辽宁省沈阳市铁西区2019届九年级上期中考试数学试题含答案
2019年辽宁省沈阳市中考数学试卷附分析答案

年龄(岁)
12
13
14
15
16
人数
3
1
2
5
1
则这 12 名队员年龄的众数和中位数分别是( )
第 1页(共 27页)
A.15 岁和 14 岁
B.15 岁和 15 岁
C.15 岁和 14.5 岁
D.14 岁和 15 岁
7.(2 分)已知△ABC∽△A'B'C',AD 和 A'D'是它们的对应中线,若 AD=10,A'D'=6,则
A.
B.
C.
D.
【解答】解:从上面看易得上面一层有 3 个正方形,下面左边有一个正方形.
故选:A.
4.(2 分)下列说法正确的是( )
A.若甲、乙两组数据的平均数相同,S 甲 2=0.1,S 乙 2=0.04,则乙组数据较稳定
B.如果明天降水的概率是 50%,那么明天有半天都在降雨
C.了解全国中学生的节水意识应选用普查方式
21.(8 分)2019 年 3 月 12 日是第 41 个植树节,某单位积极开展植树活动,决定购买甲、
乙两种树苗,用 800 元购买甲种树苗的棵数与用 680 元购买乙种树苗的棵数相同,乙种
树苗每棵比甲种树苗每棵少 6 元.
(1)求甲种树苗每棵多少元?
(2)若准备用 3800 元购买甲、乙两种树苗共 100 棵,则至少要购买乙种树苗多少棵?
办法的通知》的要求,此次减税范围广,其中有 6500 万人减税 70%以上,将数据 6500
用科学记数法表示为( )
A.6.5×102
B.6.5×103
C.65×103
D.0.65×104
【解答】解:6500=6.5×103,
辽宁省沈阳市九年级上学期期中数学试卷

辽宁省沈阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选。
(共10题;共20分)1. (2分)将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A . 与原图形关于y轴对称B . 与原图形关于x轴对称C . 与原图形关于原点对称D . 向x轴的负方向平移了一个单位2. (2分)设x1 , x2是关于x的一元二次方程x2+x+n-2=mx的两个实数根,且x1<0,x2-3x1<0,则()A .B .C .D .3. (2分) (2018九上·洛宁期末) 要由抛物线平移得到,则平移的方法是()A . 向左平移1个单位B . 向上平移1个单位C . 向下平移1个单位D . 向右平移1个单位4. (2分) (2020九上·农安月考) 用配方法解方程,,变形正确的是()A .B .C .D .5. (2分) (2019九上·顺德月考) 为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为20平方米提高到28.8平方米,若每年的年增长率相同,设年增长率为x,则下面列出的方程中正确的是()A .B .C .D .6. (2分) (2017八下·诸城期中) 如图所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是()A . 4B . 8C . 12D . 167. (2分) (2019九上·柘城月考) 下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是()x1.6 1.8 2.0 2.2 2.4y-0. 80-0.54-0.200. 220. 72A . 1.6<x1<1.8B . 2.0<x1<2.2C . 1.8<x1<2.D . 2.2<x1<2.48. (2分)如图,把△ABC绕点C顺时针旋转35°后,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A . 65°B . 55°C . 35°D . 75°9. (2分)(2017·广州模拟) 如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 ,交x轴于A2;将C2绕A2旋转180°得到C3 ,交x轴于A3;…如此进行下去,若点P(2017,m)在第1009段抛物线C1009上,则m的值为()A . ﹣1B . 0C . 1D . 不确定10. (2分) (2016九上·重庆期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A . 2B . 3C . 4D . 5二、细心填一填。
2019年辽宁省沈阳市中考数学试卷及答案解析

2019年辽宁省沈阳市中考试卷数 学一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分) 1.(2分)5-的相反数是( ) A.5B.5-C.15D.15-2.(2分)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税范围广,其中有6 500万人减税70%以上,将数据6 500用科学记数法表示为( ) A.26.510⨯B.36.510⨯C.36510⨯D.40.6510⨯3.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是 ( )A.B.C.D.4.(2分)下列说法正确的是( )A. 若甲、乙两组数据的平均数相同,20.1S =甲,20.04S =乙,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件 5.(2分)下列运算正确的是( )则这12名队员年龄的众数和中位数分别是( ) A.15岁和14岁 B.15岁和15岁C.15岁和14.5岁D.14岁和15岁7.(2分)已知ABC A B C '''∽,AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC 与A B C '''的周长比是( ) A.3:5B.9:25C.5:3D.25:98.(2分)已知一次函数(1)y k x b =++的图象如图所示,则k 的取值范围是 ( )A.0k <B.1k <-C.1k <D.1k >-9.(2分)如图,AB 是O 的直径,点C 和点D 是O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,若O 的半径是13,24BD=,则sinACD ∠的值是 ( )A.1213B.125C.512D.51310.(2分)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ ___________A.0abc <B.240b ac -<C.0a b c -+<D.20a b +=二、填空题(每小题3分,共18分)11.(3分)因式分解:2244x y xy --+= .12.(3分)二元一次方程组32325x y x y -=⎧⎨+=⎩的解是 .13.(3分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 个白球.14.(3分)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD的中点,若AD BC ==EGFH 的周长是 .15.(3分)如图,正比例函数11y k x =的图象与反比例函数22(0)ky x x=>的图象相交于点A ,点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则AOB 的面积是 .16.(3分)如图,正方形ABCD 的对角线AC 上有一点E ,且4CE AE =,点F 在DC 的延长线上,连接EF ,过点E 作EG EF ⊥,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若5AB =,2CF =,则线段EP 的长是 .三、解答题(第17小题6分,第18、19小题各8分,共22分) 17.(6分)计算:201()2cos301(π 2 019)2-︒-+-+-.18.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A ,B ,C ,D 依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B 的概率是 .(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D 的概率.19.(8分)如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE CF =,DF BE =,且DF BE ∥,过点C 作CG AB ⊥交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形;(2)若2tan 5CAB ∠=,°45CBG ∠=,BC =则ABCD 的面积是 .四、(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:(010)A x ≤<,(1020)B x ≤<,(2030)C x ≤<,(3040)D x ≤<,(40)E x ≥.并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了 名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m 的值是 ,类别D 所对应的扇形圆心角的度数是 度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(8分)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元. (1)求甲种树苗每棵多少元? (2)若准备用3 800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?五、(本题10分)22.(10分)如图,AB 是O 的直径,BC 是O 的弦,直线MN 与O 相切于点C ,过点B 作..于点D .(1)求证:ABC CBD ∠=∠;(2)若BC =,4CD =,则O 的半径是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------六、(本题10分)23.(10分)在平面直角坐标系中,直线4(0)y kx k =+≠交x 轴于点(8,0)A ,交y 轴于点B .(1)k 的值是 ;(2)点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上. ①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求OCED 的周长;②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,若CDE 的面积为334,请直接写出点C 的坐标. 七、(本题12分) 24.(12分)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD AB ∥交AP 的延长线于点D ,此时测得200CD =米,那么A ,B 间的距离是米. 思维探索:(2)在ABC 和ADE 中,AC BC =,AE DE =,且AE AC <,°90ACB AED ∠==,将ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE . ①如图2,当ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;②如图3,当°90α=时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当150α=︒时,若3BC =,DE l =,请直接写出2PC 的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点(2,3)D --和点(3,2)E ,点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点(0,1)F ,连接PE ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =动点Q 从点P 出发,沿P M N A →→→的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.2019年辽宁省沈阳市中考试卷数学答案解析C 、了解全国中学生的节水意识应选用抽样调查方式,故本选项错误;D 、早上的太阳从西方升起是不可能事件,故本选项错误; 故选A .【考点】方差,概率,全面调查,抽样调查,随机事件 5.【答案】 B【解析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可. 解:A .325235m m m +=,不是同类项,不能合并,故错误; B .32m m m ÷=,正确;C .237()m m m =,故错误;D .222()()()2m n n m m n n m mn --=--=--+,故错误.故选B .【考点】整式的运算 6.【答案】C【解析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.解:在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是145. 14.5.故选C .【考点】众数和中位数的概念 7.【答案】C【解析】相似三角形的周长比等于对应的中线的比. 解:∵ABC A B C ''',AD 和A D ''是它们的对应中线,10AD =,6A D ''=, ∴ABC 与A B C '''的周长比AD =:10A D ''=:65:3=.故选C .【考点】相似三角形的性质 8.【答案】B【解析】根据一次函数的增减性确定有关k 的不等式,求解即可.∵O的半径是213AB=⨯由勾股定理得:sinADBAB∠=∴0a b c-+>,C错误;∵2b a=-,D正确;故选D.【考点】二次函数的图象及性质二、填空题11.【答案】2(2)x y--【解析】先提取公因式1-,再套用公式完全平方公式进行二次因式分解.解:2244x y xy--+,22(44)x y xy=-+-,2(2)x y=--.【考点】利用完全平方公式分解因式12.【答案】21.5xy=⎧⎨=⎩【解析】通过观察可以看出y的系数互为相反数,故①+②可以消去y,解得x的值,再把x的值代入①或②,都可以求出y的值.解:2352 3x yx y-=⎨+=⎧⎩①②,①+②得:48x=,解得2x=,把2x=代入②中得:225y+=,解得 1.5y=,所以原方程组的解为21.5xy=⎧⎨=⎩.【考点】二元一次方程组的解法13.【答案】3【解析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.轴交OA 于点D ,结合点的坐标,再根据三角形的面积公式即可求出AOB 的面积. 1222AOBABD OBDSSS=+=⨯⨯CEF △FEP ,EC EP ,由此即可解决问题.解:如图,作FH PE ⊥于H .52EH =, tEFH R 中,2EF =∵CFE FEP∠=∠,∴CEF FEP∽,EP,52132242EP==.【考点】正方形的性质,相似三角形的判定和性质,解直角三角形等知识据全等三角形的性质得到AD CB=,DAF∠)根据已知条件得到BCG是等腰直角三角形,求得∵DF BE=,∴()ADF CBE SAS≌,∴四边形ABCD是平行四边形;2)解:∵CG AB⊥,90G∠=︒,∵45CBG∠=︒,∴BCG是等腰直角三角形,∴6AB=,∴ABCD的面积=2)B类人数:12(人)类人数:8(人)(2)B类人数:,D类人数:,168五、(本题10分)22.【答案】(1)CBD ABC∠=∠(2)5【解析】(1)连接OC,由切线的性质可得OC MN⊥,即可证得OC BD∥,由平行线的性质和等腰三角形的性质可得CBD BCO ABC∠=∠=∠,即可证得结论;(2)连接AC,由勾股定理求得BD,然后通过证得ABC CBD,求得直径AB,从而求得半径.(1)证明:连接OC,∵MN为O的切线,∴OC MN⊥,t BCDR中,BC=是O的直径,90ACB=︒,ACB CDB=∠,∵ABC CBD∠=∠,∴ABC CBD,10,∴O的半径是5.上点的坐标特征可得出点的坐标,由平行四边形的性质结合点E为OB的中点可得出是ABO的中位线,结合点的长,在t DOER中,利用勾股再利用平行四边形的周长公式即可求出OCED的周长;2CDE的面积为334可得出关于1)将(8,0)A代入y1k=-(2)①由(1)可知直线当0x=时,y=-AC,是ABO的中位线,4OD CE==,OC DE=t DOER中,DOE∠=2225OD OE+=1 4CDESCE ==-280x +8x +330=无解;22七、(本题12分) 即可证明ABP DCP ≅,,易证()FBP EDP SAS ≌可得EFC 是等腰直角三角PC PE =,PC PE ⊥.②作CF ,易证()FBP EDP SAS ≅,结合已()FBP EAC SAS ≅,可得EFC 是等腰直角三角形,延长线于点F ,连接CE 、CF ,过E 点作EH 在ABP 和DCP 中,BP APB B =⎧⎪∠⎨⎪∠=⎩∴()ABP DCP SAS ≅,200AB =米.200CD =米.2)①PC 与PE 的数量关系和位置关系分别是理由如下:如解图1,延长EP 交BC 于F , )理,可知∴()FBP EDP SAS ≌,又∵90ACB ∠=︒, ∴EFC 是等腰直角三角形,理由如下:如解图2,作BF DE ∥,交EP 同①理,可知()FBP EDP SAS ≌,,在FBC 和EAC 中,BF CBE BC =⎧⎪∠⎨⎪=⎩∴()FBC EAC SAS ≌,90ACB ∠=︒, ∴90FCE ∠=︒, ∴FCE 是等腰直角三角形,EP FP =,③如解图2,作BF ∥CA 延长线于H 点,当角的锐角为30°,150FBC EAC α=∠==︒ 同②可得()FBP EDP SAS ≅,同②FCE 是等腰直角三角形,tAHE R 中,EAH ∠12,32AE =,3AC AB ==,332AH =+,222EC AH HE =+=110+【考点】几何变换综合题,旋转的性质,全等三角形的判定和性质,等腰直角三角形性质,勾股定理,30°直角三角形性质 142OBF PFB S S +=⨯运动的路径最短,即可求解.1142OBF PFBS S+=⨯2或35(,)28;线DE的对称点A'',连接PA''交直线DE于点M,此时,点Q运动的路径最短,。
沈阳市2019-2020学年九年级上学期期中数学试题(I)卷

沈阳市2019-2020学年九年级上学期期中数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图将△ABC绕点C(0,﹣2)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣2)C.(﹣a,﹣b+2)D.(﹣a,﹣b﹣4)2 . 下列各点,不在二次函数y=x2的图象上的是()A.(1,﹣1)B.(1,1)C.(﹣2,4)D.(3,9)3 . 方程2x2﹣x﹣3=0的两个根为()A.x1=,x2=﹣1B.x1=﹣,x2=1C.x1=,x2=﹣3D.x1=﹣,x2=34 . 将抛物线y=x2﹣2x+3向左平移2个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x+3)2+2D.y=(x﹣3)2+25 . 关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC 的腰长为()A.3B.6C.6或9D.3或66 . 如图是二次函数y=ax2+bx+c过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③7 . 方程x2=4x的解是()A.x=0B.x1=4,x2=0C.x=4D.x=28 . 某公司在甲、乙两地同时销售某品牌的手表,已知在甲、乙两地的销售利润(单位:万元)与销售量(单元:只)之间分别是:,,若该公司在甲、乙两地共销售15只该品牌手表,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元9 . 下列图形中既是轴对称图形,又是中心对称图形的是()A.(A)B.(B)C.(C)D.(D)二、填空题10 . 当_____________时,二次函数有最小值.11 . 已知实数满足,且,,则抛物线图象上的一点关于抛物线对称轴对称的点为__________.12 . 写出一个关于x的一元二次方程,使方程的两根互为相反数,且二次项系数为1,此方程是______.13 . 已知(x2+y2+1)(x2+y2-3)=5,则x2+y2的值等于_____.14 . 如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为_____.15 . 已知点P1(a , 3)与P2(5,-3)关于原点对称,则a=________.16 . 已知:关于x的一元二次方程x2﹣(R+r)x+ d2=0没有实数根,其中R、r分别为⊙O1和⊙O2的半径,d为此两圆的圆心距,则⊙O1和⊙O2的位置关系为_____.三、解答题17 . 巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.18 . (1)解方程x2-2x-2=0.(2)解方程x2+1=3x;19 . 如图,某农户发展养禽业,准备利用现有的34米长的篱笆靠墙AB(墙长为25米)围成一个面积为120平方米的长方形养鸡场,这个养鸡场的长和宽各是多少?20 . 如图,方格纸中每个小正方形的边长都是1个单位长度.Rt△ABC的三个顶点A(﹣2,2),B(0,5),C (0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出的图形△A1B1A.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2.B.(保留作图痕迹,不写作法)(3)请用无刻度的直尺在第一、四象限内画出一个以A1B1为边,面积是7的矩形A1B1E(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21 . 关于x的一元二次方程x 2 -x +p - 1 = 0 有两个实数根x1、x2 .(1)求p 的取值范围;(1)若,求p 的值.22 . 悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁. 其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道. 图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引. 他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD, 两个索塔均与桥面垂直. 主桥AC的长为600 m,引桥CE 的长为124 m.缆索最低处的吊杆MN长为3 m,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.图223 . 如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM 与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
2018-2019学年辽宁省鞍山市铁西区九年级(上)期中数学试卷

2018-2019学年辽宁省鞍山市铁西区九年级(上)期中数学试卷副标题一、选择题(本大题共8小题,共24.0分)1.下列几种汽车标志图案是中心对称图形的是()A. B. C. D.2.二次函数y=(x-4)2+5的顶点坐标是()A. B. C. D.3.下列是抛物线y=-2x2-3x+1的图象大致是()A. B.C. D.4.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A. B.C. D.5.如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A. 2对B. 3对C. 4对D. 5对6.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b-a>c;③4a+2b+c>0;④3a>-c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A. ①②③B. ②③⑤C. ②③④D. ③④⑤7.如图,已知CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,得出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC.其中正确结论的个数是()A. 1B. 2C. 3D. 48.2(1)对称轴是x=(2)与y轴交于点(0,3)(3)与x轴交于点(-1,0)(3,0)(4)当x>2时y随x的增大而减小.其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)9.抛物线y=x2+2x-2018过点(m,0),则代数式m2+2m+1=______.10.抛物线y=-x2+2x+1图象沿x轴向右平移一个单位再向下平移两个单位得到的解析式为______11.抛物线y=mx2+2x+3与x轴有两个交点,则m的范围是______12.如图,在正方形ABCD中,点E在边DC上,DE=4,EC=3,把线段AE绕点A旋转后使点E落在直线BC上的点P处,则CP的长为______13.如图,已知△ABC,D是AB上一点,E是BC延长线上一点,将△ABC绕点C顺时针方向旋转,恰好能与△EDC重合.若∠A=36°,则旋转角为______.14.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为______.15.已知抛物线y=x2-2x+4如图,点A是抛物线上一点,点A的横坐标为2,过点A作AC⊥x轴于点C,则以AC为斜边的等腰直角三角形的面积是______.16.如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为______.三、计算题(本大题共2小题,共17.0分)17.已知关于x的一元二次方程x2-(k+2)x+2k=0(k为常数).(1)求证:无论k取何实数,该方程总有实数根;(2)若该方程的两根互为倒数,求该方程的两根.18.在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为______米/分,点M的坐标为______;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.四、解答题(本大题共8小题,共85.0分)19.解方程:(1)x2-6x-18=0;(2)3(x-2)2=x(x-2).20.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(1)在图1中画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,(2)在图2中作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,(3)在图3作△A3B3C3,以点P(1,1)为位似中心,把△ABC各边放大2倍.21.如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0)、B(2,0)两点,交y轴于点C(0,-2),过点A、C画直线.(1)求二次函数的解析式;(2)若点P在x轴正半轴上,且PA=PC,求OP的长.22.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求证:AD⊥EF;(2)求CG的长.23.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)的定价应为多少元?(纯收入=总收入-维护费用)24.如图,△ABC中,AB=AC,点D在BC边上,CE⊥AD延长线于E,且BC=2AE(1)求证:AD=CD;(2)求证:AB2=AD•BC.25.如图1,在Rt△ABC中,∠C=90°,点D、E分别是边AC、BC的点,连接DE,且DE⊥AC于D,AC=4,AD=BC=3,将△EDA绕点A按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=______;②当α=180°时,=______.(2)拓展探究:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDA旋转至B,D,E三点共线时,直接写出线段CD的长.26.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(-1,0),B(3,0)两点,与y轴相交于点C(0,3)(1)求这个二次函数的表达式并直接写出顶点坐标;(2)若P是第一象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC 交于点M,连接PC.设点P的横坐标为t①求线段PM的最大值;②S△PBM:S△MHB=1:2时,求t值;③当△PCM是等腰三角形时,直接写点P的坐标.答案和解析1.【答案】A【解析】解:A中图形是中心对称图形,B、C、D中图形不是中心对称图形,故选:A.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】A【解析】解:二次函数y=(x-4)2+5的顶点坐标是(4,5),故选:A.直接根据二次函数的顶点式进行解答即可.本题考查了二次函数的性质,根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.3.【答案】B【解析】解:抛物线y=-2x2-3x+1的图象,因为a=-2,所以开口向下,故CD错误;抛物线y=-2x2-3x+1的对称轴是直线x=-,故A错误;故选:B.利用二次函数的图象对四个选项逐一判断即可得到答案.本题考查了二次函数的图象,解题的关键是熟知二次函数的性质并作出正确的判断.4.【答案】A【解析】解:由题意可得,1000(1+x)2=1000+440,故选:A.根据题意可以列出相应的一元二次方程,从而可以解答本题.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.5.【答案】C【解析】解:∵DE∥AC,∴△BED∽△BAC,∠EDA=∠DAC,∵∠1=∠2,∴△ADE∽△CAD,∵DE∥AC,∴∠2=∠EDB,∵∠1=∠2,∴∠1=∠EDB,∵∠B=∠B,∴△BDE∽△BAD,∴△ABD∽△CBA,故选:C.由∠1=∠2,DE∥AC,利用有两角对应相等的三角形相似解答即可.此题考查了相似三角形的判定.此题难度适中,注意掌握有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.6.【答案】B【解析】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=-1时,y=a-b+c<0,∴b-a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=-=1,∴b=-2a,∵a-b+c<0,∴a+2a+c<0,3a<-c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.7.【答案】D【解析】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,故①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S,故②正确;四边形CBFG∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,故③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,故④正确;故选:D.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S,②正确;四边形CBFG由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.8.【答案】C【解析】解:(1)∵点(0,3)、(2,3)在抛物线y=ax2+bx+c上,∴抛物线的对称轴为直线x=1,故错误;(2)∵点(0,3)在抛物线y=ax2+bx+c上,∴抛物线与y轴的交点为(0,3),故正确;(3)∵抛物线的对称轴为直线x=1,∴当x=-1和x=3时,y值相同,都等于0,∴抛物线与与x轴交于点(-1,0)(3,0),故正确;(4)∵-5<0<3<,抛物线的对称轴为直线x=1,∴在对称轴右侧,y随x增大而减小,故正确.故选:C.(1)由点(0,3)、(2,3)在抛物线y=ax2+bx+c上,结合抛物线的对称性,即可得出抛物线的对称轴为直线x=1,结论错误;(2)根据表格中数据,即可找出抛物线与y轴的交点为(0,3),结论正确;(3)由抛物线的对称轴及抛物线与x轴一个交点的坐标,即可得出抛物线与x 轴的另一交点为(3,0),结论正确;(4)根据表格中数据结合抛物线的对称轴为直线x=1,即可得出在对称轴右侧,y随x增大而减小,结论正确.本题考查了抛物线与x轴的交点以及二次函数的性质,逐一分析四条结论的正误是解题的关键.9.【答案】2019【解析】解:把(m,0)代入y=x2+2x-2018得m2+2m-2018=0,∴m2+2m=2018,∴m2+2m+1=2018+1=2019.故答案为2019.先利用二次函数图象上点的坐标特征得到m2+2m=2018,然后利用整体代入的方法计算m2+2m+1的值.本题考查了二次函数图象上点的坐标特征:10.【答案】y=-x2+4x+4【解析】解:y=-x2+2x+1=-(x2-2x)+1=-(x2-2x+1-1)+1=-(x-1)2+2,则抛物线y=-x2+2x+1图象沿x轴向右平移一个单位再向下平移两个单位得到的解析式为:y=-(x-2)2=-x2+4x+4.故答案为:y=-x2+4x+4.直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确掌握平移规律是解题关键.11.【答案】m<且m≠0【解析】解:∵抛物线y=mx2+2x+3与x轴有两个交点,∴,解得,m<且m≠0,故答案为:m<且m≠0.根据抛物线y=mx2+2x+3与x轴有两个交点,可以得到关于m的不等式组,从而可以求得m的取值范围.本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和不等式的性质解答.12.【答案】3或11【解析】解:①当点P在线段BC上时,∵∠D=∠ABP=90°,AD=AB,AE=AP,∴Rt△ABP≌Rt△ADE,(HL),∴BP=DE=4,∵DC=AB=BC=DE+EC=7,∴PC=3,②当点P′在线段CB的延长线上时,同法可证:BP′=DE=4,∴CP′=7+4=11,综上所述,满足条件的PC的值为3或11.故答案为:3或11.①当点P在线段BC上时,根据全等三角形的性质即可得到结论;②当点P′在线段CB的延长线上时,根据全等三角形的性质即可得到结论.本题考查正方形的性质、全等三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.13.【答案】84°【解析】解:设∠B=x,∵△ABC绕点C顺时针方向旋转,恰好能与△EDC重合,∴CB=CD,∠CDE=∠B=x,∠A=∠E=36°,∠BCD的度数等于旋转角的度数,∴∠BCD=∠CDE+∠E=x+36°,在△BCD中,∵CB=CD,∴∠CDB=x,∴x+x+36°+x=180°,解得x=48°,∴旋转角的度数为48°+36°=84°.故答案为:84°.设∠B=x,根据旋转的旋转得CB=CD,∠CDE=∠B=x,∠A=∠E=33°,∠BCD的度数等于旋转角的度数,再利用三角形外角性质得∠BCD=x+33°,接着证明∠CDB=∠B=x,则利用三角形内角和得到x+x+33°+x=180°,然后求出x后计算x+33°即可得到旋转角的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【答案】9【解析】解:∵在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×6×3=9,=S△A1BA+S△A1BC1-S△ABC,又∵S阴影S△A1BC1=S△ABC,∴S=S△A1BA=9.阴影故答案为:9.根据旋转的性质得到BC≌△A1BC1,A1B=AB=6,所以△A1BA是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道S阴影=S△A1BA+S△A1BC1-S△ABC=S△A1BA,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.15.【答案】1【解析】解:∵点A是抛物线上一点,点A的横坐标为2,∴y=×22-2×2+4=2,∴A(2,2),∵AC⊥x轴于点C,∴AC=2,∵△ABC是以AC为斜边的等腰直角三角形,∴AB=BC,设AB=BC=a,∴a2+a2=22,∴a2=2,∴S△ABC=a2=1,故答案为:1.先求得A的纵坐标,即可得出AC的长度,设AB=BC=a,根据勾股定理求得a2,然后根据三角形面积公式求得即可.本题考查了二次函数图象上点的坐标特征,等腰直角三角形的性质,勾股定理的应用以及三角形的面积等,求得A点的纵坐标是解题的关键.16.【答案】【解析】解:如图∵AB=AC=5,AB'⊥BC∴BF=CF=BC=3,∠B=∠C∴根据勾股定理得:AF=4∵旋转,∴AB=AB'=5,∠B=∠B'∴B'F=1,∵tan∠B=∴tan∠B'=∴EF=∴EC=FC-EF=∵∠B'+∠BEB'=90°,且∠C=∠B=∠B',∠BEB'=∠CED∴∠C+∠DEC=90°∵sin∠C=sin∠B∴∴DE=故答案为:由AB=AC,AB'⊥BC可得BF,AF,B'F的长,根据三角函数可得EF的长,由此CE的长,再由三角函数可得DE的长本题考查旋转的性质,勾股定理,三角函数,关键是熟练运用三角函数解决问题.17.【答案】(1)证明:∵△=(k+2)2-4×2k=k2-4k+4=(k-2)2≥0,∴无论k取何实数,该方程总有实数根;(2)解:根据题意得2k=1,解得k=,原方程变形为x2-x+1=0,整理得2x2-5x+2=0,(2x-1)(x-2)=0,解得x1=,x2=2.【解析】(1)先计算判别式的值得到△=(k-2)2,然后根据非负数的性质得△≥0,则根据判别式的意义得到结论;(2)根据根与系数的关系得到2k=1,解得k=,原方程变形为x2-x+1=0,整理得2x2-5x+2=0,然后利用因式分解法解方程.本题考查了一元二次方程根的判别式(△=b2-4ac):一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.18.【答案】240 (6,1200)【解析】解:(1)由题意得:甲的骑行速度为:=240(米/分),240×(11-1)÷2=1200(米),则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=-240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=-240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200-1020=180,分5种情况:①当0<x≤3时,1020-240x=180-60x,x=>3,此种情况不符合题意;②当3<x<-1时,即3<x<,甲、乙都在A、C之间,∴1020-240x=60x-180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x-1020=60x-180,x=<,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60-180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180-[240(x-1)-1200]=60x-180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x-1)-1200-180=60x-180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.(1)根据路程和时间可得甲的速度,根据甲去和返回时的时间共计11分,休息了一分,所以一共用了10分钟,可得M的坐标;(2)利用待定系数法求MN的解析式;(3)先根据总路程1200米,时间为20分,计算乙的速度,根据A,C,B三地在同一直线上,计算B、C之间的路程,分情况讨论:设甲返回A地之前,经过x 分两人距C地的路程相等,①因为乙从B地到C地一共需要3小时,所以第一个时间为0<x≤3,即乙在B、C之间时,列方程可知不符合题意;②3<x<6,根据两人距C地的路程相等列方程可得结论;③计算甲到B地时,符合条件;④计算乙走过C地,即乙在A、C之间时,列方程,注意此时甲用了(x-1)分.本题考查一次函数的应用,解题的关键是明确题意设未知数,学会结合方程解决问题,此类题有难度,注意利用数形结合的思想解答问题.19.【答案】解:(1)x2-6x=18,x2-6x+9=27,(x-3)2=27,x-3=±3,所以x1=3+3,x2=3-3;(2)3(x-2)2-x(x-2)=0,(x-2)(3x-6-x)=0,x-2=0或3x-6-x=0,所以x1=2,x2=3.【解析】(1)利用配方法得到(x-3)2=27,然后利用直接开平方法解方程;(2)先移项得到3(x-2)2-x(x-2)=0,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.20.【答案】解:(1)如图1,△A1B1C1即为所求;(2)如图2,△A2B2C2即为所求;(3)如图3,△A3B3C3即为所求.【解析】(1)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(2)根据旋转变换的定义作出变换后的对应点,再顺次连接即可得;(3)根据位似变换的定义作出变换后的对应点,再顺次连接即可得.本题主要考查作图-平移变换、位似变换、旋转变换,解题的关键是掌握平移变换、旋转变换和位似变换的定义与性质,并据此得出变换后的对应点.21.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(-1,0)、B(2,0),∴设该二次函数的解析式为:y=a(x-2)(x+1)(a≠0).将x=0,y=-2代入,得-2=a(0-2)(0+1),解得a=1,∴抛物线的解析式为y=(x-2)(x+1),即y=x2-x-2;(2)如图.由(1)知,抛物线的解析式为y=x2-x-2,则C(0,-2).设OP=x,则PA=PC=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=.【解析】(1)根据与x轴的两个交点A、B的坐标,设出二次函数交点式解析式y=a(x-2)(x+1),然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可.本题考查了待定系数法求二次函数解析式,抛物线与x轴的交点.利用待定系数法求二次函数解析式时,注意合理利用抛物线解析式的三种形式.22.【答案】(1)证明:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠ADF+∠DAB=180°∴∠ADF=90°,∴AD⊥EF.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴=,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【解析】(1)由平移的性质可知:AB∥DF,再利用平行线的性质即可证明;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.23.【答案】60-200+x(60-)×20【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为,∴入住的房间数量=60-,房间价格是(200+x)元,总维护费用是(60-)×20.故答案是:60-;200+x;(60-)×20;(2)依题意得:(200+x)(60-)-(60-)×20=14000,整理,得x2-420x+32000=0,解得x1=320,x2=100.当x=320时,有游客居住的客房数量是:60-=28(间).当x=100时,有游客居住的客房数量是:60-=50(间).所以当x=100时,能吸引更多的游客,则每个房间的定价为200+100=300(元).答:每间客房的定价应为300元.(1)住满为60间,x表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为,入住量=60-房间空闲个数,列出代数式;(2)用:每天的房间收费=每间房实际定价×入住量,每间房实际定价=200+x,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.【答案】证明:(1)过点A作AF⊥BC于点F,如图所示.∵AB=AC,∴BC=2CF.∵BC=2AE,∴CF=AE.在Rt△ACE和Rt△CAF中,,∴Rt△ACE≌Rt△CAF(HL),∴AD=CD.(2)∵AB=AC,∴∠ACB=∠B.又∵∠DAC=∠ACD,∴∠CAD=∠B,∴△ACD∽△BCA,∴AC2=CD•BC.∵∠DAC=∠ACD,∴AD=CD,∴AB2=AD•BC.【解析】(1)过点A作AF⊥BC于点F,由等腰三角形的三线合一可得出BC=2CF,结合BC=2AE可得出CF=AE,再由AC=CA可证出Rt△ACE≌Rt△CAF(HL),利用全等三角形的性质可证出AD=CD;(2)由AB=AC可得出∠ACB=∠B,结合∠DAC=∠ACD可得出∠CAD=∠B,进而可得出△ACD∽△BCA,根据相似三角形的性质可得出AC2=CD•BC,由等角对等边可得出AD=CD,替换后即可证出AB2=AD•BC.本题考查了全等三角形的判定与性质、相似三角形的判定与性质以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△ACE≌Rt△CAF;(2)利用相似三角形的性质找出AC2=CD•BC.25.【答案】【解析】解:(1)①当α=0°时,如图1,∵∠C=90°,AC=4,BC=3,∴AB=5,∵DE⊥AC,∠C=90°,∴∠ADE=∠C=90°,∴DE∥BC,∴△ADE∽△ACB,=,∴=,即=,∴==;②当α=180°时,如图2,∵DE∥BC,∴=,∴=,即:=,∴==;故答案为:①;②.(2)的大小无变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵=,∴△ADC∽△AEB,∴==;(3)∵△ADE∽△ACB,∴=,即=,∴DE=,①当点D在BE上时,如图4,∵∠ADE=90°,∴∠ADB=90°,∵AD=BC=3,AB=5,∴BD=4,∴BE=BD+DE=4+=,∵=,∴CD==×=5;②当点D在BE延长线上时,如图5,∵∠ADE=90°,AD=3,AB=5,∴BD=4,又∵DE=,∴BE=BD-DE=4-=,∵=,∴CD==×=;综上,CD=5或CD=.(1)①先判断出DE∥CB,进而得出△ADE∽△ACB,=,由=知==即可得出结论;②先得出DE∥BC即可得出=,再用比例的性质即可得出=,即=,据此即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.此题是三角形的综合题,主要考查了勾股定理,相似三角形的判定和性质,比例的基本性质,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.26.【答案】解:(1)将A(-1,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴二次函数图象的顶点坐标为(1,4).(2)①设直线BC的表达式为y=mx+n(m≠0),将B(3,0),C(0,3)代入y=mx+n,得:,解得:,∴直线BC的表达式为y=-x+3.∵点P的横坐标为t(0<t<3),∴点P的坐标为(t,-t2+2t+3),点M的坐标为(t,-t+3),∴PM=-t2+2t+3-(-t+3)=-t2+3t=-(t-)2+,∴线段PM的最大值为.②∵点P的坐标为(t,-t2+2t+3),点M的坐标为(t,-t+3),∴点H的坐标为(t,0),∴PM=-t2+2t+3-(-t+3)=-t2+3t,MH=-t+3.∵△PBM和△MHB等高,S△PBM:S△MHB=1:2,∴MH=2PM,即-t+3=-2t2+6t,解得:t1=,t2=3(不合题意,舍去),∴当S△PBM:S△MHB=1:2时,t的值为.③∵点P的坐标为(t,-t2+2t+3),点M的坐标为(t,-t+3),点C的坐标为(0,3),∴PM=-t2+2t+3-(-t+3)=-t2+3t,CM==t,PC==t.当PM=PC时,有-t2+3t=t,∵0<t<3,∴原方程可整理为:2t-4=0,解得:t=2,∴点P的坐标为(2,3);当PM=CM时,有-t2+3t=t,解得:t1=0(舍去),t2=3-,∴点P的坐标为(3-,-2+4);当CM=PC时,有t=t,∵0<t<3,∴原方程可整理为:t2-4t+3=0,解得:t1=1,t2=3(舍去),∴点P的坐标为(1,4).综上所述:当△PCM是等腰三角形时,点P的坐标为(2,3)或(3-,-2+4)或(1,4).【解析】(1)由点A,B,C的坐标,利用待定系数法可求出二次函数表达式,再利用配方法即可求出二次函数图象的顶点坐标;(2)①由点B,C的坐标,利用待定系数法可求出直线BC的表达式,由点P的横坐标可得出点P,M的坐标,进而可得出PM的值,再利用二次函数的性质即可解决最值问题;②由点P,M的坐标可得出点H的坐标,进而可得出PM,MH的值,由△PBM 和△MHB等高且S△PBM:S△MHB=1:2,可得出关于t的一元二次方程,解之取其大于0小于3的值即可得出结论;③由点P,M,C的坐标可求出PM,CM,PC的值,分PM=PC,PM=CM及CM=PC三种情况找出关于t的方程,解之取其大于0小于3的值即可得出结论.本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数的性质、三角形的面积、解一元二次方程、等腰三角形的性质以及解无理方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)①利用二次函数的性质求出PM的最大值;②由两三角形面积间的关系,找出关于t的一元二次方程;③分PM=PC,PM=CM及CM=PC三种情况找出关于t的方程.。
2019年辽宁省沈阳市中考数学试卷-答案

2019年辽宁省沈阳市中考试卷数学答案解析故选A .【考点】方差,概率,全面调查,抽样调查,随机事件 5.【答案】B【解析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可. 解:A .325235m m m +=,不是同类项,不能合并,故错误; B .32m m m ÷=,正确; C .237()m m m =,故错误;D .222()()()2m n n m m n n m mn --=--=--+,故错误. 故选B .【考点】整式的运算 6.【答案】C【解析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 解:在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是145. 解:∵ABC A B C ''',AD 和∴ABC 与A B C '''的周长比AD =故选C .【考点】相似三角形的性质 【答案】B【解析】根据一次函数的增减性确定有关∵O的半径是AB=⨯213由勾股定理得:B 面积公式即可求出AOB 的面积.)∵正比例函数11y k x =的图象与反比例函数133k =,1222AOBABD OBDSSS=+=⨯⨯CEF △FEP ,可得EC EP ,R中,2t EFHEF==∠=90GEF GCF,G,F,C四点共圆,EFG ECG=∠=45∽,∴CEF FEPEF EC=,EP EF2=,EF EC EP52132EP==.2)根据已知条件得到BCG是等腰直角三角形,求得平行四边形的面积公式即可得到结论.CF,,∴()ADF CBE SAS ≌,AD CB =,DAF BCE ∠=∠AD CB ∥,∴四边形ABCD 是平行四边形;∴BCG 是等腰直角三角形,42BC =, 4BG CG ==, 2tan 5CAB ∠=, ∴ABCD 的面积=【考点】平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形四、(每小题8分,共20.【答案】(1)5 2)B 类人数:12(人)168五、(本题10分) 22.【答案】(1)CBD ABC ∠=∠ (2)5【解析】(1)连接OC ,由切线的性质可得OC MN ⊥,即可证得OC BD ∥,由平行线的性质和等腰三角形的性质可得CBD BCO ABC ∠=∠=∠,即可证得结论;(2)连接AC ,由勾股定理求得BD ,然后通过证得ABC CBD ,求得直径1)证明:连接OC , MN 为O 的切线, OC MN ⊥, BD MN ⊥, t BCD R 中,BC =, 是O 的直径,90ACB =︒,ACB CDB =∠∴ABC CBD ,AB CBBC BD =,即45845AB =10AB =, ∴O 的半径是5.六、(本题10分)是ABO 的中位线,结合点tDOE R 中,利用勾股定理可求出的长,再利用平行四边形的周长公式即可求出OCED 的周长;②设点C 的坐标为(,x 142x =-+,利用三角形的面积公式结合CDE 的面积为334可得出关于x 的方程,解之即可得出结论.(1)将(8,0)A 代入4y kx =+,得:08=解得:12k =-. )①由(1)可知直线AB 是ABO 的中位线,142OA =. ∵四边形OCED 是平行四边形,4CE =,OC DE =t DOE R 中,DOE ∠22DE OD OE =+=2(OCED OD =平行四边形1 4CDE S CD CE ==-0或28x +22七、(本题12分)即可证明ABP DCP ≅,即可得AB 易证()FBP EDP SAS ≌可得EFC 是等腰直角三角形,即可证明PC ,交EP 延长线于点F ,连接CE 、CF ,易证()FBP EDP SAS ≅,结合已知,再证明()FBP EAC SAS ≅,可得EFC 是等腰直角三角形,即可证明PC =,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH AC ⊥交CA 延长线于150=︒,DE 与BC 所成夹角的锐角为30°,得FBC EAC ∠=∠,同②可证可得再由已知解三角形∴22EC AH =+在ABP 和DCP 中,BP APB B =⎧⎪∠⎨⎪∠=⎩∴()ABP DCP SAS ≅,DC AB =.200AB =米.200CD =米.1,延长EP 交BC 于F ,)理,可知∴()FBP EDP SAS ≌,DE =,AE DE =,∴EFC 是等腰直角三角形,EP FP =,PC PE =,PC ⊥PC 与PE 的数量关系和位置关系分别是理由如下:如解图2,作BF DE ∥,交EP 同①理,可知()FBP EDP SAS ≌,,12PE PF EF ==, ,,在FBC 和EAC 中,BF CBE BC =⎧⎪∠⎨⎪=⎩∴()FBC EAC SAS ≌,CF CE =,FCB ECA ∠=∠90ACB ∠=︒,90FCE ∠=︒,∴FCE 是等腰直角三角形,EP FP =, CP EP ⊥,CP EP =③如解图2,作B F D E ∥150FBC EAC α=∠==︒同②可得()FBP EDP SAS ≅, 同②FCE 是等腰直角三角形,CP t AHE R 中,30EAH ∠=︒,AE 12HE =,32AE =, 3AC AB ==,332AH =+, 22八、(本题12分)142OBF PFB S S +=⨯M AN ∥,过作点A (2)如图1,连接BF ,过点P 作PH y ∥轴交BF 于点H ,1142OBF PFB S S +=⨯或32,。
辽宁沈阳2019中考试题数学卷解析版

分)一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20 )1.下列各数是无理数的是(. D0 BA..﹣1 C. C.【答案】【解析】3是无理数,故是有理数,,﹣1,试题分析:无理数是无限不循环小数,由此可得027 C.答案选考点:无理数.)42.如图是由个大小相同的小立方块搭成的几何体,这个几何体的俯视图是(A.【答案】考点:简单组合体的三视图.全市房地产开发企业提供房源的参展面积达到.3在我市2016年春季房地产展示交易会上,)用科学记数法表示为(5400000平方米,将数据54000007 756.5.4×10C.5.4×10B.54×10DA.0.54×10 .【答案】C 【解析】n的值为n为整数,<的形式,其中1≤|a|10,n10a试题分析:科学记数法的表示形式为×6.105400000=5.41这个数的整数位数减,所以×,故答案选C.考点:科学记数法1k(x>0)图象上的一点,分别过点4.如图,在平面直角坐标系中,点P是反比例函数y=x P 作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()D.﹣3 B.﹣3 C.A.A. 【答案】【解析】k轴于xP作PA是反比例函数y=⊥(x>0)图象上的一点,分别过点试题分析:已知点P x k=的面积OAPBS=|k|=3,所以B,四边形OAPB的面积为3,可得矩形轴于点点A,PB⊥y .故答案选A.±3.又因反比例函数的图象在第一象限,即可得k=3 考点:反比例函数系数k的几何意义.)5.“射击运动员射击一次,命中靶心”这个事件是(D.不确定事件.确定事件 B.必然事件 C.不可能事件A .D【答案】考点:随机事件.)6.下列计算正确的是(2 2328 36 263 44yx﹣)=x﹣)(﹣.(xxxA.+x=2xB.?x=xC.(y)=xyDxyyD. 【答案】【解析】.考点:整式的运算2),下列说法正确的是(6,7,8,87.已知一组数据:3,4,7 .中位数是6 D.中位数是A.众数是2 B.众数是8 CB. 【答案】【解析】故6.5.88,8的众数为,中位数为试题分析:根据众数和中位数的定义可得数据3,4,6,7, B.答案选.考点:众数;中位数2 x)﹣4x=12的根是( 8.一元二次方程=6 x.x=2,﹣.x=2,x=﹣6 D,﹣.Ax=2,x=6 B.x=﹣2x=6 C22211211B. 【答案】【解析】2,,x=6)=0,解得x=﹣26试题分析:方程整理得x4x﹣﹣12=0,分解因式得(x+2)(x﹣21B.故答案选.考点:解一元二次方程)中,∠C=90°,∠B=30°,AB=8,则BC的长是( 9.如图,在Rt△ABC33 4 DA. B.4 C..8D. 【答案】【解析】×AB=8,由锐角三角函数可得BC=cosBC=90试题分析:在Rt△ABC中,∠°,∠B=30°,3D. .AB=cos30°×故答案选8=4.考点:解直角三角形2,B(x),xy=x.在平面直角坐标系中,二次函数3+2x﹣的图象如图所示,点A(,y10211)≤0,则下列结论正确的是(x<)是该二次函数图象上的两点,其中﹣3≤xy 21234 的最小值是﹣y的最小值是﹣3 D.<A.yyB.y>yC.y2 2 11D.【答案】考点:二次函数图象上点的坐标特征;二次函数的最值.二、填空题2. 11.分解因式:2x ﹣4x+2=).【答案】2(x﹣【解析】22)2,再利用完全平方公式进行二次分解即2x﹣﹣4x+2=2(x2x+1 21试题分析:先提取公因式2 =2(x﹣1)..考点:分解因式边形. 12.若一个多边形的内角和是540°,则这个多边形是5. 【答案】【解析】 2=540°,)?180°试题分析:设多边形的边数是n,根据多边形的内角和公式可得(n ﹣ n=5.解得. 考点:多边形的内角1.化简:(1﹣.)?(m+1)= 131m?m. 【答案】【解析】11?m?=m.)m+1试题分析:原式?(=1?m.考点:分式的运算.是最大的一个,这三个数的和为 14.三个连续整数中,n【答案】3n ﹣3.【解析】试题分析:用n表示出最小的数为n-2,中间的整数为n-1,则这三个数的和为n﹣2+n﹣1+n=3n ﹣3.4.考点:列代数式,两地之间,甲,乙两车分别从A地位于A, BA15.在一条笔直的公路上有,B,C三地,C地的过程,甲、乙CCB两地出发,沿这条公路匀速行驶至地停止.从甲车出发至甲车到达)之间的函数关系如图表示,当甲车出t(h(两车各自与C地的距离ykm)与甲车行驶时间. h时,两车相距350km发3. 【答案】2.考点:一次函数的应用BCM是边DE中,∠A=90°,AB=AC,BC=20,是△ABC的中位线,点16.如图,在Rt△ABC.若△OMN相交于点DNO与MEME,点上一点,BM=3N是线段MC上的一个动点,连接DN,,是直角三角形,则DO的长是.2550或.【答案】613 5. 考点:三角形综合题三、解答题12﹣027..计算:(π﹣174))+|3﹣tan60°|﹣(+232.【答案】【解析】负整数指数幂试题分析:先根据零指数幂的性质以及绝对值的性质和特殊角的三角函数值、的性质、二次根式的性质分别化简后合并即可求出答案.3334+3=2﹣,试题解析:原式=1+3.﹣.考点:实数的运算《三.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,18这三个CB,,,字经》,《弟子规》(分别用字母A,BC依次表示这三个诵读材料),将A张卡片背面朝上洗匀后放在桌面3把这字母分别写在3张完全相同的不透明卡片的正面上,记录下卡片上的内容,小明和小亮参加诵读比赛,上.比赛时小明先从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比放回后洗匀,再由小亮从中随机抽取一张卡片,赛. 1)小明诵读《论语》的概率是;()请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.(221.)2)1(【答案】;(33 6)列表得:(2小明CB A 小亮 C)(A,A,A)(A,B)A ( C)((B,A)) B,,(BBB)(C,B C CC(,A))(C,种.种等可能性结果,其中小明和小亮诵读两个不同材料结果有由表格可知,共有9626 .所以小明和小亮诵读两个不同材料的概率=39.考点:概率.求证:DE19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接)∠CEB=∠CBE;(1 2()四边形BCED是菱形.. 【答案】详见解析【解析】)2CBE;(CBE=∠ABD,即可得∠CEB=∠,∠)根据已知条件易证∠试题分析:(1CEB=∠ABD CEDB是菱形即可.判定四边形易证明四边形CEDB是平行四边形,再根据BC=BD ,≌△)∵△ABCABD试题解析:证明;(1 ,∠ABD∴∠ABC= ,∥∵CEBD ,∠∴∠CEB=DBE7是菱形.∴四边形CEDB考点:全等三角形的性质;菱形的判定.跳大绳和踢毽球四种项目(2016?沈阳)我市某中学决定在学生中开展丢沙包、打篮球、20.(每m名学生最喜欢的一种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校,并将调查结果绘制成如下的不完整的统计图名学生必选且只能选择四种活动项目的一种)表:学生最喜欢的活动项目的人数统计表百分比学生数(名)项目10% 20 丢沙包p% 60 打篮球40% n 跳大绳20%40踢毽球根据图表中提供的信息,解答下列问题: p= ;(1)m= ,n= ,)请根据以上信息直接补全条形统计图;(2 名学生中有多少名学生最喜欢跳大绳.)根据抽样调查结果,请你估计该校(32000 8800.3);(2)详见解析;(,【答案】(1)20080,30名学生最喜欢跳大绳.800答:估计该校2000名学生中有考点:条形统计图;用样本估计总体.,E,BD=CDAC分别于BC,相交于点D,为直径的⊙O在△ABC21.(2016?沈阳)如图,中,以AB F.D作⊙O的切线交边AC于点过点)求证:DF⊥AC;(1,∠CDF=30°,求的长(结果保留的半径为(2)若⊙O5π).5? 2)详见解析;(【答案】1().3 9D为切点,∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°. OA=OB,∵BD=CD,是△ABC的中位线,∴OD ∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.)解:∵∠CDF=30°,(2 )得∠ODF=90°,由(1 ∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,?5560???∴的长.=3180考点:切线的性质;弧长的计算.B,B.倡导健康生活,推进全民健身,某社区要购进A,两种型号的健身器材若干套,A22且每种型号健身器材必须整套购元,460310两种型号健身器材的购买单价分别为每套元,买.10 (1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?【答案】(1)购买A种型号健身器材20套,B型器材健身器材30套;(2)A种型号健身器材至少要购买34套.【解析】试题分析:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题目中的“A,B 两种型号的根据题意,得:310m+460(50﹣m)≤18000,,解得:m≥33 为整数,∵m ,的最小值为34∴m 套.种型号健身器材至少要购买34答:A 考点:二元一次方程组的应用;一元一次不等式的应用.),点,0为坐标原点,点A的坐标为(4O23.如图,在平面直角坐标系中,△AOB的顶点轴的正半轴上,连接在xOBDE的顶点EAB0,1),点C 为边的中点,正方形B的坐标为( CE.,CD,CO ;)线段OC的长为 1()求证:△CBD≌△COE;(2的对应点,E, B,D,其中点O3)将正方形OBDE沿x轴正方向平移得到正方形BDEO(1111的a≠2,△CD),其中EE的坐标为(a,0CE,连接D,分别为点OB,,ECD,,设点111111 S.面积为 a之间的函数表达式;Sa<<2时,请直接写出与1①当1的值.aS=②在平移过程中,当时,请直接写出4 11175131.S=)①S=﹣a+1【答案】(1);②当时,a=或(2);详见解析;(322224的坐标为(0,1),A试题解析:(1)∵点的坐标为(4,0),点B OA=4,,OB=1∴°,∵∠AOB=9022 AB=∴,17OA OB为边AB的中点,∵点C117∴OC=AB=;22的中点,C是AB)证明:∵∠(2AOB=90°,点1,∴OC=BC=AB2,∠∴∠CBO=COB 1212,)∴点C的坐标为:(2,<20),1<a∵点E的坐标为(a,,﹣a∴CH=2111a+1;a)=﹣E?CH=×1×(∴S=2﹣D1122211﹣S=<2时,1a+1=,②当<a243解得:a=;2,﹣2a>2时,同理:CH=a当111,a=﹣11CH=××(a﹣2S=∴)?DE1122211S=∴, a﹣1=245,解得:a=2531.a=时,或S=综上可得:当22413考点:四边形综合题.按顺时针方向旋转,得到△ADE,旋转角A,将△ABC绕点.在△ABC中,AB=6,AC=BC=524 BE.E的对应点为点,连接BD,为α(0°<α<180°),点B的对应点为点D,点C F.BE交AD于点(1)如图,当α=60°时,延长①求证:△ABD是等边三角形; AF=DF;②求证:BF⊥AD, BE的长;③请直接写出,当∠DAG=∠ACB,CE,垂足为点G,连接D2)在旋转过程中,过点作DG垂直于直线AB(的值.AE无公共点时,请直接写出BE+CE且线段DG与线段温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.3﹣4;(2)13①②详见解析;③【答案】(1).3BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,143;﹣∴BE=BF﹣EF=34 )如图所示,(2,DAE=∠BAC,∠∵∠DAG=∠ACB ABC=180°,∠∠∠∠∠∴∠ACB+BAC+ABC=DAG+DAE+15∴BE+CE=13.考点:三角形综合题.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正32x ﹣3x+m与yy=轴相交于点A,抛物线的对称轴与x轴半轴上,OC=8,OE=17,抛物线20 K.,与CD交于点相交于点B 上的点F处.OOCDE沿AB折叠,点恰好落在边CD(1)将矩形的长,CK B①点的坐标为(、),BK的长是;是的坐标;②求点F ③请直接写出抛物线的函数表达式;,折OG上的点)将矩形(2OCDE沿着经过点E的直线折叠,点O恰好落在边CDG处,连接GH痕与OG相交于点,点M是线段EH上的一个动点(不与点H重合),连接MO,过点MG,N至与点H从点E开始沿线段EH向点运动,,于点P作GP⊥OM于点,交EHN,连接ON点M(即?S的运动过程中,S,在点和重合时停止,△MOG和△NOG的面积分别表示为SSM2121的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这SS与21个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.32x﹣3x+5.(2)不变.S?S=189y=84108010(1)【答案】①,,,;②(,);③.2120【解析】16,CK=OB=10,KB=OC=8∴,10.0故答案分别为10,,8 ,BK=OC=8,②在RT△FBK中,∵∠FKB=90°,BF=OB=10 FK==6∴,22BKBF?FK=4,﹣∴CF=CK 8).∴点F坐标(4, OA=AF=x,③设222=AF+CFACF 中,∵AC,在RT△222)=x+4,x∴(8﹣∴x=5,32,3x+m得0∴点A坐标(,5),代入抛物线y=m=5x﹣2032﹣∴抛物线为y=3x+5.x20.?(2)不变.SS=18921△EDG中,∵GE=EO=17,ED=8,中,在理由:如图2RT2222,∴=15DG=8?DE?17GE? DG=2,∴CG=CD﹣222217 =2∴,OG=28CGOC??? 171112 17=2892.?)?(???=??S∵S?OGHNOGHM=21222.考点:二次函数综合题18。
【真题】2019年辽宁省沈阳市中考数学试题包含答案

2019年沈阳市数学中考试题一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.下列各数中是有理数的是A. πB.0 C2.辽宁男篮冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为A.0.81×104B.0.81×105C.8.1×104D.8.1×1053左下图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是4.在平面直角坐标系中,点B 的坐标是(4,-1),点A 与点B 关于x 轴对称,则点A 的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)5.下列运算错误的是A.(m 2)3=m 6B.a 10÷a 9=a C .x 3·x 5=x 8 D.a 4 +a 3=a76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09.点A (-3,2)在反比例函数y =k x (k ≠O )的图象上,则k 的值是A.-6B. 32- C.-1 D.610.如图,正方形ABCD 内接于⊙O,AB =AB 的长是A. πB. 32πC. 2πD. 12π二、填空题(每小题3分,共18分)11.因式分解:3x 3-12x = .12.一组数3,4,7,4,3,4,5,6,5的众数是 .13.化简:22124a a a ---= . 14.不等式组20360x x -<⎧⎨+≥⎩的解集是 .15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱篱笆的厚度忽略不计),当AB = m 时,矩形土地ABCD 面积最大.16.如图,△ABC 是等边三角形,AB D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH ,当∠BHD=60°∠AHC=90°时,DH = .三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2013()(4)2π-︒+--2tan4518.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE =1,DE =2,则菱形ABCD 的面积是 .19.经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、(每小题8分,共16分)20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:学生感兴趣的课程情况条形统计图学生感兴的课程情况扇形统计图根据统计图提供的信息,解答下列问题(1)在这次调查中一共抽取了名学生,m的值是 .(2)请根据以上信息直接..在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21,某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元、假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下下降率;(2)请你预测4月份该公司的生产成本.五、(本题10分)22.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数(2)若AB=AC,CE=2,求⊙O半径的长.六、(本题10分)23.如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:y=x相交于点P(1)求直线的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于X轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行,已知矩形ABCD A移动到点E时停止移动),设移动时间为t秒(t >0),①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接..写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当△PMN的面积等于18时,请直接..写出此时t的值.七、(本题12分)24.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N 不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时,①求证:△BCM≌△CAN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直.接.写出线段CF的长八、(本题12分)25.如图,在平而直角坐标系中,抛抛物线C1:y=ax2+bx-1经过点A(-2,1)和点B(-1,-1),抛抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连连接KQ和QN.当KO=1且∠KNO=∠BNP时,请直接..写出点Q的坐标参考答案一、选择题(每小题2分,共20分)1.B2.C3.D4.A5.D6.D7.B8.C9.A 10.A二、填空题(每小题3分,共18分)11.3x(x+2)(x-2) 12.4 13.12a+14. 22x-≤<15.150 16.13三、解答题(第17小题6分,第18、19小题各8分,共22分)17.218.证明:(1)四边形ABCD为菱形,AC⊥BD,∠COD=90°,CE∥OD,DE∥OC,四边形OCED是平行四边形,∠COD=90º,平行四边形OCED是矩形(2)4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省沈阳市铁西区2019届九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,不是一元二次方程的是()D.3x2+(1+x)+1=0 A.4x2+1=0 B.2y2+2y+1=0 C.5x2++4=02.反比例函数y=的图象在()A.第一,二象限B.第一,三象限C.第二,四象限D.第三,四象限3.如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是()A.点F在BC边的垂直平分线上B.点F在∠BAC的平分线上C.△BCF是等腰三角形D.△BCF是直角三角形4.如图,已知在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10cm B.6cm C.5cm D.4cm5.下列各数中:①1+,②1﹣,③1,④﹣其中是方程x2﹣(1+)x+=0的根有()A.0个B.1个C.2个D.3个6.已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定7.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF,设AE=a,ED=b,DC=c,则下列关于a,b,c的关系式正确的是()A.a=b+c B.a+b=2c C.a2+c2=4b2D.a2﹣b2=c28.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(+1,﹣1)B.(3+,3﹣)C.(﹣1,+1)D.(3﹣,3+)二、填空题(本大题共8小题,每小题3分,共24分)9.如下图,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的平分线,则图中共有___个等腰三角形.10.点P在反比例函数y=(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的表达式为_________.11.如图,有A、B、C三个居民小区是位置成三角形,现决定在三个小区之间修建一个休闲广场,使广场到三个小区的距离相等,则广场应建在_________.12.如图,在▱ABCD中,E为CD上一点,DE:CE=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=_________.13.已知y=x2+x﹣14,当x=_________时,y=﹣8.14.如图,点A是正比例函数y=﹣x与反比例函数y=在第二象限的交点,AB⊥OA交x轴于点B,△AOB的面积为4,则k的值是_________.15.若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是_________.16.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是_________cm.三、解答题17.先化简代数式÷(x+2﹣);再从方程y2﹣3y+2=0的根中选择一个合适的作为x 的值,求出原代数式的值.18.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.19.如图,y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求着两个函数的表达式;(2)请直接写出当x取何值时,y1>y2.20.(10分)如图,△ABC中,AB=BC,AD⊥BC于点D,DE∥AB交AC于点E,过点C在△ABC 外部作CF∥AB,AF⊥CF于点F.连接EF.(1)求证:△AFC≌△ADC;(2)判断四边形DCFE的形状,并说明理由.21.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.(12分)(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,点B的横、纵坐标分别是一元二次方程x2+5x﹣24=0的两个实数根,点D是AB的中点.(1)求点B坐标;(2)求直线OD的函数表达式;(3)点P是直线OD上的一个动点,当以P、A、D三点为顶点的三角形是等腰三角形时,请直接写出P点的坐标.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.C2.B3.B4.A5.C6.D7.D8.A二、填空题(本大题共8小题,每小题3分,共24分)9.310.y=﹣.11.三边垂直平分线的交点处.12.4:10:25.13.﹣3或2时,y=﹣8.14.﹣4.15.a≤1.16.cm.三、解答题17.解:原式=÷=•=,方程x2﹣3x+2=0,变形得:(x﹣1)(x﹣2)=0,解得:x=1或x=2,当x=2时,原式无意义,舍去;当x=1时,原式=.18.解:∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD==2.∵D是BC的中点,∴BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB==2.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2.19.解:(1)把A(2,3)代入y2=得:m=6,即反比例函数的表达式是y2=,把A(2,3),C(8,0)代入y1=kx+b得:,解得:k=﹣,b=4,即一次函数的表达式是y1=﹣x+4.(2)解方程组得:,,即A(2,3),B(6,1),∴当x<0或2<x<6时,y1>y2.20.(1)证明:∵AB=BC,∴∠BAC=∠BCA,∵DE∥AB,CF∥AB,∴DE∥FC,∠BAC=∠DEC,∴∠DEC=∠BCA,∠DEC=∠FCE,∴∠FCE=∠BCA,在△AFC和△ADC中,∴△AFC≌△ADC(AAS);(2)四边形DCFE是菱形;理由:由(1)得∠DEC=∠BCA,DC=FC,∴DE=DC,DE=FC,∵DE FC,∴四边形DCFE是平行四边形,又∵DE=DC,∴平行四边形DCFE是菱形.21.(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.…9分答:该店应按原售价的九折出售.…10分22.证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.23.解:(1)解方程x2+5x﹣24=0,得x1=﹣8,x2=3,∴点B坐标为(﹣8,3);(2)∵点D是AB的中点,A(0,3),B(﹣8,3),∴D(﹣4,3);设直线OD的解析式为y=kx,则3=﹣4k,解得k=﹣,∴直线OD的函数表达式为y=﹣x;(3)∵A(0,3),D(﹣4,3),∴AD=4.设P点的坐标为(x,﹣x),当以P、A、D三点为顶点的三角形是等腰三角形时,分三种情况:①如果PA=PD,那么点P在AD的垂直平分线上,∴x=﹣2,﹣x=,∴P点的坐标为(﹣2,);②如果AP=AD,那么x2+(﹣x﹣3)2=16,解得x1=﹣4(与D点重合舍去),x2=,当x=时,﹣x=﹣,∴P点的坐标为(,﹣);③如果DP=DA,那么(x+4)2+(﹣x﹣3)2=16,解得x1=﹣,x2=﹣,当x=﹣时,﹣x=,当x=﹣时,﹣x=,∴P点的坐标为(﹣,),(﹣,).综上所述,P点的坐标为(﹣2,);(,﹣);(﹣,),(﹣,).。