湘教版高中数学选修4-2-2.4 矩阵乘法的性质-课件(共14张PPT)品质课件PPT

合集下载

矩阵乘法的ppt课件

矩阵乘法的ppt课件

分步矩阵乘法
总结词
将矩阵乘法拆分成多个步骤,逐步进行计算。
详细描述
分步矩阵乘法是一种将矩阵乘法拆分成多个步骤,逐步进行计算的方法。这种方法可以 降低计算复杂度,提高计算效率。同时,通过逐步计算,可以更好地理解矩阵乘法的运
算过程。
04
矩阵乘法的应用
在线性代数中的应用
线性方程组的求解
矩阵乘法可以用于求解线性方程 组,通过将系数矩阵与增广矩阵 相乘,得到方程的解。
线性最小二乘法
矩阵乘法可以用于求解线性最小二乘问题,通过将系数矩阵与观测 矩阵相乘,得到最小二乘解。
插值和拟合
矩阵乘法可以用于插值和拟合数据,通过将系数矩阵与观测矩阵相 乘,得到插值或拟合函数。
在计算机图形学中的应用
3D模型变换
01
矩阵乘法在计算机图形学中广泛应用于3D模型变换,包括平移、
旋转和缩放等操作。
矩阵乘法的PPT课件
目 录
• 矩阵乘法的基本概念 • 矩阵乘法的性质 • 矩阵乘法的计算方法 • 矩阵乘法的应用 • 矩阵乘法的注意事项
01矩阵乘Βιβλιοθήκη 的基本概念定义矩阵乘法
矩阵乘法是一种数学运算,通过将一个矩阵与另一个 矩阵相乘,得到一个新的矩阵。
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有一定 的数量。
矩阵的元素
矩阵中的每个元素都有一个行索引和一个列索引,用 于标识其在矩阵中的位置。
矩阵乘法的规则
1 2
矩阵乘法的条件
两个矩阵A和B可以进行乘法运算,当且仅当A的 列数等于B的行数。
矩阵乘法的步骤
将A的列向量与B的行向量对应相乘,然后将得 到的结果相加,得到新的矩阵C的元素。
3

矩阵的乘法PPT精品课件

矩阵的乘法PPT精品课件

b11 b21 b31
b12
b22
b32
C
c11 c21
c12 c22
如果 c11 a11 b11 a12 b21 a13 b31
c12 a11 b12 a12 b22 a13 b32
矩阵A的第1行的行向 量与矩阵B的第1列的 列向量的数量积
c21 a21 b11 a22 b21 a23 b31 c22 a21 b12 a22 b22 a23 b32
AB
0 0
00
BA
3 3
33
(2)
AC
3 3
00
AD
3 3
0 0
(3)
(BA)C
3 3
33
2 1
3 3
9 9
00
B(
AC
)
2 2
11
3 3
00
9 9
00
(4)
A(C
D)
1 1
11
3 3Βιβλιοθήκη 226 600AC
AD
3 3
0 0
3 3
0 0
6 6
00
(1)两矩阵可乘的条件: 矩阵A的列数与矩阵B的行数是相等的。
乙同学的语文总评成绩为 900.3+700.3+800.4=80
丙同学的语文总评成绩为 600.3+800.3+900.4=78
75
C 80
78
我们还可以利用矩阵某种运算得到上述 总评成绩,这就是我们今天要学习的主题。
1. 矩阵乘法的定义
A
a11 a21
a12 a22
a13 a23
,
B
平衡膳食宝塔说明

人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)最新课件PPT

人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)最新课件PPT

过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
➢掌握矩阵乘法的性质 ➢会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
1 0
0 1
2
x y
x′ 1 0 x y′= 0 0 y
则复合变换σ·I 对单位பைடு நூலகம்方形的作用,如 图:
y
y
y
1 j
10 01
1 j
10 00
1 j
O
i1
x
O
i1
x
O
i1
x
则复合变换σ·ρ对单位正方形的作用,如 图:
y
y
y
10
1 j
1 0
2
1 j
10 00
1 j
O
i1
x
O
i1
x
O
i1
x
0 -1 2
10
10
BA = 0 -1 10
1
2 0
0 1
=
0 -1 1

人教A版高中数学选修4-2-2.1-复合变换与二阶矩阵的乘法-课件(共28张PPT)

人教A版高中数学选修4-2-2.1-复合变换与二阶矩阵的乘法-课件(共28张PPT)
复合变换与二阶矩阵的乘法
1. 什么是复合变换? 其变换公式是怎样 的?
2. 矩阵的乘法是怎样计算的? 它有什么 性质?
问题1. 如图,
已知向量
a=
x y
,
依次作两次旋转
变换 Rq 1, Rq 2 , 两次变换是否可以用一次变换得到? 若第一次作旋转变换 Rq 1, 第二次作关于 x 轴的反射 变换呢? 如果两次变换可以用一次变换得到? 那么变
.
(2)R90·s :
x y
=
0 1
1 0
1 2 0
0 1
x y
=
0
1 2
1 0
x y.
则复合变换公式为
x y
= =
1 2
y, x.
(3)∵ 0 1 10
1 2 0
0 1
1 0
=
0
1 2
1 0
1 0
=
0
1.
2
0 1 10
1 2 0
0 1
0 1
=
0
1 2
1 0
0 1
=
1 0
.
复合变换 R90·s 把单位正方形区域变成了以向量
x y
=
cos(q1 q2) sin(q1 q2)
sin(q1 q2) cos(q1 q2)
x y
=
xcos(q1 q2) ysin(q1 q2) xsin(q1 q2) ycos(q1 q2)
.
∴变换公式为
x y
= =
xcos(q1 q2) xsin(q1 q2)
ysin(q1 ycos(q1
q2), q2).
2 1
1 1
0 1

高中数学选修42矩阵与变换知识点复习课课件苏教

高中数学选修42矩阵与变换知识点复习课课件苏教
形具有更真实的视觉效果
坐标变换:通过矩阵运算实 现图形的平移、旋转、缩放 等变换
动画制作:通过矩阵运算实 现图形的动画效果,如变形、
运动等
矩阵在其他领域中的应用
物理:在力学、电磁学、量子力学等领域,矩阵被用来描述物理系统的状态和变化
计算机科学:在计算机图形学、人工智能、数据挖掘等领域,矩阵被用来处理和表示数据
高中数学选修4-2矩阵 与变换知识点复习课 课件
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 矩阵与变换概述 03 矩阵的逆与行列式 04 矩阵的秩与特征值 05 矩阵的几何意义与线性变换的矩阵表示
06 矩阵的应用举例
单击添加章节标题
第一章
矩阵与变换概述
第二章
矩阵的定义与性质
矩阵的定义:由m行n列的数组 成的m*n个数阵
矩阵与线性变换的关系
矩阵是线性变换的一种表示方法 线性变换可以通过矩阵乘法来实现 矩阵的逆矩阵表示线性变换的逆操作 矩阵的秩表示线性变换的维数
矩阵的逆与行列式
第三章
矩阵的逆
逆矩阵的定义:满足AB=BA=I的矩阵B称为矩阵A的逆矩阵 逆矩阵的性质:逆矩阵的唯一性、逆矩阵的线性性、逆矩阵的乘法性质 逆矩阵的求法:利用初等行变换求逆矩阵、利用伴随矩阵求逆矩阵 逆矩阵的应用:求解线性方程组、求解矩阵方程、求解线性规划问题
行列式的定义与性质
行列式的定义: 矩阵中主对角线 元素的乘积
行列式的性质: 行列式等于其转 置行列式的值
行列式的计算方 法:利用行列式 的性质进行计算
行列式的应用: 求解线性方程组、 判断矩阵是否可 逆等
行列式的计算方法
初等变换法:通过行变换或列变换 将矩阵化为行阶梯形或列阶梯形, 然后计算行列式

高中数学选修4-2矩阵与变换ppt版

高中数学选修4-2矩阵与变换ppt版

a b x bx ax+by + = ,这是矩阵 与向量 的乘 y d y cx+dy c d +
5.线性变换的基本性质 . 性质 1.设 A 是一个二阶矩阵,α,β 是平面上的任意两个向 设 是一个二阶矩阵, , 是任意实数, 量,λ 是任意实数,则 ①A(λα)=λAα. =
理科
│知识梳理
a A= = c x b = ,a=y ,规定二阶矩阵 A 与向量 a 的乘积为 d

ax+by + 向量 ,记为 cx+dy +
Aa
a 或 c
bx , d y
即 法.
a Aa= = c
理科
│要点探究
【点评】 要理解二阶矩阵变换的定义,熟悉五种常 点评】 要理解二阶矩阵变换的定义, 见的矩阵变换,明确矩阵变换的特点. 见的矩阵变换,明确矩阵变换的特点.
理科
│要点探究
变式题 已知变换 T 把平面上的点 A(2,0),B(3,1)分 , 分 别变换成点 A′(2,1),B′(3,2),试求变换 T 对应的矩阵 M. , ,
理科
│二阶矩阵与平面图形的变换
理科
│知识梳理
知识梳理
1.二阶矩阵的定义 . (1)由 4 个数 a,b,c,d 由 ,,, 矩阵. 矩阵. (2)元素全为 0 元素全为
1 矩阵 0 0 的二阶矩阵 0 a 排成的正方形数表 c
b 称为二阶 d
0 0 . 称为零矩阵, 称为零矩阵,简记为 0
0 E 称为二阶单位矩阵, 称为二阶单位矩阵,记为 2 . 1
理科
│知识梳理
2.几种特殊线性变换 . (1)旋转变换 旋转变换 直线坐标系 xOy 内的每个点绕原点 O 按逆时针方向旋 转 α 角的旋转变换的坐标变换公式是

高中数学选修4-2《矩阵与变换》.3.1矩阵乘法的概念

才往返一次。
南京东山外国语学校高三数学组 2019年12月7日星期六
选修4-2 矩阵与变换
河曲智叟笑而止之曰:“甚矣,
你太不聪明了
汝之不惠。以残年余力,曾不能毁山
地面长的草木
之一毛,其如土石何?”
放在“如……何”前面,有加强反问语气 的作用
南京东山外国语学校高三数学组 2019年12月7日星期六
译文:
4 1 0
C=AB=
1 2
0 1
3 0
1
2

1
2

1
1 0 3
3
1 4
BA=?
AB有意义,但是BA没有意义,故 要注意相乘顺序。(AB≠BA)
1 4 0 (1) 11 01
1 0 03
3 2 (1)1 3 0 (1) 3 31 (1) 4 9 2 1
二、一词多义
其妻献疑代词,他的 其如土石助何词,加强反问语气。 惧其不已代也词,他,指愚公。
以君的之力 助虽词我,之主死谓间取消句子独立性。
告之于代帝词,这件事。
南京东山外国语学校高三数学组 2019年12月7日星期六
选修4-2 矩阵与变换
年且九十 将近 且焉置土石 况且
且焉置土疑石问代词,哪里。 始一反焉加强语气
矩阵乘法的概念
复习回顾
二阶矩阵与平面列向量的乘法法则为:
a11

a21
a12 a22

x0

y0


a11 a21

x0 x0

a12 a22

y0 y0

2 0
0
1

高中数学选修4-2:2.3.1矩阵乘法的概念

高中数学选修4-2:2.3.1矩阵乘法的概念2.3.1矩阵乘法的概念教学目标1?熟练掌握二阶矩阵与二阶矩阵的乘法。

2 .理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表示的是原来两个矩阵对应的连续两次变换。

考纲要求:矩阵的复合与矩阵的乘法(B级)活动方案:活动一、情景设置建构数学阅读教材,解决下列问题:问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?对向量%先做变换矩阵为N=M的反射变换「‘得到向量[OJ」、建构数学归纳2:矩阵乘法的几何意义:矩阵乘法MN的几何意义为:对向量连续实施的两次几何变换(先TN后TM)的复合变换.当连续对向量实施匸、n (n∣ψ)次变换TM时,我们记M n = MM M :Mn个活动二矩阵乘法的简单应用例1、⑴已知A= 21_2(2)已知A= " O l J Bj I11JB= 计算AB. U计算AB J BA?[0 2 -2 3 % ,再对所得向量做变换矩阵为M=IMl的伸压变换P得到向量这两次变换能否用一个矩阵来表示?归纳1 :矩阵乘法法则:MN =bi2b22 an1 0] 10] 1 01⑶已知A=I J B= I , C= I ,计算AB、AC]0 O k ]0 1 ]0 2计算后你能得出什么结论?例2、已知梯形ABCD,其中A(O5O) J B(3,0) J C(2,2) , D((I , 2),先将梯形作矢于X轴的反射变换,再将所得图形绕原点逆时针旋转90°(1) 求连续两次变换所对应的变换矩阵M ;(2) 求点A,B,C,D在TM作用下所得到的结果;⑶在平面直角坐标系内画出两次变换对应的几何图形,并验证⑵中的结论?例3、已知A=『W求A2, A3J A4,你能得到An的结果吗?n?N4“纹丝不动”的恒等变换可以看做是伸压、旋转、切变变换的一种特殊情况,而矢于坐标原点的反射变换也可认为是绕原点作了(2k ?1)「:(k ?Z )角度的旋转变换.不仅如此,矢于坐标原点的反射变换可以分解先矢于X 轴的反射变换,再作矢于y 轴的反射变换;绕原点作■ ■■ ?■角的旋转变换可以分解为先绕原点作:?角的旋转变换,再绕原点作1角的旋转变换(或者相反)在数学中,?■对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。

人教A版高中数学选修4-2 第二讲 二 矩阵乘法的性质 课件(共24张PPT)

知识回顾
实数的乘法运算满足那些运算律? 结合律 (ab)c=a(bc) 交换律 ab=ba 消去律 设a≠0,若ab=ac,则b=c;若 ba=ca,则b=c.
思考
类比实数乘法的运算律,二阶 矩阵的乘法满足这些运算律吗?
教学目标
知识与能力
➢掌握矩阵乘法的性质 ➢会灵活运用矩阵乘法的性质进 行矩阵乘法的运算
AB= 2 0 1 0 = 2 0 01 21 21
BA= 1 0 2 0 = 2 0 21 01 41
∴AB≠BA ∴矩阵的乘法不满足交换律
2.从你学过的线性变换中,再举一个例 子,说明矩阵的乘法不满足消去律.
解:A= 2 0 确定的是伸缩变换 01
B= 1 0 确定的是切变变换 21
C= 0 0 确定的是投影变换 10
过程与方法
➢通过探究、验证、总结,掌握并 理解矩阵乘法的性质
情感态度与价值观
➢培养学生自我探究能力,总结 归纳能力
学习重难点
矩阵的乘法的性 质及理解.
探究1
设矩阵A = 1 -2 31
,B = 2 1 01
-1 3 ,C = 2 1
(AB)C =
=
1 -2 2 1 3 1 01
2 -1 -1 3 64 21
∵AC= 2 0 0 0 = 0 0 01 10 10
10 00 00
BC=
=
21 10 10
此时,AC=BC 但,A≠B.
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出路 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。党与人民在监督,万目睽睽难逃脱。汝 不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵族的后代,但我们可以成为贵族的祖先 年后的自己。自信!开朗!豁达!无论现在的你处于什么状态,是时候对自己说:不为模糊不

高二数学选修4-2~2.1.1矩阵的概念课件


13 6 2i 例如 2 2 2 是一个3 阶方阵. 2 2 2
称为行矩阵(或行向量)..
(2)只有一行的矩阵 A a1 , a2 ,, an ,
★意义建构:归纳新知
只有一列的矩阵 a1 a2 B , 称为列矩阵(或列向量). a n 不全为0 1 0 0 O 0 0 的方阵, 称为对角 2 (3)形如 矩阵(或对角阵). O 0 0 n
1 2 3 4 2 1 1 2 1 4 2 7
u 2 v 3 w 4 2u v w 2 u 4v 2 w 7
1 2 1
2 1 4
3 1 2
★例题分析 2 x m n x y 例5设A= . y 3 , B= 2 x - y m n , 若A=B, 求x, y, m, n的值.
★意义建构:归纳新知
(5)单位矩阵
1 0 0 1 E En O 0 0
0 O 0 1
全为1
称为单位矩阵(或单位阵).
3.同型矩阵与矩阵相等 (1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
★意义建构:归纳新知
1 2 14 3 例如 5 6 与 8 4 为同型矩阵. 3 7 3 9
mn aij
★意义建构:归纳新知
主对角线 a11
a 21 A a 副对角线 m 1
a12 a 22 am1
a1 n a2n a mn
矩阵A的 m , n元
简记为 A Amn aij aij . m n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cm1 cmj
cmn
例题讲解:
2 例1.设矩阵A 4
3
1 0 ,B 5
9 7
108,求A B
解:
2 1
A B 4 3
0 5
9 7
8
10
2×9+(-1)×(-7) 2×(-8)+(-1)×10
= (-4)×9+0×(-7) (-4)×(-8)+0×10
C12

C C3 22 2a31b12
乙 丙a32b22
a33b32
21×1.2 + 19×1.3 + 22×1.5
c 规律:矩阵C中的元素 是矩阵A的第iji行元素与矩阵B
的第j列对应元素的乘积之和。
矩阵乘法有下列三要素:
(1)可乘原则: 前列数 = 后行数
(2)乘积阶数: 前行数 × 后列数
3×9+5×(-7)
3×(-8)+5×10
25 26
= 36
32
8 26
例题讲解:
例2.设矩阵A
2 1
24,B
2 1
12,求A B和B A
解:
2 4 2 2
A B 1 2 1
1
2×2+4×(-1) 2×(-2)+4×1
=
1×2+2×(-1) 1×(-2)+2×1
0 0 0 0
= =
2 2 2
B A 1
1
1
=
2×2+(-2)×1
2×4+(-2) ×2
(-1)×2+1×1
(-1) ×4+1×2
思考矩:阵由乘此法例不题满同足学交们换可律以,发即现A·什B≠么B呢·A?
4 2
2 4 1 2
课堂练习:
1
习题:设A 2
1
4,B
2

求A B与B
A
解题过程:
2
(3)乘积元素:
c=ij 前矩阵的第i行元素与后矩阵的第j列对应元素
的乘积之和
思考:矩阵乘法如何进行运算呢?
运算方法:
(1)判断相乘矩阵是否满足可乘原则
(前列数 后行数)
(2)推断出相乘矩阵的乘积阶数
(前行数 后列数)
(3)计算出积矩阵中的每一个乘积元素:
c=ij 前矩阵的第i行元素与后矩阵的第j列对应
总收入
总利润
C11
C C C3 21 1
24×12+16×14+27×16
C12
C22 C32
甲 乙 丙
808 944
870
77 90.1 82.9
21×1.2+19×1.3+22×1.5
定义:如果矩阵A =
(aij )ms
,矩阵B =
(bij )sn
,即矩
阵A的列数等于矩阵B的行数,则矩阵A与B可以相乘,并定义
元素的乘积之和
a11
ai1
am1
a12 ai2 am2
a1s ais ams
b11
b21
bs1
b1 j b2 j
bsj
Hale Waihona Puke b1nb2n bsn
c11
aci11bj1 j
ai 2b2cj 1n
aisbsj
ci1
cij
cin
矩阵乘法的性质
同学们,首先我们一起来探讨一个生活中的问题:
某地区甲、乙、丙三家商场同时销售α、β、γ三种品牌的液晶电视机,它们的 日均销量(单位:台)可以用下列矩阵来表示:
α
β
γ
20 20 18

A 24 16 27

21 19 22

而这三种品牌的电视机的单价和利润(单位:千元) ,可以用下列矩阵来表示:
其乘积为矩阵:
C (cij )m n
矩阵A与B的乘积记作 C = A·B
思考: 一、矩阵相乘必须满足什么条件? 二、矩阵相乘后的矩阵阶数如何判断? 三、乘积矩阵中的元素如何计算?
α
β
γ
20 20 18 甲 A 24 16 27 乙
21 19 22 丙
20×12 + 20×14 + 18×16
单价
利润
12 1.2
α
B 14 1.3
β
16 1.5
γ
问题:这三家商场销售这三种品牌液晶电视机的日总收入和总利润分别是多少?
α
β
γ
20 20 18 甲 A 24 16 27 乙
21 19 22 丙
单价
1 2 B 1 4
1 6
利润
1.2 α 1.3 β 1.5 γ
20×如12果+2把0×总1收4+入18和×总16利润可以用下列矩2阵0×表1示.2+: 20×1.3+18×1.5
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不 精进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和 数次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你, 重要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己 长久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。 该看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知 最幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心 人若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态 盏明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命 弃了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的 承受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒 人,表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从 着封存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你, 决定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在
1
A B 2
1
4
2
相关文档
最新文档