .D .3.“任意投掷一枚质地均匀的硬币10次,出现正面朝上的次数是5次”这个事件是( ) A .必然事件B .确定性事件C .随机事件D .不可能事件4.如图是一个水平放置的圆柱体,关于该几何体的三视图描述正确的是( )A .主视图和左视图相同B .主视图和俯视图相同C .左视图和俯视图相同D .三个视图都不相同5.下列计算正确的是( ) A .236a a a ⋅= B .()235a a =C .()3326a a =D .()()2111a a a +-=-6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点,若240∠=︒,370∠=︒,则1∠的度数为( )A .130︒B .140︒C .150︒D .160︒7.为了贯彻“双减”政策,落实“五育并举”,某校开设了丰富的劳动教育课程.小东、小亮两名同学分别从“园艺”“厨艺”“陶艺”“手工”4门课程中随机选择一门学习,则小东、小亮两人选择同一门课程的概率是( )A .12B .13C .23D .148.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系.下面是蟋蟀所叫次数与温度变化情况对照表:如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为( ) A .6℃B .12℃C .24℃D .30℃9.如图,在ABC V 中,5AC =,7AB =,6BC =,O e 为ABC V 的内切圆,过O 作DE BC ∥分别交AB 、AC 于D 、E ,则DE 的长为( )A .B .4C .5D 10.小华在学完整式乘法后,研究了()na b +的展开式的特征,发现()na b+的展开式的各项系数如图所示,请你结合上述规律计算71xx⎛⎫+⎪⎝⎭的展开式中x 的三次项的系数为()A.15 B.21 C.35 D.46二、填空题11.据统计,2024年元旦假期,某市推出多项文旅活动,共接待游客204.58万人次,实现旅游收入14.2亿元.将数据14.2亿用科学记数法表示为.12.写出一个图象位于第二、第四象限的反比例函数的解析式.13.计算22111xx x---的结果是.14.如图,甲船从A处向正北方向的C岛航行,同时,乙船在C岛正东方向80海里的D处向正东方向航行,此时甲船观察到乙船在北偏东45°方向,甲船正北方向航行30海里后在B 处观察到乙船在北偏东70°方向的E处,则乙船向正东方向航行了海里.(精确到1海里,参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈)15.二次函数2y ax bx c=++的图象与x轴的正半轴相交于A,B两点,与y轴负半轴交于点C,且OA OC=,下列结论中正确的是(填写正确结论的序号).①0b <;②<0a b c -+;③若()210ax b x +->,则0x c <<-;④关于x 的方程20ax bx c ++=有一个根为1x a=-.16.如图,点E 、F 为正方形ABCD 的AB CD 、边上两个动点,且4AB =,2CF BE =,AM EF ⊥于M ,连CM ,则CM 的最小值为.三、解答题17.解不等式组5131211x x x x +>-⎧⎨-≤+⎩①②,并把解集在数轴上表示出来.18.如图,平行四边形ABCD 的对角线相交于点O ,过O 的直线分别交AD 、BC 于点M 、N .(1)求证:OM ON =(2)连接BM ,DN .请添加一个条件,使四边形BNDM 为菱形.(不需要说明理由) 19.2021年7月,教育部印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,某数学兴趣小组为了解本校九年级学生每周课外阅读的时间,随机调查了九年级部分学生,将收集的数据划分成4组,并将结果绘制成两幅不完整的统计图.学生课外阅读时间条形统计图学生课外阅读时间扇形统计图请你根据图表信息,解答下列问题:(1)本次调查的样本容量为______,扇形统计图中的m 的值为______; (2)这组数据的中位数在______组;(3)若该校九年级共有600名学生,请估计该校九年级每周课外阅读时间超过4小时的学生人数.20.如图,AB 是O e 的直径,点C 在O e 上,点D 在AB 的延长线上,BCD A ∠=∠.(1)求证:直线CD 是O e 的切线;(2)若2BC BD ==,求图中阴影部分的面积.21.如图是由小正方形组成的77⨯网格,每个小正方形的顶点叫做格点,图中A B C ,,,都是格点,仅用无刻度的直尺在给定网格中完成画图.(1)如图1,先画线段BC 的中点E ,D 是AC 上一点.连接BD ,再画BD 的中点F ; (2)如图2,若P 是线段BC 上一点,先画点P 绕点B 逆时针旋转90︒的对应点M ,再画点N ,使得四边形ABMN 为平行四边形.22.某开发商计划对某商业街一面8米8⨯米的正方形墙面ABCD 进行如图所示的设计装修.四周是由八个全等的矩形拼接而成,用甲类材料装修,每平方米550元;中心区是正方形MNPQ ,用乙类材料装修.每平方米500元.设小矩形的较短边AE 的长为x 米,装修材料的总费用为y 元.(1)写出总费用y 关于x 的函数解析式;(2)开发商打算花费34400元全部用来购买甲、乙两类材料,求甲类材料中矩形的长和宽; (3)在(2)的花费前提下.设计中心区MNPQ 作为广告区域,其边长不小于2米时,开发商的费用是否足够?请结合函数增减性说明理由.23.如图1,在矩形ABCD 中,点E 中AB 的中点,EF DE ⊥交BC 边于F ,连DF .(1)求证:ADE BEF V V ∽;(2)若1tan 3EDF ∠=,直线写出sin DFC ∠的值______;(3)如图2,点G 为边AD 上一点,若2CF AG =,求DGDF的值. 24.如图,抛物线2y x bx c =++与x 轴交于()1,0A -和()3,0B 两点,与y 轴交于点C ,点P 为第一象限抛物线上一个动点.(1)直接写出该抛物线的解析式;(2)如图1,若tan 2PCA ∠=,求点P 的坐标;(3)如图2,过A 作AQ AP ⊥交抛物线于点Q ,当点P 在运动过程中,直线PQ 是否经过一个定点,若经过定点,求出该定点的坐标.。

2018-2019年新观察元调数学模拟试题

2018-2019年新观察元调数学模拟试题

2019新观察元月调考数学复习交流卷(二)一、选择题(共10小题,每小题3分,共30分)1.方程x(x-5)=1化成一般形式后,它的常数项是(D)A.-5 B.5 C.1 D.-1 2.抛物线y=3(x-2)2+5的顶点坐标是(C)A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5) 3.下列四个图形中,是中心对称图形的是(A)A.B.C.D.4.下列语句所描述的事件是随机事件的是(B)A.任意画一个四边形,其内角和为180°B.过平面内任意三点画一个圆C.任意画一个菱形,是中心对称图形D.经过任意两点画一条直线5.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加场比赛,下列几种说法正确的是( C )A.小亮明天的进球率为10% B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球6.若一元二次方程mx2-2x+1=0没有实数根,则实数m的取值范围是(C)A.m≥1 B.m≤1 C.m>1 D.m<1且m≠07.圆的直径为10cm,如果圆心O到直线的距离是d,则(C)A.当d=8cm时,直线与⊙O相交B.当d=10cm时,直线与⊙O相切C.当d=5cm时,直线与⊙O相切D.当d=6cm时,直线与⊙O相交8.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为莱洛三角形.若等边三角形的边长为r,则莱洛三角形的周长为(C)A.31πr B.21πr C.πr D.2πr第8题图第8题图第9题图9.如图,△ABC是⊙O的内接三角形,点I是△ABC的内心,若∠BOC=160°,则∠BIC的度数为(A)A.130°B.140°C.150°D.160°10.二次函数y=ax2-2ax+1在-2≤x≤3的范围内有最小值-5,则a的值是(D)A.6 B.-2 C.6或-2 D.6或-43二、填空题(本大题共6小题,每小题3分,共18分)11.若2是方程x2+m=0的一个根,则m的值为___________.-412.把抛物线y=2(x-2)2-4,向左平移一个单位长度,得到的新抛物线的解析式为______y=2(x-1)2-4完全相同,分别从这两个盒子中各摸出1个球,则两个球颜色都是黄色的概率为_______1614.向阳2010年的人均收入为12000,2012年的人均收入为14520元,则人均收入的年平均增长率为_________.10%15.如图,矩形ABCD 去四个角后形成一个正六边形,则AB AD=___________第15题图第16题图16.如图,AB 是⊙O 的弦,∠AOB =120°,C 为⊙O 上一动点,D ,E 分别是AC ,OB 的中点,连DE ,当∠CDE =__________时,线段DE 最长.105°图1ED C BOA图2F解析:如图1,连接OD ,则OD ⊥AC ,∴点E 在以AO 为直径的圆周上运动,∴当DE 经过圆心F 点时DE 最大(如图2),此时ED ∥AB ,∴∠DF A =∠OAB =30°, ∴∠ODF =∠DOF =15°,∵∠CDO =90°,∴∠CDE =105°.三、解答题(共8题,共72分)17.(本小题8分)解方程:x 2+4x -3=0.x 1-2,x 2-2.18.(本小题8分)如图,AB 是⊙O 的直径。

2018武汉中考数学试卷及答案(Word精校版)

第1页 / 共10页2018年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃ B .-3℃ C .11℃ D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( )A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、405.计算(a -2)(a +3)的结果是( ) A .a 2-6 B .a 2+a -6 C .a 2+6 D .a 2-a +66.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5) D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019 B .2018 C .2016 D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265第2页 / 共10页二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算22111m m m ---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF第3页 / 共10页19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表阅读量/本学生人数1 152 a3 b 45学生读书数量扇形图(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1)求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,第4页 / 共10页且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系第5页 / 共10页23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tan C 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1)直接写出抛物线L的解析式(2)如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD 与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标第6页 / 共10页第7页 / 共10页2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB10.连AC 、DC 、OD过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ∵弧BC 沿BC 折叠,∴∠CDB =∠H∵∠H +∠A =180°,∠CDA +∠CDB =180°∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1, ∵5OA =,AD =2,∴OD =1∵OD ⊥AB , ∴OFED 为正方形,∴OF =1,5OC =∴CF =2,CE =3,∴32CB =二、填空题11.2 12.0.9 13.11m - 14. 30o 或150o 15.24 16. 3216. 延长BC 至点F ,使CF =AC∵DE 平分△ABC 周长,AD =BD ,∴AC +CE =BE∴BE =CF +CE =EF ∴DE AF ∥,12DE AF =又∵∠ACF =120°,AC =CF ∴33AF AC == ∴32DE =三、解答题17.解析:原方程组的解为⎩⎨⎧==46y x .18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE 在ABF ∆和DCE ∆中 ⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB , ∴)(≌SAS DCE ABF ∆∆,∴AFB DEC ∠=∠,∴GF GE =.19.解析:(1)50=m ,10=a ,20=b . (2)11505005054203102151=⨯⨯+⨯+⨯+⨯(本)答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解析:(1)设A 型钢板x 块,则B 型钢板有(x -100)块 ⎩⎨⎧≥-+≥-+25010031201002)(x x x x ,解得2520≤≤x 20=x 或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元第8页 / 共10页[]46000140)100(3120)1002(100+-=-++-+=x x x x x W . 20=x 时,432004600020140max =+⨯-=W 元获利最大的方案为:购买A 型20块,B 型80块.21. (1)证明:如图①,连接OB OP ,,在OAP V 和OBP V 中 OA OB OP OP AP BP =⎧⎪=⎨⎪=⎩∴OAP V ≌OBP V (SSS ),∴OBP OAP ∠=∠∵PA 是O e 的切线,∴90OBP OAP ∠=∠=︒,∴PB 是O e 的切线图① 图②(2)如图②,连接BC AB ,与OP 交于点H∵3APC BPC ∠=∠,设BPC x ∠=,则3APC x ∠=,34APB x x x ∠=+=由(1)知422xAPO BPO x ∠=∠==,∴OPC CPB x ∠=∠=∵AC 是O e 的直径,∴90ABC ∠=︒∵易证OP AB ⊥,∴90AHO ABC ∠=∠=︒,即OP BC P ∴OPC PCB CPB x ∠=∠=∠=,∴CB BP =易证OAH V ∽CAB V ,∴12OH OA CB AC ==,设OH a =,∴2CB BP a ==易证HPB V ∽BPO V ,∴HP BPBP OP =,∴设HP ya =,∴22ya a a a ya =+ 解得:()11172y --=(舍)或()21172y -+=∵OP CB P ,易证H PE V ∽BCE V ,∴11724PE HP ya CE CB a -+===22.解(1)将2A x =-代入8y x=中得:842A y ==-- ∴A (-2,-4) B (-2,0)①∵t =1 ∴P (1,0) BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴C P x x t == 3P C B P== ∴C (1,3) ②∵B (-2,0),P (t ,0)第一种情况:当B 在P 的右边时,2BP t =-- ∴C P x x t == PC 1=BP =2t -- ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,2BP t =+ ∴C P x x t == PC 2=BP =2+t ∴C 2(t ,t +2)EPOACBH EPOC AB第9页 / 共10页综上:C 的坐标为(t ,t +2)∵C 在8y x=上 ∴(2)8t t += 解得:2t =或-4(2)作DE y ⊥轴交y 轴于点E ,将A y m =带入8y x =得:8A x m =,∴A (8m,m )∴2222228AO OB AB m m=+=+,将D y n =带入8y x =-得:8D x n =-,∴D (8n -,n )∴222228()DO DE OE n n =+=-+,∵OA =OD ∴22OA OD =∴2222288m n m n ⎛⎫+=-+ ⎪⎝⎭,22222288n m m n -=-, 22222264()n m n m m n-=-,()222264()0m n n m --= ①当220n m -=时,22n m =,0,0m n <>0m n ∴+=②当22640m n -=时,2264m n ∴=,0,0m n <>,8mn ∴=- 综合得:0m n +=或8mn =-23.证明:(1)∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2∴△ABM ∽△BCN (2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点 ∵∠BAP +∠APB =90° ∠APB +∠NPC =90° ∴∠BAP =∠NPC △BAP ∽△MPN AP BA BP PN MP MN ==又∵tan ∠P AC =PN PA=255 设MN =25a ,PM =25b ,则BP =5a ,AB =5b又∵∠BAP =∠BCA ,∴∠NPC =∠BCA ,∴NP =NC ,PC =2PM =45b又△BAP ∽△BCA ,BA BC BP BA= ,∴2BA =BP BC ⋅ , 2(5)5(545)b a a b =⋅+ ,解得:55a b =,∴tan ∠C =255525MN a a =MC b b == yxC 1AOBP y xC 2AOBPyxE 2E 1D 2D 1AOB321CBM NA MNP B CA第10页 / 共10页(3)过A 作AH ⊥EB 交EB 于H ,过C 作CK ⊥EB 交EB 的延长线于K∵AE =AB ∴EH =HB ,易知△AHB ∽△BKC ,25EH DA =HK AC =设CK =3x ,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴HB =EH =4x ∴HK =52EH =202x =10x ,∴tan ∠CEB 314CK =EK =24. 解析:(1)221y x x =-++(2)∵直线4(0)y kx k k =-+<,则(1)4y k x =-+, ∴直线MN 过定点E (1,4)联立2421y kx k y x x =-+⎧⎨=-++⎩, 得2(2)30x k x k +--+=∴2M N x x k +=-,3M N x x k ⋅=- ∴=BMN EBN EBM S S S -△△△ =11(1)(1)22N M EB x EB x ---=12()12N M x x ⨯-=∵2()4N M M N M N x x x x x x -=+-=2(2)4(3)k k ---=28k -∴28k -=1 ∴3k =± ∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴m =t -1且()0,t C ,()2,t D ,()1,0F ,设(0,)P a①PCD POF △∽△时, ∴CD CP OF OP =,∴21t aa -=, ∴3t a =,此时必有一点P 满足条件 ②DCP POF △∽△时,∴CD CP OP OF =,∴21t aa -=,∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况:220a at -+=有两个相等的实数根△=0 ,∴22t =± ∵ 0t > ∴22t =, ∴1221m =- 将22t =带入3t a =得: 1223a =∴122(0,)3P 将22t =带入220a at -+=得:22a = ∴2(0,2)P第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解 ∴0>△, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t = ,22m =将3t =代入220a at -+=得:31a = ,∴3(0,1)P ; 42a = ,∴4(0,2)P 综上所述:当1221m =-时,22(0,)3P 或 (0,2)P , 当22m =时,(0,1)P 或 (0,2)P4x3x4x 6x5a2aDAC BHEKxy A NOB EM。

2018届中考数学《第六章》单元达标测试(六)含答案.doc

单元达标测试(六)(第六章) (时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2017·兰州)如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB =B A .45° B .50° C .55° D .60°,第1题图) ,第3题图) ,第4题图) ,第6题图) 2.(2017·东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为CA .60°B .90°C .120°D .180° 3.(2017·东营)如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E.若BF =8,AB =5,则AE 的长为BA .5B .6C .8D .124.(2017·黔东南州)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为AA .2B .-1C .2D .4 5.(2017·日照)下列说法正确的是AA .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点C .一元二次方程ax 2+bx +c =0(a ≠0)一定有实数根D .将△ABC 绕A 点按顺时针方向旋转60°得△ADE ,则△ABC 与△ADE 不全等 6.(2017·徐州)如图,平面上⊙O 与四条直线l 1、l 2、l 3、l 4的位置关系.若⊙O 的半径为2 cm ,且O 点到其中一条直线的距离为2.2 cm ,则这条直线是CA .l 1B .l 2C .l 3D .l 47.(2017·天水)如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD =30°,CD =43,则S 阴影=B A .2π B .83π C .43π D .38π,第7题图) ,第8题图),第9题图) ,第10题图)8.(2017·台湾)如图,O 为锐角三角形ABC 的外心,四边形OCDE 为正方形,其中E 点在△ABC 的外部,判断下列叙述正确的是BA .O 是△AEB 的外心,O 是△AED 的外心 B .O 是△AEB 的外心,O 不是△AED 的外心C .O 不是△AEB 的外心,O 是△AED 的外心 D .O 不是△AEB 的外心,O 不是△AED 的外心9.(2017·江阴)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是DA .12B .22C .32D .3410.(2016·滨州)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③BC 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED ,其中一定成立的有BA .3个B .4个C .5个D .6个二、填空题(每小题3分,共24分) 11.(2017·德州)如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是同位角相等,两直线平行.,第11题图) ,第12题图) ,第13题图) ,第14题图)12.(2017·镇江)如图,AB 是⊙O 的直径,AC 与⊙O 相切,CO 交⊙O 于点D.若∠CAD =30°,则∠BOD =120°.13.(2017·黄石)如图,已知扇形OAB 的圆心角为60°,扇形的面积为6π,则该扇形的弧长为2π.14.(2017·遵义)如图,AB 是⊙O 的直径,AB =4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA =45°,则弦CD 的长为14.15.(2017·玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD ,则四边形ABCD 的周长是 8+8 2.,第15题图) ,第16题图),第18题图)16.如图所示,⊙I 是Rt △ABC 的内切圆,点D ,E ,F 分别是切点,若∠ACB =90°,AB =5 cm ,BC =4 cm ,则⊙I 的周长为2πcm .17.(2017·孝感)已知半径为2的⊙O 中,弦AC =2,弦AD =22,则∠COD 的度数为150°或30°.18.已知:如图,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交OC 于点D ,AD 的延长线交BC 于点E ,过D 作⊙O 的切线交BC 于点F.下列结论:①CD 2=CE·CB ;②4EF 2=ED·EA ;③∠OCB =∠EAB ;④DF =12CD.其中正确的结论有①②④.三、解答题(共66分) 19.(8分)(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数.解:(1)如图①,⊙O 即为所求.(2)如图②,连接OD ,∴OD ⊥AB ,OE ⊥BC.∴∠ODB =∠OEB =90°.∵∠B =40°,∴∠DOE =140°.∴∠EFD =70°. 20.(8分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D ,E ,量出半径OC =5 cm ,弦DE =8 cm ,求直尺的宽.解:过点O 作OM ⊥DE 于点M ,连接OD.∴DM =12DE.∵DE =8 cm ,∴DM =4 cm .在Rt△ODM 中,∵OD =OC =5 cm ,∴OM =OD2-DM2=3(cm ).∴直尺的宽度为3 cm .21.(8分)(2016·宁夏)已知△ABC ,以AB 为直径的⊙O 分别交AC 于点D ,交BC 于点E ,连接ED ,若ED =EC.(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.解:(1)证明:∵ED =EC ,∴∠EDC =∠C.∵∠EDC =∠B ,∴∠B =∠C. ∴AB =AC.(2)连接AE ,∵AB 为直径,∴AE ⊥BC.由(1)知AB =AC ,∴BE =CE =12BC = 3.∵△CDE ∽△CBA ,∴CD CB =CE AC .∴CE·CB =CD·CA.又∵AC =AB =4,∴CD =32.22.(10分)(2017·宿迁)如图,AB 与⊙O 相切于点B ,BC 为⊙O 的弦,OC ⊥OA ,OA 与BC 相交于点P.(1)求证:AP =AB ;(2)若OB =4,AB =3,求线段BP 的长.解:(1)证明:∵OC =OB ,∴∠OCB =∠OBC.∵AB 是⊙O 的切线,∴OB ⊥AB.∴∠OBA =90°.∴∠ABP +∠OBC =90°.∵OC ⊥AO ,∴∠AOC =90°.∴∠OCB +∠CPO =90°.∵∠APB =∠CPO ,∴∠APB =∠ABP.∴AP =AB.(2)作OH ⊥BC 于点H.在Rt △OAB 中,∵OB =4,AB =3,∴OA =5.∵AP =AB =3,∴PO =2.在Rt △POC 中,PC =OC2+OP2=25.∵12PC·OH =12·OC·OP ,∴OH =455.∴CH =OC2-OH2=855.∵OH ⊥BC,∴CH =BH.∴BC =2CH =1655.∴PB =BC -PC =655.23.(10分)(2017·荆门)已知:如图,在△ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AD 交AB 于点E ,以AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若AC =3,BC =4,求BE 的长.解:(1)证明:连接OD ,在Rt △ADE 中,点O 为AE 的中心,∴DO =AO =EO =12AE.∴点D 在⊙O 上,且∠DAO =∠ADO.又∵AD 平分∠CAB ,∴∠CAD =∠DAO.∴∠ADO =∠CAD.∴AC ∥DO.∵∠C =90°,∴∠ODB =90°,即OD ⊥BC.又∵OD 为半径,∴BC 是⊙O 的切线.(2)∵在Rt △ACB 中,AC =3,BC =4,∴AB =5.设OD =r ,则BO =5-r.∵OD ∥AC ,∴△BDO ∽△BCA.∴DO AC =BO BA ,即r 3=5-r 5,解得:r =158,∴BE =AB -AE =54.24.(10分)(2017·贵港)如图,在菱形ABCD 中,点P 在对角线AC 上,且PA =PD ,⊙O 是△PAD 的外接圆.(1)求证:AB 是⊙O 的切线; (2)若AC =8,tan ∠BAC =22,求⊙O 的半径. 解:(1)连接OP ,OA ,OP 交AD 于点E ,如图,∵PA =PD ,∴AP ︵=DP ︵.∴OP ⊥AD ,AE =DE.∴∠1+∠OPA =90°.∵OP =OA ,∴∠OAP =∠OPA.∴∠1+∠OAP =90°.∵四边形ABCD 为菱形,∴∠1=∠2.∴∠2+∠OAP =90°.∴OA ⊥AB.∴直线AB 与⊙O 相切.(2)连接BD,交AC 于点F,如图,∵四边形ABCD 为菱形,∴DB 与AC 互相垂直平分.∵AC =8,tan ∠BAC =22,∴AF =4,tan ∠1=DFAF=22.∴DF =2 2.∴AD =AF2+DF2=2 6.∴AE = 6.在Rt △PAE 中,tan ∠1=PE AE =22,∴PE = 3.设⊙O 的半径为R ,则OE =R -3,OA =R.在Rt △OAE 中,∵OA 2=OE 2+AE 2,∴R 2=(R -3)2+(6)2.∴R =332,即⊙O 的半径为332.25.(12分)(2017·无锡)如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E.若AC ∶CE =1∶2.(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数解析式.解:(1)如图,作EF ⊥y 轴于点F ,DC 的延长线交EF 于点H.设C(m ,n),则P(m ,0),PA =m +3,PB =3-m.∵EH ∥AP ,∴△ACP ∽△ECH.∴AC CE =PC CH =AP HE =12.∴CH =2n ,EH =2m +6.∵CD ⊥AB ,∴PC =PD =n.∵PB ∥HE ,∴△DPB ∽△DHE.∴PB EH =DP DH .∴3-m2m +6=n4n.∴m =1.∴P(1,0).(2)由(1)可知,PA =4,HE =8,EF =9,连接OC ,在Rt △OCP 中,PC =OC2-OP2=22,∴CH =2PC =42,PH =6 2.∴E(9,62).∵抛物线的对称轴为CD ,∴点(-3,0)和(5,0)在抛物线上.设抛物线的解析式为y =a(x +3)(x -5),把E(9,62)代入得到a =28,∴抛物线的解析式为y =28(x +3)(x -5),即y =28x 2-24x -1528.。

2018年新观察中考数学复习交流卷(十)

2018年新观察中考数学复习交流卷(十)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度后得到点P ',则点P '表示的数是( )-1A .1B .2C .3D .42.要使分式232x +有意义,则x 的取值范围是( )A .23x =-B . 23x -<C . 23x ≠-D . 23x ≥-3.计算2a a -,正确的结果是( )A .22a - B .1 C .2 D .a4.已知不透明的袋中装有黑、白两种颜色的球,这些球除颜色外其他都相同,其中白球有10个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复实验,发现摸出白球的频率稳定在0.2附近,则n 的值约为( ) A .20 B .30 C .40 D .50 5.长方形的长为()2a -,宽为()31a +,那么它的面积是多少?( )A .2352a a --B . 2352a a -+ C . 2352a a +- D . 232a a +-6.将点P (1,0)向左平移2个单位长度,再向上平移3个单位得到点P ',则点P '的坐标是( ). A .(-1,3) B .(-1,-3) C .(3,-3) D .(3,3)7.一机器零件如图,其主视图为( )A B C D8.某中学随机调查了15名学生一天在家里做作业的时间,列表如下:且这15名同学这一天在家里做作业的平均时间为1.4小时,则这15名同学这一天在家里做作业的平均时间的中位数与从数分别是( ) A .1,1 B .1,2 C .1,3 D .2,19.如图,将一张正方形纸片剪成四个小正方形,然后将其中一个正方形再剪成四个小正方形,如此继续下去,则第( )次操作共得到2020个正方形. A .671 B .672 C .673 D.674第9题图 第10题图 第14题图10.如图,直角坐标系中,P 点坐标为(0,4),M 为线段OP 是(不含O 、P )一动点,以OM为直径作⊙A ,PN 切⊙A 于N ,设PN =PM =m ,则m 的值( ). A .为定值1 B .0≤m ≤1 C . 0<m ≤2 D .12≤m ≤1 第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算= .12.化简22x x -= .13.甲、乙、丙、丁四名选手参加100米赛跑,赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号的概率是 .14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC ,若∠ADF =25°,则∠BEC 的度数为 .15.矩形ABCD 的边AB =8,BC =20,点E 为BC 边上的中点,F 为直线AD 上一点,沿EF 折叠,使点B 落在AD 边上,则EF 的长为 .EDB第15题图 16.已知二次函数226y ax x =-+(a <0)对满足1≤x ≤2的任意实数x 都有y ≥0,则实数a的取值范围是 .三、解答题(共8小题,共72分)17.(本题8分)解方程组3312 3156 x yx y+=⎧⎨-=-⎩18.(本题8分)已知:如图,点BFCE在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E.19.(本题8分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图。

2018年武汉市中考数学试卷(word版含标准答案)

2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图 阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD , 直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴 与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年新观察中考数学复习交流卷 (六)
第Ⅰ卷(选择题 共30分)
一、选择题(共10小题,每小题3分,共30分) 1.北京春天某天内由3℃下降5℃后温度为( ) A .-2℃ B .2℃ C .8℃ D .-8℃ 2.式子
1
3
x -在实数范围内有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x ≠3 D .x ≠-3 3.计算6
6
2a a -正确的是( ) A .12
a - B .6
a - C .-2 D .6
a
A .0.88
B .0.89
C .0.90
D .0.92 5.计算()()33x x +-的值是( )
A .2
6x - B . 2
9x + C . 2
69x x +- D . 2
9x -
6.点P (a ,b )关于y 轴的对称点坐标为(-3,5),则P 点坐标为( ) A .(3,5) B .(-3,-5) C .(3,-5) D .(5,-3)
7.若右图是某几何体的三视图,则这个几何体是( )
A .圆柱
B .正方体
C .球
D .圆锥
8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数)。

他们的月平均工
A .2、4
B .1.8、1
C .1、1
D .1.5、1
9.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,……如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+…+x 2018+x 2019的值为( )
A .1
B .3
C .-1
D .2019
10.如图,等腰△ABC ,CA =CB ,点O 在AC 上,以OA 为半径的圆交AB 于E 点,切BC 于D 点,交AC 于点F ,且弧AE =弧DF ,过点E 作EM ⊥AC ,连DM ,则tan ∠DME 的大小为( ) A .
32 B .3 C .5
4
D .2
B
A
第Ⅱ卷(非选择题,共90分)
二、填空题(共6小题,每小题3分,共
18分) 11.
的结果是 . 12.计算
22
2
44
x x x ---= . 13.同时掷两枚质在均匀的正方体骰子,观察向上的一面的点数,则点数之和恰好是奇数的
概率为 .
14.如图,菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,
且∠CDF =24°,则∠DAB 的度数为 .
B
A
15.如图,直角梯形ABCD ,∠C =∠
ABC =90°,2AB BC CD ===,BE ⊥AD 于点E ,EF 平分∠BED 交BC 于F 点,则EF =
.
F
B
16.二次函数2
142
y x mx m =
-+-与x 轴交于AB 两点,则AB 的最小值为 . 三、解答题(共8小题,共72分)
17.(本题8分)解方程组34y x
y x =⎧⎨-=⎩
18.(本题8分)已知:如图,∠ACB =90°,且AC =BC ,AD ⊥CD ,BE ⊥CD ,垂足分别为D 、E ,求证:CD =BE .
E
D
C
B
A
19.(本题8分)某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩不低于50分。

为了理好地了解本次大赛的成绩分成情况,随机抽取了其中一部分学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1)抽查了名学生;
(2)a= ,b= ;请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?
20.(本题8分)为了更好地治理东湖水质,保护环境,市治污公司决定购买10台污水处理
设备,现有A,B两种型号的设备,其中每台的价格及处理污水量如下表:
买3台B型号设备少6万元.
(1)求a,b的值;
(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理东湖的污水处理量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
21.(本题8分)如图,AB是⊙O的直径,CB、CD是⊙O的两条切线,切点分别为D、B,AC交⊙O于E,DE∥AB.
(1)求证:AD BE
=;
(2)求tan∠CAD的值.
C
B
A
22.(本题10分)如图,双曲线
k
y
x
=与边长为5的等边△AOB的边OB、AB分别相交于E、D两点,且OE=3AD.
(1)求实数k的值;
(2)若第一象限的双曲线
m
y
x
=与△BDE没有交点,求m的取值范围;
(3)将此双曲线向右平移2个单位,写出平移后的双曲线的解析式.
23.(本题10分)在Rt△ABC中,∠ACB=90°,点D为AB上一点.
(1)如图1,若CD⊥AB,求证:AC2=AD·AB;
(2)如图2,若AC=BC,点H为CD上一动点,EF⊥CD交BC于E,交AC于F点,若
1
2
AD
BD
=,求
FH
EH
的值;
(3)如图3,若AC=BC,点H在CD上,且∠AHD=45°,CH=DH,求
AD
BD
.
C
B
H
F
E
D
C B
A
H
D
C
B
A
24.(本题12分)如图,抛物线2
y x =,直线2
4
m y mx =-(m ≠0)与抛物线交于N 点,
与y 轴交于M 点.
(1)m =2时,求N 点坐标;
(2)若点P 在y 轴上,PM =PN ,求P 点坐标;
(3)平移抛物线2
y x =使其与x 轴交于A (-1,0),B (3,0),直线()22y m x b =-+与
抛物线交于E (m ,n )与抛物线对称轴交于F 点,且点P 在对称轴上,PE =PF ,求P 点坐标.。

相关文档
最新文档