摸拟试卷九
人教版2020年小升初数学模拟试卷(9)参考答案与试卷解析

人教版2020年小升初数学模拟试卷(九)一.填空题(共10小题,满分20分,每小题2分)1.(2分)一列火车通过一座1200米的大桥用了75秒,火车通过路旁电线杆只用15秒,火车长米.2.(2分)一根绳子长8米,第一次用去,第二次用去米,这根绳子比原来短了米.3.(2分)一根绳子长10米,用去,还剩米,再用去米,还剩米.4.(2分)与0.8的最简单的整数比是,它们的比值是.5.(2分)一个圆形水池的周长是37.68米,现要在水池周围铺上一条宽为2米的环形小路,则小路的面积是(结果精确到个位).6.(2分)如图,梯形上底是下底的,阴影部分三角形与空白部分平行四边形面积比是.7.(2分)(1)修路队计划修路千米,实际比计划多修了,多修了千米.(2)修路队计划修路千米,实际比计划多修了,实际修了千米.8.(2分)明明读一本320页的书,第一天读了这本书的,第二天应从第页开始读.9.(2分)全班48人去划船,共乘12只船,大船:5人/只,小船:3人/只,大船有只,小船有只.10.(2分)千克表示把平均分成份,表示这样的4份;还表示把平均分成份,表示这样的份.二.判断题(共5小题,满分10分,每小题2分)11.(2分)4÷(20+)=4÷20+4÷=+5=5..(判断对错)12.(2分)一个数的50%和它的是相等的..(判断对错)13.(2分)大圆的圆周率比小圆的圆周率大..(判断对错)14.(2分)把含糖30%的糖水倒出一半后,剩下的糖水的含糖率是15%..(判断对错)15.(2分)在一个长5厘米,宽3厘米的长方形中画一个最大的圆,这个圆的半径是厘米.三.选择题(共5小题,满分10分,每小题2分)16.(2分)观察下面的图形,()不是轴对称图形.A.B.C.D.17.(2分)如果把第一行人数的调入第二行,两行的人数就相等.原来第一行与第二行的人数比是()A.5:4 B.4:5 C.5:3 D.3:518.(2分)两个数相除商是30,如果被除数和数同时扩大4倍,商应是()A.30 B.120 C.24019.(2分)甲、乙、丙三位同学分别调制了一杯蜂蜜水.甲调制时用了30毫升的蜂蜜,150毫升水;乙调制时用了4小杯蜂蜜,16小杯水;丙调制时用的水是蜂蜜的6倍.()调制的蜂蜜水最甜.A.甲B.乙C.丙D.无法判断20.(2分)圆的直径扩大2倍,它的面积扩大()A.2倍B.4倍C.6倍D.无法确定四.计算题(共4小题,满分22分)21.(4分)直接写出得数﹣=+=÷2=8÷=3.6×= 2.4÷=÷=×=22.(6分)解方程.x×(+)=;6x﹣4.6=8;x+20%x =40.23.(6分)计算题,写出计算过程×÷÷[(+)×] (++)×12÷9+×+x=x=24.(6分)文字叙述题(1)有一个数,它的减去4.2与它的相等,求这个数(用方程解)(2)已知甲数是乙数的1.4倍,两数相差9.8,求乙数.(用方程解)(3)12除4与2的差,商是多少?五.解答题(共1小题,满分6分,每小题6分)25.(6分)已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC =6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.六.解答题(共6小题,满分32分)26.(5分)人的血液大约占体重的,血液里大约有是水.王壮的体重是39千克,他的血液里大约含水多少千克?27.(5分)小华和小明共有105元的零花钱,其中小明的零花钱是小华零花钱的.小华和小明分别有多少零花钱?28.(5分)甲、乙两汽车从A、B两地相向而行,相遇时所行路程比是5:3,这时乙车距两地的中点还有80千米,求两地相距多少千米?29.(5分)一辆汽车从甲地开往乙地,行了60千米后,还剩全程的,甲地到乙地的公路长是多少千米?30.(6分)有一批苹果放在甲、乙两个筐中都没放满,如果把甲筐苹果倒入乙中,乙还能再装10个;如果把乙筐苹果全部倒入甲中,乙还剩20个.已知乙筐装满后苹果的个数是甲筐的装满后的2.5倍,这批苹果共有多少个?31.(6分)李叔叔和王叔叔一起加工一批零件,李叔叔每小时加工49个,王叔叔每小时加工51个,两人一起工作了6小时才完成任务.这批零件一共有多少个?(运用简便方法计算)七.解答题(共1小题)32.甲乙二人沿400米环形跑道同时从某点开始反方向跑步,已知甲的速度比乙的速度快,当两人第一次相遇时甲跑了多少米?参考答案与试题解析一.填空题(共10小题,满分20分,每小题2分)1.(2分)一列火车通过一座1200米的大桥用了75秒,火车通过路旁电线杆只用15秒,火车长300米.【分析】由题意可知:75秒是火车开过桥长1200米加上车长的时间,15秒是火车开过自己车长的时间,火车开过1200米,用的时间就是75﹣15=60秒,火车速度就是1200÷60=20 米/秒,火车的车长就是20×15=300米.解:75﹣15=60(秒),火车速度是:1200÷60=20(米/秒),火车全长是:20×15=300(米);答:这列火车的长度是300米.故答案为:300.【点评】解答本题要弄清:火车在75秒内所行的路程是1200米+一个车身的长度.2.(2分)一根绳子长8米,第一次用去,第二次用去米,这根绳子比原来短了4米.【分析】绳子比原来短的长度,就是两次用去长度的和,把绳子长度看作单位“1”,先依据分数乘法意义,求出第一次用去长度,再加第二次用去长度即可解答.解:8×+=4+=4(米)答:这根绳子比原来短了4米.故答案为:4.【点评】依据分数乘法意义求出第一次用去长度,是解答本题的关键.3.(2分)一根绳子长10米,用去,还剩9米,再用去米,还剩8米.【分析】(1)根据题意,把这根绳子的长度看作单位“1”,用去,剩下的占这根绳子的1﹣=,根据一个数乘分数的意义,用乘法解答;(2)用去米,米是一个具体长度,根据求剩余问题,所以直接用减法解答.解:(1)10×(1﹣),=10×=9(米);(2)9﹣=8(米);答:还剩9米,再用去米,还剩8米.故答案为:9,8.【点评】此题解答关键是理解“用去”和用去“米”的意义,用去表示用去的占全长的;而米是一个具体数量;因此,前者用乘法解答,后者用减法解答.4.(2分)与0.8的最简单的整数比是15:32,它们的比值是.【分析】(1)先把比的后项化成分数,再根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):0.8,=:,=(×40):(×40),=15:32,(2):0.8,=,=×,=,故答案为:15:32;.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.5.(2分)一个圆形水池的周长是37.68米,现要在水池周围铺上一条宽为2米的环形小路,则小路的面积是88平方米(结果精确到个位).【分析】如图所示,求小路(绿色部分)的面积,实际上是求圆环的面积,用大圆的面积减小圆的面积即可;小圆的周长已知,利用圆的周长公式即可求出小圆的半径,大圆的半径等于小圆的半径加上小路的宽度,从而利用圆的面积公式即可求解.解:小圆的半径:37.68÷(2×3.14)=37.68÷6.28=6(米);大圆的半径:6+2=8(米)小路的面积:3.14×(82﹣62)=3.14×(64﹣36)=3.14×28=87.92(平方米)≈88(平方米);答:这条小路面积是88平方米.故答案为:88平方米.【点评】此题实际是属于求圆环的面积,即用大圆的面积减小圆的面积就是圆环的面积,关键是求出大、小圆的半径.6.(2分)如图,梯形上底是下底的,阴影部分三角形与空白部分平行四边形面积比是1:4.【分析】根据“梯形上底是下底的,”把梯形上底看作2份,下底看作3份,设梯形的高为h,则阴影部分三角形与空白部分平行四边形的高都是h,由此根据三角形的面积公式与平行四边形的面积公式,分别用高表示出阴影部分三角形与空白部分平行四边形的面积,写出相应的比即可.解:设梯形的高为h,阴影部分三角形面积:(3﹣2)×h×=h,空白部分平行四边形面积是:2h,阴影部分三角形与空白部分平行四边形面积比是:h:2h=1:4;答:阴影部分三角形与空白部分平行四边形面积比是1:4;故答案为:1:4.【点评】解答此题的关键是把分数转化为份数,再根据三角形的面积公式与平行四边形的面积公式解决问题.7.(2分)(1)修路队计划修路千米,实际比计划多修了,多修了千米.(2)修路队计划修路千米,实际比计划多修了,实际修了千米.【分析】(1)把计划修路的长度看成单位“1”,用计划修的长度乘,即可求出实际比计划多修多少千米;(2)把计划修路的长度看成单位“1”,用计划修的长度乘,即可求出实际比计划多修多少千米,再加上计划修的长度,即可求出实际修的长度.解:(1)×=(千米)答:多修了千米.(2)×+=+=(米)答:实际修了千米.故答案为:,.【点评】本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法求解.8.(2分)明明读一本320页的书,第一天读了这本书的,第二天应从第81页开始读.【分析】把这本书的总页数看作单位“1”,第一天读了这本书的,则第一天读了320×页,再加上1就是第二天开始看的页数.解:320×+1=80+1=81(页)答:第二天应从第81页开始读.故答案为:81.【点评】本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.9.(2分)全班48人去划船,共乘12只船,大船:5人/只,小船:3人/只,大船有6只,小船有6只.【分析】假设全是大船,则座满时人数为:12×5=60人,这比已知的48人多出了60﹣48=12人,1只大船比1只小船多坐5﹣3=2人,由此即可求得小船有:12÷2=6只,进而求得大船只数.解:假设全是大船,则小船有:(12×5﹣48)÷(5﹣3)=(60﹣48)÷2=12÷2=6(只);则大船有:12﹣6=6(只);答:租大船6只,小船6只.故答案为:6;6.【点评】此类问题属于鸡兔同笼问题,可以采用假设法解答.10.(2分)千克表示把1平均分成5份,表示这样的4份;还表示把4平均分成5份,表示这样的1份.【分析】根据分数的两种表示意义可知,千克既可以表示把1千克平均分成5份,表示这样的4份;还表示把4平均分成5份,表示这样的1份;据此进行解答.解:千克既可以表示把1千克平均分成5份,表示这样的4份;还表示把4平均分成5份,表示这样的1份;故答案为:1,5,4,5,1.【点评】此题考查分数的两种表示意义:既可以表示1的几分之几,还可以表示分子的几分之一.二.判断题(共5小题,满分10分,每小题2分)11.(2分)4÷(20+)=4÷20+4÷=+5=5.×.(判断对错)【分析】这道题不等同于乘法分配律,因为除以一个不为0的数等于乘这个数的倒数,所以4÷(20+)=4÷=4×=.解:4÷(20+)=4÷=4×=故答案为:×【点评】本题就按照四则混合运算的顺序,先算括号里的,通分之后,再用除法法则计算.12.(2分)一个数的50%和它的是相等的.√.(判断对错)【分析】根据分数与百分数互化的知识知:50%=.据此解答.解:因50%=,所以一个数的50%和它的是相等.故答案为:√.【点评】本题主要考查了学生对百分数和分数互化知识的掌握.13.(2分)大圆的圆周率比小圆的圆周率大.×.(判断对错)【分析】圆周率是圆的周长与直径的比,是一个常数,是不变的.解:由圆周率的定义知,圆周率是圆的周长与直径的比,是一个常数,是不变的,所以不分大圆和小圆的圆周率.所以原题的说法错误.故答案为:×.【点评】此题考查了对圆周率的认识.14.(2分)把含糖30%的糖水倒出一半后,剩下的糖水的含糖率是15%.×.(判断对错)【分析】含糖30%的糖水,倒出一半后,剩下的糖水并没有加水,也没有加糖,因此含糖率不变,还是30%;据此判断.解:把含糖30%的糖水倒出一半后,剩下的糖水的含糖率还是30%;所以原题说法错误.故答案为:×.【点评】此题考查学生对含糖率问题的理解、分析与判断能力.15.(2分)在一个长5厘米,宽3厘米的长方形中画一个最大的圆,这个圆的半径是 1.5厘米.【分析】在这个长方形中画的最大圆的直径应等于长方形的宽,长方形的宽已知,从而可以求出这个圆的半径.解:圆的半径:3÷2=1.5(厘米);答:这个圆的半径是1.5厘米.故答案为:1.5.【点评】解答此题的关键是明白:在这个长方形中画的最大圆的直径应等于长方形的宽,据此即可逐步求解.三.选择题(共5小题,满分10分,每小题2分)16.(2分)观察下面的图形,()不是轴对称图形.A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意.故选:D.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(2分)如果把第一行人数的调入第二行,两行的人数就相等.原来第一行与第二行的人数比是()A.5:4 B.4:5 C.5:3 D.3:5【分析】根据题意可知:把第一行的人数看作单位“1”,则第一行的人数比第二行的人数多第一行的人数的(×2),即第二行的人数是第一行的人数的(1﹣×2),进而根据题意,进行解答即可.解:1:(1﹣×2)=1:=(1×5):(×5),=5:3;答:原来第一行与第二行的人数比是5:3.故选:C.【点评】解答此题的关键:第一行的人数比第二行的人数多第一行的人数的(×2),是解答此题的关键所在.18.(2分)两个数相除商是30,如果被除数和数同时扩大4倍,商应是()A.30 B.120 C.240【分析】在除法算式中,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变;据此解答即可.解:根据商不变的性质可知,两个数相除商是30,如果被除数和数同时扩大4倍,商不变,还是30.故选:A.【点评】解答此题应明确:只有被除数和除数同时扩大或缩小相同的倍数(0除外),商才不变.19.(2分)甲、乙、丙三位同学分别调制了一杯蜂蜜水.甲调制时用了30毫升的蜂蜜,150毫升水;乙调制时用了4小杯蜂蜜,16小杯水;丙调制时用的水是蜂蜜的6倍.()调制的蜂蜜水最甜.A.甲B.乙C.丙D.无法判断【分析】要想知道哪种蜂蜜水甜一些,就要求出三种溶液含蜂蜜率分别是多少,含蜂蜜率高的那种蜂蜜水甜一些.解:第一杯含蜂蜜:30÷(30+150)=30÷180≈17%;第二杯含蜂蜜:4÷(4+16)=4÷20=20%;第三杯含蜂蜜:1÷(1+6)=1÷7≈14%;因为20%>17%>14%,所以乙蜂蜜水甜一些.答:乙蜂蜜水甜一些.故选:B.【点评】此题属于百分率问题,关键是求出三种溶液含蜂蜜率的高低.20.(2分)圆的直径扩大2倍,它的面积扩大()A.2倍B.4倍C.6倍D.无法确定【分析】圆的直径扩大2倍,也就是半径扩大2倍,面积扩大2×2=4倍;可以用设数法解答.解:假设原来圆的直径为4,扩大2倍后是8,这时半径为4,原来圆的面积是:3.14×(4÷2)2,=3.14×4,=12.56;后来圆的面积是:3.14×42,=3.14×16,=50.24;面积扩大:50.24÷12.56=4;答:面积扩大4倍.故选:B.【点评】此题考查了圆的面积与半径的平方成正比例的灵活应用.四.计算题(共4小题,满分22分)21.(4分)直接写出得数﹣=+=÷2=8÷=3.6×= 2.4÷=÷=×=【分析】根据分数和小数加减乘除法的计算方法进行计算.解:﹣=+=1 ÷2=8÷=123.6×=3 2.4÷=3.6 ÷=×=【点评】口算时,注意运算符号和数据,然后再进一步计算.22.(6分)解方程.x×(+)=;6x﹣4.6=8;x+20%x =40.【分析】(1)先化简方程,再依据等式的性质,方程两边同时除以求解;(2)依据等式的性质,方程两边同时加4.6,再同时除以6求解.(3)先化简方程,再依据等式的性质,方程两边同时除以120%求解.解:(1)x×(+)=x=x÷=÷x=;(2)6x﹣4.6=86x﹣4.6+4.6=8+4.66x=12.66x÷6=12.6÷6x=2.1;(3)x+20%x=40120%x=40120%x÷120%=40÷120%x=.【点评】等式的性质是解方程的依据,解方程时注意(1)方程能化简先化简,(2)等号要对齐.23.(6分)计算题,写出计算过程×÷÷[(+)×] (++)×12÷9+×+x=x=【分析】①先算乘法,再算除法;②先用乘法分配律计算中括号的,再算除法;③运用乘法分配律简算;④逆用乘法分配律简算;⑤方程两边同时减去,即可得解;⑥方程两边同时除以,即可得解.解:①×÷=×36=18②÷[(+)×]=÷[×+×]=÷[+]=×=③(++)×12=×12+×12+×12=4+3+10=17④÷9+×=×+×=()×=1×=⑤+x=+x=x=⑥x=x=x=【点评】此题考查分数四则混合运算顺序和灵活运用运算定律和运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐,分析数据找到正确的计算方法.24.(6分)文字叙述题(1)有一个数,它的减去4.2与它的相等,求这个数(用方程解)(2)已知甲数是乙数的1.4倍,两数相差9.8,求乙数.(用方程解)(3)12除4与2的差,商是多少?【分析】(1)设这个数为x,x的减去4.2与x的相等,也就是x 的减去x的等于4.2,即x﹣x=4.2;(2)设乙数为x,那么甲数是1.4x,两数相差9.8,即1.4x﹣x=9.8;(3)先算4与2的差,所得的差除以12.解:(1)设这个数为x;x﹣x=4.20.1x=4.2x=42.答:这个数是42.(2)设乙数为x,那么甲数是1.4x;1.4x﹣x=9.80.4x=9.8x=24.5.答:乙数是24.5.(3)(4﹣2)÷12=1÷12=.答:商是.【点评】根据题意,先弄清运算顺序或等量关系,然后再列式或方程进行解答.五.解答题(共1小题,满分6分,每小题6分)25.(6分)已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC =6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.【分析】根据图示可知:阴影部分的面积等于以AB为直径的圆的面积的一半减掉以AC为底、BC为高的三角形的面积,再乘4即可.解:根据题意得:[3.14×(10÷2)2×﹣×6×8]×4=[39.25﹣24]×4=15.25×4=61答:阴影部分的面积是61.【点评】本题主要考查圆与组合图形,关键根据图示,把组合图形转化为规则图形,利用规则图形的面积公式计算.六.解答题(共6小题,满分32分)26.(5分)人的血液大约占体重的,血液里大约有是水.王壮的体重是39千克,他的血液里大约含水多少千克?【分析】人的血液大约占体重的,王壮的体重是39千克,根据分数乘法的意义,其血液约为39×千克,又血液里大约有是水,则其血液里约含水39××千克.解:39××=2(千克)答:他的血液里大约含水2千克.【点评】求一个数的几分之几是多少,用乘法.27.(5分)小华和小明共有105元的零花钱,其中小明的零花钱是小华零花钱的.小华和小明分别有多少零花钱?【分析】把小华的零花钱看作单位“1”,小明的零花钱就是,两人的总钱数就是小华钱数的(1+),它对应的数量是105元,用除法求出单位“1”就是小华的零花钱,进而解答即可.解:105÷(1+)=105÷=75(元)105﹣75=30(元)答:小华的零花钱有75元,小明的零花钱有30元.【点评】本题的关键是找出单位“1”,并找出单位“1”的几分之几对应的数量,用除法就可以求出单位“1”的量.28.(5分)甲、乙两汽车从A、B两地相向而行,相遇时所行路程比是5:3,这时乙车距两地的中点还有80千米,求两地相距多少千米?【分析】首先把两地之间的距离看作单位“1”,根据相遇时所行路程比是5:3,分别求出相遇时甲乙各行了全程的几分之几,进而求出相遇时甲比乙多行了全程的几分之几;然后求出相遇时甲比乙车多行的路程,再用它除以它占全程的分率,求出两地相距多少千米即可.解:(80×2)÷()=160=640(千米)答:两地相距640千米.【点评】此题主要考查了简单行程问题,以及比的应用,要熟练掌握,解答此题的关键是求出相遇时甲比乙车多行的路程,以及它占全程的分率是多少.29.(5分)一辆汽车从甲地开往乙地,行了60千米后,还剩全程的,甲地到乙地的公路长是多少千米?【分析】根据题意,把甲乙两地的路程看作单位“1”,还剩全程的,说明行了全程的:1﹣=,所以,行的60千米占全程的,求全程有多长,用除法计算即可.解:60÷(1﹣)=60÷=140(千米)答:甲地到乙地的公路长是140千米.【点评】本题主要考查分数除法的应用,关键根据题意找对单位“1”,利用已知数量占整体的分率,求单位“1”,用除法计算即可.30.(6分)有一批苹果放在甲、乙两个筐中都没放满,如果把甲筐苹果倒入乙中,乙还能再装10个;如果把乙筐苹果全部倒入甲中,乙还剩20个.已知乙筐装满后苹果的个数是甲筐的装满后的2.5倍,这批苹果共有多少个?【分析】首先设甲筐装满需要苹果x个,则乙筐装满苹果的个数为2.5x个,然后用全部倒入甲筐中的苹果个数加上剩余的苹果的个数,可得这批苹果的总个数为x+20个;再判断出全部装入乙筐中后苹果的总个数为2.5x﹣10个;最后根据这批苹果,不管全部在甲中还是在乙中,总个数是相等的,可得2.5x﹣10=x+20,求出x的值是多少,进而求出这批苹果共有多少个即可.解:设甲筐装满需要苹果x个,则乙筐装满苹果的个数为2.5x个,所以2.5x﹣10=x+202.5x﹣x﹣10=x+20﹣x1.5x﹣10=201.5x﹣10+10=20+101.5x=301.5x÷1.5=30÷1.5x=202.5×20﹣10=50﹣10=40(个)答:这批苹果共有40个.【点评】此题主要考查了列方程解含有两个未知数的应用题,要熟练掌握,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.31.(6分)李叔叔和王叔叔一起加工一批零件,李叔叔每小时加工49个,王叔叔每小时加工51个,两人一起工作了6小时才完成任务.这批零件一共有多少个?(运用简便方法计算)【分析】先求出两人合作的工作效率,再根据工作总量=工作时间×工作效率即可解答.解:(49+51)×6,=100×6,=600(个),答:这批零件一共有600个.【点评】求出两人合作的工作效率是解答本题的关键,依据是工作总量=工作时间×工作效率.七.解答题(共1小题)32.甲乙二人沿400米环形跑道同时从某点开始反方向跑步,已知甲的速度比乙的速度快,当两人第一次相遇时甲跑了多少米?【分析】由甲的速度比乙的速度快,可得甲乙速度比=(1+):1=11:10,从而求出在相同时间甲乙所行的路程比11:10,根据甲乙二人沿400米环形跑道同时从某点开始反方向跑步,是相遇问题就用环形跑道长除以甲乙所行路程总份数,即可得出1份的,再乘以11就是甲跑的米.解:甲乙速度比=(1+):1=11:10,当两人第一次相遇时甲跑了:400÷(10+11)×11,=400÷21×11,=4400÷21,=209(米),答:当两人第一次相遇时甲跑了209米.【点评】解答此题主要是根据甲的速度比乙的速度快,求出甲乙的所行的路程比,又知从某点开始反方向跑步,这就变成相遇问题来解决.。
《金融学》模拟试卷及答案九

《金融学》模拟试卷及答案9一、填空题(每小题1分,20题,共20分)1.我国在国民收入分配中应当坚持的原则是。
2.由国家出面开展的对外贸易竞争所采取的手段主要有:、非关税壁垒、鼓励出口政策、倾销、贸易谈判。
3.价值:的人类劳动。
它是商品的社会属性,体现着商品生产者在私有制和分工条件下互相交换劳动的社会关系。
4.通货膨胀:由于纸币发行量超商品流通所需要的金属货币量所引起的现象。
5.资本积聚:指通过剩余价值不断转化为资本而增大其总额。
6.金融期权合约指是一种能够在合约到期日之前(或在到期日当天),买入或卖出的权利。
7.证券承销指就证券发行的种类,时间,条件等对发行公司提出建议,并从发行人处购买新证券,向公众分销。
8.开放式基金指基金发行的股份总额不固定,投资者可随时从基金购买更多股份或要求基金将自己手中的股份赎回变现,购买和变现价格取决于的投资基金。
9.摩擦性失业指由于而造成的失业。
10.羊群效应或称“跟风效应”,指一种货币在受到时,大量的资金会加入这种投机行列,即是非投机性资金,甚至本国居民也会为了避免汇率风险而参与资本外逃,形成羊群效应。
11.劳动强度是指单位时间内。
12.资本主义工资是的转化形式。
13.固定资本指以机器、设备、厂房、工具等重要形式存在的生产资本。
14.增加剩余价值生产的方法有:。
15.按贷款风险分类法如借款人能够履行合同,没有足够理由怀疑贷款本息不能第1页共19页按时足额偿还的贷款应归为类贷款。
16.《储蓄管理条例》中所称储蓄是指个人将属于其所有的存入储蓄机构。
17.金融是指货币流通和以及与之相关的经济活动。
18.股票价格指数是反映股票行市变动的价格平均数,是以计算期样本股市价总值除以基期市价总值再乘上而得到的19.是运用资金的业务,通过这种业务能表明银行资金的存在形态以及银行所拥有的对外债权,提供了创造银行利润的主要来源。
是商业银行将通过负债所聚集的货币资金加以运用的业务,使其取得收益的主要途径。
人教版九年级中考化学模拟试卷(含答案)

九年级中考化学学科模拟试卷可能用到的相对原子质量:H1 C12 O16 Mg24 Si28 S32 C135.5 Ca 40Fe 56 Ag 108 Ba 137选择题部分(共50分)一、单项选择题(本题包括10小题,每小题2分,共20分,每小题只有一个正确答案)1.物质世界是不断运动和变化的。
下列变化中,没有发生化学变化的是()A.钢铁治炼B.冰雪融化C.陶瓷烧制D.面包发霉2.2022年北京冬奥会秉持“科技冬奥”,使用多种“黑科技”。
下列说法不正确的是()A.“水立方”巧变“冰立方”:在水结冰的过程中,水分子的种类没有发生变化B.“冰丝带”:采用CO2直冷制冰技术,使碳排放值趋近于零,可有效减缓温室效应C.“飞扬”火炬:火炬将使用氢气做燃料,氢气燃烧的过程中化学能转化为热能和光能D.天然“冰壶”:制作冰壶的花岗岩主要由石英、长石等矿物组成,花岗岩属于纯净物3.生活离不开化学,化学服务于生活。
下列相关解释和判断中正确的是()A.氢氧化铜和氢氧化钠都含有氢氧根离子,所以他们都能使无色酚酞试液变红B.欲配制成溶质质量分数为0.9%的生理盐水,需要0.9克氯化钠和100克水C.金刚石和石墨都由碳元素组成,所以他们的性质完全相同D.口罩中的熔喷布是由聚丙烯【(CH2CHCH3)n】超细纤维制成,属于有机高分子材料4.具备基本的化学实验技能是进行科学探究活动的基础和保证。
下列实验操作正确的是()A.用胶头滴管向试管中滴加液体时,把滴管伸入试管内B.为加快过滤速度,用玻璃棒对漏斗中的液体进行搅拌C.稀释浓硫酸时,将浓硫酸沿着烧杯内壁缓缓注入水中D.测定溶液的pH时,将试纸先润湿再放入待测液中5.我国空间站己开启有人长期驻留时代。
为空间站提供所需电力的是硅太阳能电池帆板,太阳能电池帆板的材料最主要的是晶体硅材料。
硅元素在元素周期表中的信息和原子结构示意图如图所示。
下列有关硅的说法中,不正确的是()A.该元素的原子的质子数和核外电子数均为14B.原子结构示意图中X的值为8C.SiO2中硅元素的化合价为+4价D.一个硅原子的实际质量为28.09g(第5题图)6.食盐(NaCl)是我们生活中的必需品。
2023年高考地理模拟试卷及答案(九)

高考模拟卷(九)考试时间:50分钟试卷满分:100分一、选择题:本题共11小题,每小题4分,共44分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
互联网零售配送是指拥有实体店的商家通过线上接单、送货上门的方式服务社区群众的商业模式。
互联网零售配送在中国备受欢迎,但在西班牙该方式的市场占有率较低。
某地理研究小组以西班牙首都马德里某互联网零售配送商为例,研究影响其客户流失的因素。
该小组将在第一周下单后四个月内不再下单的客户定义为流失客户。
据此完成1~3题。
1.与中国相比,西班牙互联网零售配送市场占有率较低,其主要原因是()A.居民收入低B.网络技术落后C.人力成本高D.城市交通拥堵2.马德里7月注册的新客户流失率最高,推测其主要影响因素是()A.天气B.昼长C.受教育水平D.家庭汽车拥有率3.降低马德里互联网零售配送新客户流失率可采取的措施是()①大力发展大宗货物运输物流②利用信息技术,提高配送效率③提高服务价格,实现消费升级④了解用户需求,增加产品种类A.①③B.①④C.②③D.②④古楼作为中国古建筑的重要组成部分,建筑材料丰富多样,主要由砖木、砖石、木、土石、土木等构成,承载着中华民族悠久的历史。
下图为我国现存古楼的地区分布图。
读图,完成4~6题。
4.我国现存古楼分布特征是()A.华东地区经济发达,商业娱乐类鼓楼最多B.东北地区历史悠久,古楼种类齐全C.西南地区民族众多,宗教文化类古楼最多D.华南地区战乱多发,古楼数量最少5.高大的钟楼、鼓楼等报时警示类古楼大多分布在()A.平原城市B.河谷城市C.边境城市D.山区城市6.木结构古楼数量最多的地区是()A.东北地区B.西南地区C.西北地区D.华中地区奥里诺科河发源于圭亚那高原,下游流经奥里诺科平原,每年汛期,下游会有干流倒灌支流的现象。
干流下游在涨水和退水期间,均会出现含沙量的峰值。
图a为奥里诺科河流域示意图,图b为奥里诺科平原上的甲城气候资料。
2024年4月福建省九年级中考语文模拟试卷及答案解析

2024年4月福福福九年级福福语文模拟福卷(本卷共21题,试卷满分:150分;考试时间:120分钟)2024.4第一部分积累与运用(23分)1.古诗词默写夏小逸根据七年级至九年级所学古诗文,梳理了以下内容,请你帮助他一起补充完整。
(1)诸葛亮在《出师表》中写道“ ,不宜异同。
”(2)龚自珍《己亥杂诗》中形象地表达了自己虽然辞官,但仍会关心国家前途和命运的句子是:“ ,。
”(3)陶渊明在《桃花源记》中描绘桃花林草美花繁的语句是:“ ,。
”(4)总有一些精神催人奋进,《雁门太守行》中“报君黄金台上意,”,将士们誓死报国的忠心让人崇敬。
(5)陶弘景在《答谢中书书》中以“ ,”两句描写了夕阳西下时潜游的鱼儿争先恐后跳出水面的情景。
二、综合性学习(15分)2.“品诗词文化,悟华夏风骨”,深有感触的夏小逸写下了一段文字,请你帮忙完善。
古语有云:“腹有诗书气自华。
”诗,是感情的渗透;是思想的火花;是理想的光(huī)①______;是智慧的结晶。
它______着汉字的灵魂,像一条潜龙,流动在华夏文明历史长河中。
从诗三百、离骚的源头,到乐府民歌,再到(guī)②______丽宏伟的唐诗宋词,以至现代的新诗、散文诗,诗人们以其幽微的洞察力、______的情愫、精(zhàn)③______的笔墨,显示出多彩的人文精神和历史文化。
______出这悠久的诗意中国,它改变了平凡而美丽的一代代华夏儿女。
(1)根据拼音,依次写出①①①处相应的汉字。
(正楷字或行楷字)。
(2)依次填入文中横线内的词语,全都恰当的一项是()A.凝聚愁肠百结铭刻B.凝结愁肠百结镌刻C.凝聚悲天悯人镌刻D.凝结悲天悯人铭刻(3)文中画横线的句子有语病,修改最恰当的一项是()A.它改变了美丽而平凡的一代代华夏儿女。
B.它影响了平凡而美丽的一代代华夏儿女。
C.它改变了一代代平凡而美丽的华夏儿女。
D.它影响了一代代平凡而美丽的华夏儿女。
名著阅读(6分)3.忆往昔,夏小逸认识到人生路上最大的幸运是:人生途中有师者指引,有朋友相知相携。
人教版九年级下学期中考英语模拟试卷(含答案)

九年级中考英语学科模拟试卷(满分:150分时间120分钟)选择题部分共90分I.听力测试(30分)A)听录音,从每组句子中选出一个你所听到的句子。
每个句子听一遍。
1.A.Don’t eat in class. B.Let’s play basketball. C.Long time no see.2.A.He has a baseball. B.I usually get up at 6:30. C.She likes English best.3.A.There is a bank. B.This is my sister. C.These are flowers.4.A.Was he late for school? B.Did he drink tea? C.Does he like apples?5.A.What’s this in English? B.What color is it? C.What’s your name?B)在录音中,你将听到五段对话,每段对话后有一个小题,从每小题A、B、C中选出能回答所给问题的正确答案。
每段对话读两遍。
6.What ball games does Amy like?A.Volleyball.B.Baseball.C.Soccer.7.Who does the CD belong to?A.It belongs to Nancy.B.It belongs to Paul.C.It belongs to Tom.8.How much are two pairs of the sports socks?A.Nine dollars.B.Five dollars.C.Two dollars.9.What is Lily’s new skirt made of?A.It’s made of cotton.B.It’s made of silver.C.It’s made of silk.10.Where are the two speakers?A.In a cinema.B.In a car.C.In a room.C)在录音中,你将听到一段对话,对话后有五个小题,从每小题A、B、C中选出能回答所给问题的正确答案。
湖南省怀化市中考数学模拟试卷(九)
2021年湖南省怀化市中考数学模拟试卷(九)一、选择题(每小题4分,共40分)1.下列数不是有理数的是()A.2021B.()°C.πD.0.3131312.下列运算正确的是()A.2x+3x=5x2B.(﹣2x)2=﹣6x3C.2x3⋅3x2=6x3D.(3x+2)(2﹣3x)=9x2﹣43.如图是由5个小正方体组合成的几何体,则其俯视图为()A.B.C.D.4.面对2020年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗.据统计共投入约21亿元资金.21亿用科学记数法可表示为()A.0.21×108元B.2.1×103元C.2.1×109元D.0.21×1010元5.如图,a∥b,一块含45°的直角三角板的一个顶点落在其中条直线上,则∠2的度数为()A.25°B.35°C.55°D.65°6.一组数据4,5,x,7,9的平均数为6,则这组数据的众数为()A.4B.5C.7D.97.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户,设全市5G用户数年平均增长率为x ()A.20%B.30%C.40%D.50%8.如图,在△AOB和△COD中,OA=OB,OA<OC,∠AOB=∠COD=36°.连接AC、BD交于点M①∠AMB=36°;②AC=BD;③OM平分∠AOD④MO平分∠AMD其中正确的结论个数有()个A.4B.3C.2D.19.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和与y轴交于点C.下列结论:①abx<0;③4a﹣2b+c>0,其中正确的结论个数为()A.1个B.2个C.3个D.4个10.如图,点A.B是直线y=x上的两点.过A,B两点分别作x轴的平行线交双曲线y=(>0)于点C,D.若AC=2﹣OC2的值为()()A.5B.3C.4D.2二、填空题(每小题4分,共24分)11.函数y=中,自变量x的取值范围是.12.如图、已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,则还需添加的一个条件是(只填个即可)13.如图是一个几何体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是.14.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.15.如图,在平面直角坐标系中,矩形ABCD的边AB在y轴上(2,﹣2)并且AO:BO=1:2,点D在函数y=(x>0),则k的值为.16.如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换(0,2)变②;第二次滚动后点A2变换到点A1(6,0);第三次滚动后点A变换到点A1(10,4),得到等腰直角三角形④(10+12,0),得到等腰直角三角形⑤;依此规律….三、解答题(共86分)17.计算:18.先化简,再求值:,其中x=﹣tan45°19.已知关于x的方程x2﹣4x+k+1=0有两实数根(1)求k的取值范围;(2)设方程两实数根分别为x1,x2,且,求实数k的值20.如图,在平行四边形ABCD中,对角线AC与BD交于点O,N分别为OA、OC的中点,延长BM至点E,连接DE.(1)求证:△AMB≌△CND;(2)若BD=2AB,且AB=5,DN=421.新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计(1)本次被抽取的教职工共有名(2)表中a=,扇形统计图中“C”部分所占百分比为%(3)扇形统计图中,“D”所对应的扇形圆心角的度数为(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?志愿者服务时间(小时)频数A0<x⩽30AB30<x⩽6010C60<x⩽9016D90<x⩽1202022.如图,AB为⊙O的直径,C、D为⊙O上的两个点,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线。
上海市中考语文模拟测试试卷(九)及答案
上海市中考语文模拟测试试卷(九)及答案一、句子默写1.默写与运用(1)无可奈何花落去,。
(《浣溪沙》)(2),自将磨洗认前朝。
(《赤壁》)(3),参差披拂。
(《小石潭记》)(4)庭下如积水空明,,盖竹柏影也。
(《记承天寺夜游》)(5)江南春来鸟飞时,可引用《钱塘湖春行》中的诗句“,”描绘这勃勃生机。
二、课内阅读阅读下面古诗文,完成下面小题(甲)卖炭翁卖炭翁,伐薪烧炭南山中。
满面尘灰烟火色,两鬓苍苍十指黑。
卖炭得钱何所营?身上衣裳口中食。
可怜身上衣正单,心忧炭贱愿天寒。
夜来城外一尺雪,晓驾炭车辗冰辙。
牛困人饥日已高,市南门外泥中歇。
翩翩两骑来是谁?黄衣使者衫儿。
手把文书口称敕,回车叱牛牵向北。
一车炭,千余斤,宫使驱将惜不得。
半匹红绡一丈绫,系向牛头充炭直。
(乙)桃花源记晋太元中,武陵人捕鱼为业。
缘溪行,忘路之远近。
忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。
渔人甚异之,复前行,欲穷其林。
林尽水源,便得一山,山有小口,仿佛若有光。
便舍船,从口入。
初极狭,才通人。
复行数十步,豁然开朗。
土地平旷,屋舍俨然,有良田、美池、桑竹之属。
阡陌交通,鸡犬相闻。
其中往来种作,男女衣着,悉如外人。
黄发垂髫,并怡然自乐。
见渔人,乃大惊,问所从来。
具答之。
便要还家,设酒杀鸡作食。
村中闻有此人,咸来问讯。
自云先世避秦时乱,率妻子邑人来此绝境,不复出焉,遂与外人间隔。
问今是何世,乃不知有汉,无论魏晋。
此人一一为具言所闻,皆叹惋。
余人各复延至其家,皆出酒食。
停数日,辞去。
此中人语云:“不足为外人道也。
”既出,得其船,便扶向路,处处志之。
及郡下,诣太守,说如此。
太守即遣人随其往,寻向所志,遂迷,不复得路。
南阳刘子骥,高尚士也,闻之,欣然规往。
未果,寻病终。
后遂无问津者。
2.(甲)诗作者是唐朝诗人,(乙)文作者是东晋诗人。
3.用现代汉语翻译下面的句子。
此人一一为具言所闻,皆叹惋。
____________________________________________________________________________________________ 4.(甲)诗以为叙事线索,(乙)文以为叙事线索。
徐州市中考数学模拟试卷(九)含答案解析
江苏省徐州市中考数学模拟试卷(九)一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×1063.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.11.计算:( +1)(﹣1)=.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.14.代数式有意义时,x应满足的条件为.15.若(m﹣1)2+=0,则m+n的值是.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.江苏省徐州市中考数学模拟试卷(九)参考答案与试题解析一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:B.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为1.1×105.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是三角形,可判断该几何体是锥体,再根据左视图的形状,即可得出答案.【解答】解:∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选D.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.【点评】本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =【考点】由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得,现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【解答】解:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得, =.故选B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°【考点】正方形的性质;等腰三角形的性质;等边三角形的性质.【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A (2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=m(a+b).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这里的公因式是m,直接提取即可.【解答】解:ma+mb=m(a+b).故答案为:m(a+b)【点评】本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【考点】概率公式.【分析】根据不合格品件数与产品的总件数比值即可解答.【解答】解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.【点评】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.计算:( +1)(﹣1)=1.【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.14.代数式有意义时,x应满足的条件为x≠±1.【考点】分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0,故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.若(m﹣1)2+=0,则m+n的值是﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以m+n=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是20.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.【点评】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是5.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.【专题】压轴题.【分析】根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.【解答】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.【考点】正方形的性质;菱形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.故答案为:.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.【考点】实数的运算;整式的混合运算—化简求值;零指数幂.【分析】(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.【点评】本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】解一元二次方程-公式法;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)方程利用公式法求出解即可;(2)不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)这里a=2,b=4,c=﹣1,∵△=16+8=24,∴x==;(2)不等式移项合并得:2x≤2,解得:x≤1,【点评】此题考查了解一元二次方程﹣公式法,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【考点】作图-轴对称变换;勾股定理;锐角三角函数的定义.【分析】①利用勾股定理得出AB的长,再利用锐角三角函数关系得出答案;②利用关于直线对称的性质得出对应点进而利用梯形面积求法得出答案.【解答】解:①∵AC=3,AB==5,∴sinB的值是: =.故答案为:;②如图所示:△A1B1C1,即为所求,梯形AA1B1B的面积为:×(2+8)×4=20.【点评】此题主要考查了轴对称变换和勾股定理以及锐角三角函数关系,正确掌握梯形面积公式是解题关键.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】优选方案问题.【分析】(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.【解答】解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.【点评】此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C 相对于点A的方向.【解答】解:(1)如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50,∴CD=BC﹣BD=200﹣50=150,在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【点评】考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【考点】三角形的外接圆与外心;圆周角定理;解直角三角形.【分析】(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.【解答】解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.【点评】此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P 的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.。
九年级中考数学模拟试卷(01)
九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摸拟试卷九
基础护理部分(共100分)
一. 单项选择题(2分/小题、共20分)
1. 正常尿液中仅有少量蛋白存在,蛋白尿是指24小时尿蛋白含量()
A. >120mg
B. >110mg
C. >150mg
D. >90mg
2. 下列哪项不是心肺复苏的适应证()
A. 溺水致呼吸心跳停止
B. 深度昏迷
C. 严重心肺疾患致心跳呼吸停止
D. 中毒所致的心跳停止
3. 紫外线灯用于空气消毒的有效距离和照射时间是()
A. 不超过2m,不少于30分钟
B. 不超过2.5m,不少于45分钟
C. 不超过3m,不少于30分钟
D. 不超过1m,不少于45分钟
4. 为预防昏迷病人发生口腔感染,应首选什么措施()
A. 观察口腔黏膜和舌苔
B. 预防感染
C. 进行口腔护理
D. 餐后漱口
5. 为肝昏迷病人灌肠时,禁忌使用的灌肠液是()
A. 清水
B. 生理盐水
C. 肥皂水
D. 4℃冰水
6. 从早上八点开始输液,1000ml每分钟滴60滴,输完液体的时间是()
A. 11点30分
B. 12点
C. 12点10分
D. 13点
7. 某男性患者,52岁,收缩血压值持续为
21.3~12.8kPa(160~96mmHg),应考虑是()
A. 高血压
B. 正常血压
C. 低血压
D. 临界血压
8. 在输液过程中,患者表现为胸闷、气促、咳嗽、咯泡沫痰,这说明患者发生了哪一种输液反应()
A. 空气栓塞
B. 急性肺水肿
C. 静脉炎
D. 发热反应
9. 冷疗法可以减轻疼痛的机制是()
A. 血管收缩
B. 血流减慢
C. 减慢神经冲动的传导
D. 降低细菌活力
10. 与热疗效应成正比关系的因素是:用热的()
A. 面积
B. 方式
C. 时间
D. 温度
二. 多项选择题(3分/题、共15分,错选、多选、少选不得分)
1. 为病人洗发前,正确的做法是()
A. 将衣领扣紧向内反折
B. 协助病人斜角仰卧,移枕于肩下
C. 用棉球塞两耳
D. 嘱病人闭上眼睛
2. 男病人因膀胱肌肉收缩而产生阻力使导尿管不易插入时,不正确的处理方法是
()
A. 旋转导尿管稍用力插入
B. 将导尿管退出少许,轻轻按摩下腹后再插入
C. 嘱病人缓慢深呼吸,再徐徐插入导尿管
D. 改变病人体位后再插入导尿管
3. 留置导尿术不用于()
A. 收集无菌尿标本
B. 进行膀胱造影
C. 休克患者
D. 尿潴留病人
4. 执行医嘱下列哪项不正确()
A. 一般情况下可执行口头医嘱
B. 医嘱须经医生签字方为有效
C. 医嘱须隔日仔细核对一次
D. 需下一班执行的医嘱书面注明即可
5. 随着医学模式的转变,我国的护理实践也有较大变化,下列叙述正确的是()
A. 实施以健康人为中心的整体护理
B. 帮助调节病人的情绪和心理状态
C. 重视对病人及家属进行健康教育
D. 增加了解病人的心理和社会状况
三. 填空题(1分/空,共15分)
1.马斯洛的人类基本需要层次论,从低到高依次为:、
、、
、。
2.对病区物理环境总的要求是:、
、、。
3.院内感染的类型包括:
、。
4.脑死亡的诊断标准包括:
、、
、。
四. 名词解释(5分/题,共20分)
尿潴留:
意识障碍:
隔离:
无菌技术:
五. 简答题(7分/题,共21分)
1、男性导尿的注意事项;
2、职业防护的意义;
3、鼻饲的注意事项;
六. 论述题(9分)
输血的方法及注意事项。
内科护理部分(共60分)
一. 单项选择题(1分/小题、共10分)
1.肺结核病人最常见的呼吸道症状是( )
A.咳嗽
B.咯血
C.呼吸困难
D.胸痛
2.II型呼吸衰竭病人的动脉血气标准是( )
A.PaO2<60mmHg,PaCO2<50mmHg
B.PaO2>60mmHg,PaCO2>50mmHg
C.PaO2<60mmHg,PaCO2>50mmHg
D.PaO2>60mmHg,PaCO2<50mmHg
3.对于一般人群的降压目标应是血压低于( )
A.120/80mmHg
B.130/80mmHg
C.140/90mmHg
D.150/90mmHg
4.终止及预防心绞痛发作的最有效药物是( )
A.心痛定
B.硝酸甘油
C.阿司匹林
D.倍他乐克
5.能提示休克病人病情好转的表现是( )
A.血压下降
B.尿量<30ml/h
C.面色青灰
D.脉率由快变慢
6.应用洋地黄治疗禁用于( )
A.室上性心动过速
B.心房颤动伴心室率增快
C.预激综合征伴心房颤动
D.充血性心衰
7.消化性溃疡最常见的并发症是( )
A.出血
B.穿孔
C.幽门梗阻
D.癌变
8.在我国引起肝硬化的主要原因是( )
A.酒精中毒
B.病毒性肝炎
C.血吸虫病
D.胆汁淤积
9.慢性肾小球肾炎治疗的主要目的是( )
A.消除蛋白尿
B.控制血尿
C.防止或延缓肾功能进行性减退
D.使血压恢复正常
10.应用非甾体抗炎药治疗类风湿关节炎易出现的不良反应是( )
A.胃肠道反应
B.肝损害
C.皮疹
D.哮喘
二. 填空题(2分/空,共12分)
1.慢性胃炎最可靠的确诊方法是________。
2.肝癌非手术治疗中的首选方法是________。
3.肾病综合征的临床表现包括________、________、高脂血症和水肿。
4.巨幼细胞性贫血是由于________和/或________缺乏引起的。
三、名词解释题(每小题4分,共12分)
1.慢性阻塞性肺疾病
2.心悸
3.隐性感染
四、简答题(每小题6分,共18分)
1.简要回答呼吸衰竭的发病机制。
2.溶栓治疗的护理要点有哪些?
3.诱发肝性脑病的常见诱因有哪些?
五、病历分析题(共8分)
病人女性,65岁,工人,于10余年前出现高血压、蛋白尿、血尿,诊断为慢性肾小球肾炎。
近两年来食欲不振,常出现恶心、呕吐,皮肤瘙痒,注意力不集中。
三天前突然出现柏油样大便,伴有呼吸困难,即来院急诊。
体检:T38.5℃,P100次/分,R24次/分,BP180/120mmHg。
病人慢性病容,口腔有尿臭味,全身水肿,右下肢有两处淤斑,肾区扣击痛阳性,余无明显异常。
实验室检查:尿常规:蛋白(+++),红细胞5个/高倍视野,比重1.010。
血肌酐530μmol/L,血尿素氮25mmol/L,血钾6.3mmoI/L。
血常规:红细胞3.2×1012/L,血红蛋白70g/L。
请回答:(1)试分析病人目前病情。
(2)病人目前主要的护理要点有哪些?
外科护理部分(共40分)
一. 单项选择题(2分/小题、共12分)
1.癌肿TNM分期法中,M代表()
A.肿瘤大小
B.原发肿瘤
C.继发肿瘤
D.区域淋巴结转移
E.远处转移
2用胃肠减压时若胃管堵塞应()
A、重新置管
B、加压吸引
C、停止减压吸引
D、可用生理盐水10-20ml冲洗胃管
E、夹住胃管暂停减压
3.某男性,30岁,针麻下行甲状腺次全切除术,手术顺利结束,送回病室途中患者突诉胸闷、发绀、声嘶,检查敷料为血渗湿。
其原因为()
A.喉返神经损伤
B.喉头水肿
C.切口内出血,血肿压迫气管
D.甲状腺危象
E.以上都不是
4.乳癌根治术后,在拨除皮下引流管后,继以绷带加压包括伤口,并用砂袋压迫,其目的是()
A.减少皮下积液
B.加压后可止痛
C.有利于患侧肢体血运改善
D.主要为了止血
E.减少患侧上肢水肿
5.诊断腹腔内实质性脏器损伤的主要依据是
()
A.腹肌紧张
B.膈下游离气体
C.板状腹
D.腹腔穿刺抽出混浊液体
E.腹腔穿刺抽出不凝血
6.某男,17岁,右侧腹股沟斜疝,嵌顿2小时就诊,检查,右下腹包块,有轻压痛,腹肌无明显肌紧张,无反跳,此时最适宜的处理是()
A.选用非手术方法,佩带疝带
B.择期手术治疗
C.试行手法还纳
D.不可还纳,应紧急手术
E.经上处理都不对
二. 填空题(2分/空,共10分)
1.手术区皮肤消毒范围包括切口周围至少cm以内的皮肤。
2.呼吸困难和窒息是甲状腺术后最危急的并发症,所以病人床旁常备,一旦发现窒息,立即行气管切开。
3.换药的顺序先换,再换,最后换。
三. 名词解释(5分/题,共10分)
1.休克:
2.局部麻醉:
四. 论述题(8分)
甲状腺切除术后病人突然出现呼吸困难、烦躁、发绀,此时可能出现的原因有哪些?应如何处理?。