第13届小学“希望杯”全国数学邀请赛六年级第二试试题
新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案 (满分120分;时间120分钟) 一、填空题(每题5分;共60分) 1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根。
解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根。
4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________。
(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66。
第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、每题6分,共120分1.(6分)++++.2.(6分)将化成小数,小数部分第2015位上的数字是.3.(6分)若四位数能被13整除,则两位数的最大值为.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了%.5.(6分)若a<<a+1,则自然数a=.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}=.(结果用小数表示)7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了件.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z =.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是厘米.(π取3)14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是升.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是厘米.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有个.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是平方米.(π取3)18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了小时.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、每题6分,共120分1.(6分)++++.【解答】解:++++,=(1﹣)+()+(﹣)+(﹣)+(﹣),=1﹣++﹣+﹣+﹣,=1﹣,=.2.(6分)将化成小数,小数部分第2015位上的数字是 1 .【解答】解:=13÷999=0.013013013013013013013013013013013...2015÷3=671 (2)所以小数部分的第2015位置上的数字是:1.故答案为:1.3.(6分)若四位数能被13整除,则两位数的最大值为97 .【解答】解:要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,995÷13=76…7,所以995不合要求,则,985÷13=75…10,所以985不合要求,则,975÷13=75,能被13整除,所以,=2975,那么的最大值为97.答:的最大值为97.故答案为:97.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了37.5 %.【解答】解:设原分数为,则新分数为=×,所以新分数为原分数的,(1﹣)÷1==37.5%.故答案为:37.5.5.(6分)若a<<a+1,则自然数a=402 .【解答】解:因为<++++<,设++++=s,则<<,所以<s<,即402.2<s<403,因此a=402.故答案为:402.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}= 1.82 .(结果用小数表示)【解答】解:{}+{}+{}≈{671.66}+{78.75}+{82.4}=0.66+0.75+0.4=1.81故答案为:1.81.7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了15 件.【解答】解:20÷4×3=15(件)15+20=35(件)35÷(1﹣30%)=35÷70%=50(件)50×30%=15(件);答:甲制作了15件.故答案为:15.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z =21 .【解答】解:根据题意,可得××=则,xyz=9×15×14÷6=3×3×5×7,根据最简真分数的特征,可得x=5,y=7,z=9,所以x+y+z=5+7+9=21.故答案为:21.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?【解答】解:(1)最后一只老鼠取走1粒,最后一位老鼠取前有:1×3+1=4(粒);第二只老鼠取前有:4×3÷2+1=7(粒);第一只老鼠取前有:7×3÷2+1=12.5(粒)不能整除,舍去.(2)最后一只老鼠取走2粒,最后一位老鼠取前有:2×3+1=7(粒);第二只老鼠取前有:7×3÷2+1=12.5不能整除,舍去.(3)最后一只老鼠取走3粒,最后一位老鼠取前有:3×3+1=10(粒);第二只老鼠取前有:10×3÷2+1=16(粒);第一只老鼠取前有:16×3÷2+1=25(粒),符合题意.所以,最初这堆花生至少有25粒.答:这堆花生至少有25粒.10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.【解答】解:设长方形的长和宽分别为a和b,则×π×b2×2=abb=a所以=.答:长方形的长和宽的比值是.故答案为:.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.【解答】解:(×+1×)÷(1+)=()÷=×=答:参加演出的人数占全班人数的.故答案为:.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差 4 颗.【解答】解:设5年妹妹的年龄是x,那么:5年前今年妹妹x x+5姐姐x+2 x+75年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.那么x+2=4+2=6,即5年前按照4:6的比例分配,姐姐分到:80÷(4+6)×6=80÷10×6=48(颗);x+5=9,x+7=11,即今年按照9:11的比例分配,姐姐分到:80÷(9+11)×11=80÷20×11=4×11=44(颗);两次分配相差:48﹣44=4(颗).答:姐姐两次分到的珠子相差4颗.故答案为:4.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是 3 厘米.(π取3)【解答】解:连接BE、CE,则BE=CE=BC=1(厘米)故三角形BCE为等边三角形.于是∠EBC=∠ECB=60°于是弧BE=弧CE=3×1×=1(厘米)则阴影部分周长为1×2+1=3(厘米)答:阴影部分周长是3厘米.故答案为:3.14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是50 升.【解答】解:设第一次倒出的纯酒精是x升,则100﹣x﹣=×100整理得x2﹣200x+7500=0解得x1=150>100,舍去,x2=50,所以x=50答:第一次倒出的纯酒精是50升.故答案为:50.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是27 厘米.【解答】解:设容器的高为x厘米,则容器B中的水深就是(x﹣6)厘米,根据题意可得方程:3.14×22×x=3.14×32×(x﹣6)3.14×4×x=3.14×9×(x﹣6),4x=6x﹣542x=54x=27答:甲容器的高度是27厘米.故答案为:27.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有68 个.【解答】解:9+27+26+6=68(次).答:则这本书的页码中数字0共有68次.故答案为:68.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是0.84 平方米.(π取3)【解答】解:(3×72﹣3×62)+(3×52﹣3×42)+(3×32﹣3×22)+3×12=39+27+15+3=84(平方分米)84平方分米=0.84平方米答:图中阴影部分的面积是0.84平方分米.故答案为:0.84.18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是 3 .【解答】解:因为切一刀多两面;小正方体的表面积之和是切割前的大正方体的表面积的2倍;所以增加的面积等于原表面积;所以平行于三个面各切一刀;所以切割成的小正方体的棱长是:6÷2=3答:切割成的小正方体的棱长是3.故答案为:3.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?【解答】解:(1)1厘米,1厘米,1厘米;(2)1厘米,2厘米,2厘米;(3)1厘米,3厘米,3厘米;(4)1厘米,4厘米,4厘米;(5)1厘米,5厘米,5厘米;(6)5厘米,5厘米,5厘米;(7)2厘米,2厘米,2厘米;(8)2厘米,2厘米,3厘米;(9)2厘米,3厘米,3厘米;(10)2厘米,3厘米,4厘米;(11)2厘米,4厘米,4厘米;(12)2厘米,4厘米,5厘米;(13)2厘米,5厘米,5厘米;(14)3厘米,3厘米,3厘米;(15)3厘米,3厘米,4厘米;(16)3厘米,3厘米,5厘米;(17)3厘米,4厘米,4厘米;(18)3厘米,4厘米,5厘米;(19)3厘米,5厘米,5厘米;(20)4厘米,4厘米,4厘米;(21)4厘米,4厘米,5厘米;(22)4厘米,5厘米,5厘米.答:最多可以组成22个不同的三角形.20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了0.6 小时.【解答】解:1÷3=2÷4=3÷5=::=10:15:181小时26分=86分86×=86×=36(分)=0.6(小时);答:小羊经过下坡路用了0.6小时.故答案为:0.6.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:45:56;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2015希望杯小学六年级二试(附答案)

学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第十三届小学“希望杯”全国数学邀请赛六年级第2试试题2015年4月12日上午9:00-----11:00一、填空题(每小题5分,共60分)1.计算:111...,1212312 (10)+++++++++得_____________。
2.某商品单价先上调,再下降20%才能降回原价。
该商品单价上调了_________%. 3.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是_____________。
最新希望杯六年级真题及解析

第十三届小学“希望杯”全国数学邀请赛六年级 第 1 试试题2015 年 3 月 15 日上午 8:30 至以下每题 6 分,共 120 分. 1. 计算:1 + 1 + 1 + 1+ 1 ________. 2 4 8 1632【出处】2015 年希望杯六年级初赛第 1 题【考点】借来还去——分数计算【难度】☆31【答案】 32【解析】原式 =12 + 14 + 18 + 161 + ( 321 + 321 ) - 321= 12 + 14 + 18 + (161 + 161 ) - 321 = 12 +14 + (18 +18 ) - 321= 12 + (14 + 14 ) - 321=12 + 12 - 321= 1 - 321= 32312. 将 99913化成小数,小数部分第 2015 位上的数字是________.【出处】2015 年希望杯六年级初赛第 2 题【考点】循环小数与分数——计算【难度】☆【答案】1【解析】 99913= 0.013 , 2015 ÷ 3 = 671 2 ,所以数字为 1.13.若四位数2AB7能被13整除,则两位数AB的最大值是________.【出处】2015年希望杯六年级初赛第3题【考点】整除问题——数论【难度】☆☆【答案】97【解析】13 2AB7⇒13AB0+2007,2007÷135,所以AB0÷138 ,13 AB5 ,利用数字谜或倒除法,可确定AB=97。
数字谜方法如下:根据乘积的个位,可确定第二个因数的个位为5,因为构造最大值,所以十位为最大为7,积为9751 3 1 3 1 3⇒ 6 5 6 55 5 9 7 54.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.【出处】2015年希望杯六年级初赛第4题【考点】分数应用题——应用题【难度】☆☆【答案】37.5a a ⨯1 - 20% ) a 5 5 ⎛ 5 ⎫= ⨯ - ÷ 1 ⨯ 100% = 37.5% 【解析】设原分数为,则新分数为,所以新分数为原分数的⎪b b ⨯(1 + 28% ) b8 8 ⎝ 8 ⎭5. 若a< 1 < a +1 ,则自然数a=________.1 + 1 + 1 + 1 + 12011 2012 2013 2014 2015【出处】2015年希望杯六年级初赛第5题【考点】比较与估算——计算【难度】☆☆【答案】402【解析】设x= 1 x> 1 = 2011 = 402 1 x < 1 = 2015 = 403 ,所1+ 1+1+1+1 1⨯ 51⨯ 52011 2012 2013 2014 2015 2011 2015 以402 1 < x <403, a =4025x 3.14 = 0.14 0.5 = 0.5 ⎧ 2015 ⎫ + ⎧ 315 ⎫ + ⎧412 ⎫ =6. .那么,⎨ ⎬ ⎨ ⎬ ⎬5⎩ 3 ⎭ ⎩ 4 ⎭ ⎩ ⎭ ________.(结果用小数表示)【出处】2015年希望杯六年级初赛第6题【考点】高斯记号与循环小数——计算2【难度】☆☆【答案】1.816⎧ 2015 ⎫ ⎧ 315 ⎫ ⎧ 412 ⎫ 2 3 2【解析】⎨ ⎬ + ⎨ ⎬ + ⎨ ⎬ = + + = 0.6 + 0.75 + 0.4 =1.8164 5 3 4 5⎩ 3 ⎭ ⎩ ⎭ ⎩ ⎭7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了________件.【出处】2015年希望杯六年级初赛第7题【考点】比例应用题——应用题【难度】☆☆【答案】15【解析】甲制作了总数的30%,乙、丙制作的件数是总数的1-30%=70%,乙、丙制作的件数之比是3:4,则乙做了30%,丙做了40%,则甲:乙:丙= 3 : 3 : 4,甲制作了20÷4⨯3=15(件)。
希望杯第4-13届小学六年级全国数学竞赛初赛复赛题及解答

2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
2013希望杯六年级第二试

第十一届小学“希望杯”全国数学邀请赛六年级 第2试试题2013年4月14日 上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷= 【解答】110062【解析】原式3452012201323420112012=⨯⨯⨯⨯⨯ 20132= 110062=2. 计算:11.53.1657.0512+++= 【解答】4165【解析】原式111.5357.05612=+++ 1.58.257.05=+++16.8=3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米。
(答案取整数)【解答】128【解析】设距离是x ,列方程得:11.53.87 5.94x x -=。
整理得:5.94 3.8711.5 3.87 5.94x x -=⨯⨯,解得:128x =。
4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋。
【解答】1200【解析】(1)已售出的占全部的:33134=+ (2)超市购进的这批食盐有:342040%12004⎛⎫÷-= ⎪⎝⎭(袋)。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有 个。
【解答】3【解析】(1)422,224,=⨯+=符合条件;(2)3222222,2222232=⨯⨯⨯⨯++++≠+,不符合条件。
2017年希望杯六年级二试第13题
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个7,8,9九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大; 最小的数被3除余1,且尽可能的小,求这三个三位数。
新希望杯六年级数学试卷及解析答案.doc
新希望杯六年级数学试卷及解析答案(满分120分;时间120分钟)一、填空题(每题5分;共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根.解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根.4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________.(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66.(66可以表示成0到11的和)5、十进制计数法;是逢10进1;如141022410⨯+⨯=;15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法;是逢2进1;如22101111121217=⨯+⨯+⨯=;2231011001020212112=⨯+⨯+⨯+⨯=;如果一个自然数可以写成m 进制数m 45;也可以写成n 进制数n 54;那么最小的m =_______;n =________.(注:4434421an n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=)解析:4m+5=5n+4;也就是说4(m-1)=5(n-1);如果m-1=5;n-1=4;则m=6;n=5;但此时n进制中不能出现数字5;如果m-1=10;n-1=8;则m=11;n=9;符合题意.6、我国除了用公历纪年外;还采用干支纪年;根据图2中的信息回答:公历1949年按干支纪年法是____________年.解析:干支纪年法60年一循环;1949+60=2009;而2009年是己丑年;所以1949年是己丑年7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球;为了保证有5次摸出的结果相同;则至少需要摸球__________次.解析:每次摸出的结果可能是两个球颜色相同;有3种可能;或颜色不同;也有3种可能;共6种可能.最不利情况是每种可能各出现4次;则再摸一次就保证有5次相同;6×4+1=258、根据图3中的信息回答;小狗和小猪同时读出的数是___________.解析:相当于分别从1和1002处以2:5的速度比进行相遇问题;(1002-1)÷7×2+1=2879、图4中的阴影部分的面积是__________平方厘米.( 取3)解析:分别连接两个正方形的"\"的对角线;发现它们平行;所以阴影部分的面积就等于一个扇形的面积;为15×15×3÷4=168.7510、甲、乙两人合买了n 个篮球;每个篮球n 元.付钱时;甲先乙后;10元;10元地轮流付钱;当最后要付的钱不足10元时;轮到乙付.付完全款后;为了使两人所付的钱数同样多;则乙应给甲________元.解析:总共价格为2n 元;最后乙付说明2n 的十位数字为奇数;所以个位为6;乙最后一次付了6元;应该给甲2元11、某代表队共有23人参加第16届广州亚运会;他们按身高从高到低排列;前5位队员的平均身高比前8位队员的平均身高多3厘米;后15位队员的平均身高比后18位队员的平均身高少0.5厘米.那么前8位队员的平均身高比后15位队员的平均身高多_______厘米.解析:前5位队员的平均身高比前8位队员的平均身高多3厘米;也就是说;加入第6~8名后;平均身高减少了3厘米;因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米.第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米;也就是说;加入第6~8名后;平均身高增加了0.5厘米;因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米.因此;前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米12、甲、乙、丙三人同时从A 地出发到B 地;他们的速度的比是12:5:4;其中甲、乙两人步行;丙骑自行车;丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B 地;则甲、乙两人步行的路程之比是___________.解析:根据对称性;丙先带谁没有区别.设先带甲;返回接乙.设乙步行的路程为x ;丙骑车返回的路程为y ;甲步行的路程为z .乙比骑车从A 地到B 地多用时间(5x -12x );甲比骑车从A 地到B 地多用时间(4z -12z );丙比骑车从A 地到B 地多用时间122y .三人同时到达即这三个相等时;5x -12x =4z -12z =122y ;求得x :y :z =10:7:7;所求路程比为7:10二、解答题(每题15分;共60分)13、一辆汽车从甲地开往乙地;若车速提高%20;可提前25分钟到达;若以原速行驶100千米;再将车速提高%25;可提前10分钟到达;求甲乙两地的距离.解析:车速提高20%;也就是变成原来的56;则时间变成原来的65;减少25分钟;原定时间为25×6=150分钟;车速提高25%;也就是变成原来的45;则时间变成原来的54;减少10分钟;则这段路程的原定时间为10÷5=50分钟.因此;原速行驶100千米需要150-50=100分钟;距离为150÷100×100=150千米14、如图5;在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体;容器内盛有m 升水时;水面恰好经过圆柱体的上底面.如果将容器倒置;圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的81;求实心圆柱体的体积. 解析:两次的空白部分体积相等;而第二次的空白部分的横截面积为第一次的87811=-;所以第一次的空白部分的高度为第二次的87;即7厘米.正方体的底面积为20×20=400平方厘米;所以圆柱体的底面积为400÷8=50平方厘米;高度为20-7=13厘米;体积为50×13=650立方厘米15、有8个足球队进行循环赛;胜队得1分;负队得0分;平局的两队各得0.5分.比赛结束后;将各队的得分按从高到低排名后发现:各队得分互不相同;且第二名的得分与最后四名所得的总分一样多.求这次比赛中;取得第二名的队的得分.解析:全胜的队得7分;而最后四队之间赛6场至少共得6分;所以第二名的队得分至少为6分.如果第一名全胜;则第二名只输给第一名;得6分;如果第二名得6.5分;则第二名6胜1负;第一名最好也只能是6胜1负;与题目中得分互不相同不符.所以;第二名得分为6分16、将两个不同的自然数中较大的数换成他们的差;称为一次操作;如此继续下去;直到这两个数相同为止.如对20和26进行这样的操作;过程如下:(20;26)→(20;6)→(14;6)→(8;6)→(2;6)→(2;4)→(2;2)(1)对45和80进行上述操作.(2)若对两个四位数进行上述操作;最后得到的相同数是17.求这两个四位数的和的最大值.解析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5).这就是用辗转相除法求最大公约数的运算;所以两个四位数的最大公约数为17;9999÷17=588……3;所以最大的四位数是9999-3=9996;第二大的四位数是9996-17=9979;和为19975(祝各位同学学习进步!)。
希望杯六年级近五年真题汇编
欢迎来主页下载---精品文档希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。
六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)
六年级下册数学试题希望杯邀请赛第2试试卷通用版(含答案)六年级(特1) 第2试试题一、填空题(每题5分,共60分)1、2017=AAA +AAA +AA +AA +A +A +A +A +A +A +A +B,字母“A ,B”均代表一个非零数字,则B = 。
2、将一个两位数ab 的个位数字和十位数字交换,得到两位数ba ,若ba —ab =63,则满足条件的两位数ab 有 个。
3、如图1,一只青蛙从五边形ABCDE 的顶点A 出发顺时针跳跃,每步从五边形的一个顶点跳到另一个顶点,A B C D E,若这只青蛙第一次跳1步,第二次跳2步,……,第n 次跳n 步,则它在跳完10次时,到达顶点 。
4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x,如23.067823••,678.230678••等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。
5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。
6、电视机厂接到生产一批电视机的订单,订单价每台2000元,预计可以获利30万元,实际上,由于生产成本提高了16,所以利润减少了25%,则此次订单需要电视机 台。
7、已知某些两位数,若把它分解成两个自然数的乘积可以有5种方法(a ×b 与b×a算一种方法),则这样的两位数有个。
8、A、B两个健步行走着,沿围绕旗杆的同心圆跑道行走,旗杆刚好位于两圆的圆心,沿外跑道走的人五分钟走完一圈,沿内跑道走的人三分钟走完一圈,如图3,O,A,B在同一条半径上,A,B反向而行,则他们下一次与旗杆又在同一半径上时,所需要的时间是分钟。
9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。
10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。