高考数学二轮总复习专题训练二十六 分类讨论思想 理

合集下载

2012高考数学(理)专题练习:二十六 分类讨论思想

2012高考数学(理)专题练习:二十六 分类讨论思想

高考专题训练二十六 分类讨论思想班级_______ 姓名________时间:45分钟 分值:75分 总得分_______一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎨⎧a n 2, 当a n 为偶数时,3a n +1, 当a n 为奇数时.)若a 6=1,则m 所有可能的取值为( )A .4或5B .4或32C .5或32D .4,5或32解析:若a 5为偶数,则a 6=a 52=1,即a 5=2.若a 4为偶数,则a 5=a 42=2,∴a 4=4;若a 4为奇数,则有a 4=13(舍).[来源:学。

科。

网]若a 3为偶数,则有a 3=8;若a 3为奇数,则a 3=1. 若a 2为偶数,则a 2=16或2;若a 2为奇数,则a 2=0(舍)或a 2=73(舍).若a 1为偶数,则a 1=32或4; 若a 1为奇数,有a 1=5或a 1=13(舍).若a 5为奇数,有1=3a 5+1;所以a 5=0,不成立. 综上可知a 1=4或5或32. 答案:D点评:本题考查了分类讨论的应用,要注意数列中的条件是a n 为奇数或偶数,而不是n 为奇数或偶数.2.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 等于( )A .-3B .-38C .3 D.38或-3解析:当a <0时,在x ∈[-3,2]上,当x =-1时取得最大值,得a =-3;当a >0时,在x ∈[-3,2]上,当x =2时取得最大值,得a =38.答案:D3.对一切实数,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .[-2,+∞)C .[-2,2]D .[0,+∞)解析:本题是不等式恒成立问题,可以构造函数,把函数转化为y =x +ax 型,通过求解函数的最值得到结论.由不等式x 2+a |x |+1≥0对一切实数恒成立.①当x =0时,则1≥0,显然成立;②当x ≠0时,可得不等式a ≥-|x |-1|x |对x ≠0的一切实数成立.令f (x )=-|x |-1|x |=-⎝ ⎛⎭⎪⎫|x |+1|x |≤-2.当且仅当|x |=1时,“=”成立. ∴f (x )max =-2,故a ≥f (x )max =-2. 答案:B [来源:学科网]4.0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析:(x -b )2-(ax )2>0,(x -b -ax )(x -b +ax )>0. 即[(1-a )x -b ][(1+a )x -b ]>0. ①令x 1=b 1-a ,x 2=b1+a.∵0<b <1+a ,则0<b1+a<1,即0<x 2<1.当1-a >0时,若0<a <1,则不等式①的解集为⎝⎛⎭⎪⎫-∞,b 1+a ∪⎝ ⎛⎭⎪⎫b 1-a ,+∞,不符合题意. 若-1<a <0,不等式的解集为⎝ ⎛⎭⎪⎫-∞,b 1-a ∪⎝ ⎛⎭⎪⎫b 1+a ,+∞,不符合题意.[来源:学科网ZXXK]当1-a <0时,即a >1时,需x 1=b1-a <-2,a +1>b >-2(1-a ),∴a <3.综上,1<a <3.故选C. 答案:C5.已知a =(-1,-2),b =(1,λ).若a 与b 的夹角为钝角,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-12 B.⎝ ⎛⎭⎪⎫-12 C.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) D .(2,+∞)解析:∵〈a ,b 〉为钝角,∴a ·b <0,即有λ>-12.又当λ=2时,a与b 反向.故选C.答案:C6.对任意两实数a ,b 定义运算“*”如下,a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),)则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .(-∞,0]B .[log 223,0]C .[log 223,+∞)D .R解析:根据题目给出的情境,得f (x )=log 12(3x -2)*log 2x =log 2⎝⎛⎭⎪⎫13x -2*log 2x =⎩⎨⎧log 213x -2 (x ≥1),log 2x (0<x <1).)由于y =log 2x 的图象在定义域上为增函数,可得f (x )的值域为(-∞,0].故选A.答案:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.若函数f (x )=4x +a ·2x +a +1在(-∞,+∞)上存在零点,则实数a 的取值范围为________.解析:设2x =t (t >0),则函数可化为g (t )=t 2+at +a +1,t ∈(0,+∞),函数f (x )在(-∞,+∞)上存在零点,等价于函数g (t )在(0,+∞)上有零点.(1)当函数g (t )在(0,+∞)上存在两个零点时,实数a 应满足[来源:]⎩⎨⎧Δ=a 2-4(a +1)≥0,-a2>0,g (0)=a +1>0,解得-1<a ≤2-2 2.(2)当函数g (t )在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a 应满足g (0)=a +1<0,解得a <-1.(3)当函数g (t )的一个零点是0时,g (0)=a +1,a =-1,此时可求得函数g (t )的另一个零点是1,符合题目要求.综合(1)(2)(3)知a 的取值范围是a ≤2-2 2.答案:a ≤2-2 28.连掷两次骰子得到的点数为m 和n ,记向量a =(m ,n ),与向量b =(1,-1)的夹角为θ,则θ∈(0,π2]的概率是________.解析:∵m >0,n >0,∴a =(m ,n )与b =(1,-1)不可能同向. ∴夹角θ≠0.∴θ∈(0,π2]⇔a ·b ≥0,∴m ≥n .当m =6时,n =6,5,4,3,2,1; 当m =5时,n =5,4,3,2,1; 当m =4时,n =4,3,2,1; 当m =3时,n =3,2,1; 当m =2时,n =2,1; 当m =1时,n =1;∴概率是6+5+4+3+2+16×6=712.答案:712[来源:学|科|网Z|X|X|K]9.当点M (x ,y )在如图所示的△ABC 内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2).则实数k 的取值范围是________.解析:如图,延长BC 交y 轴于点D ,目标函数z =kx +y 中z 的几何意义是直线kx +y -z =0在y 轴上的截距,由题意得当此直线经过点C (1,2)时,z 取得最大值,显然此时直线kx +y -z =0与y 轴的交点应该在点A 和点D 之间,而k AC =2-11-0=1,k BD =k BC =2-01-3=-1,直线kx +y -z =0的斜率为-k ,所以-1≤-k ≤1,解得k ∈[-1,1].答案:[-1,1]10.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|值为________.解析:若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2. ∵|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 解得|PF 1|=143,|PF 2|=43.∴|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2=|PF 1|2+(6-|PF 1|)2. 解得|PF 1|=4,|PF 2|=2.∴|PF 1||PF 2| 2.综上,|PF 1||PF 2|=72或2.答案:72或2三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知a >0,且a ≠1,数列{a n }的前n 项和为S n ,它满足条件a n -1S n =1-1a.数列{b n }中,b n =a n ·lg a n .(1)求数列{b n }的前n 项和T n ;(2)若对一切n ∈N *,都有b n <b n +1,求a 的取值范围.分析:(1)本题从a n -1S n =1-1a可以得出S n ,进而由a n 和S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).)可求出数列{a n }的通项,也就求出了{b n }的通项公式.(2)应注意分a >1和0<a <1讨论.解:(1)a n -1S n =1-1a ,∴S n =a (a n -1)a -1.当n =1时,a 1=S 1=a (a 1-1)a -1=a ;当n ≥2时,a n =S n -S n -1=a (a n -1)a -1-a (a n -1-1)a -1=a n.∴a n =a n (n ∈N *).此时,b n =a n ·lg a n =n ·a n lg a . ∴T n =b 1+b 2+…+b n =lg a (a +2a 2+3a 3+…+na n ).设u n =a +2a 2+3a 3+…+na n ,∴(1-a )u n =a +a 2+a 3+…+a n -na n +1=a (a n-1)a -1-na n +1.∴u n =na n +1a -1-a (a n -1)(a -1)2. ∴T n =lg a [n ·a n +1a -1-a (a n -1)(a -1)2]. (2)由b n <b n +1⇒na n lg a <(n +1)a n +1lg a . ①当a >1时,由lg a >0,可得a >n n +1.∵n n +1<1(n ∈N *),a >1,∴a >n n +1对一切n ∈N *都成立,此时a 的范围为a >1.②当0<a <1时,由lg a <0可得n >(n +1)a ,即a <n n +1,即a <⎝⎛⎭⎪⎫n n +1min .∵n n +1≥12,∴a <12时,对一切n ∈N *,a <n n +1都成立,此时,a的范围为0<a <12.由①②知:对一切n ∈N *,都有b n <b n +1的a 的范围是0<a <12或a >1.12.(13分)设A (x 1,y 1),B (x 2,y 2)是椭圆y 2a 2+x 2b2=1(a >b >0)上两点.已知m =⎝ ⎛⎭⎪⎫x 1b ,y 1a ,n =⎝ ⎛⎭⎪⎫x 2b ,y 2a ,若m ·n =0且椭圆的离心率e =32,短轴长为2,O 为坐标原点.(1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c )(c 为半焦距),求直线AB 的斜率k ;(3)试问△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.分析:(1)由e =c a =32及b =1可求a .(2)设出AB 的直线方程,代入椭圆方程,结合根与系数的关系及条件m ·n =0,解出k 值.(3)应分k AB 不存在及k AB 存在两种情况讨论求解.解:(1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =32.∴a =2,c = 3.椭圆的方程为y 24+x 2=1.(2)由题意,设AB 的方程为y =kx +3,[来源:学科网ZXXK][来源:学#科#网]由⎩⎨⎧y =kx +3,y 24x 2=1,整理得(k 2+4)x 2+23kx -1=0.∴x 1+x 2=-23k k 2+4,x 1x 2=-1k 2+4由已知m ·n =0得:x 1x 2b 2+y 1y 2a 2=x 1x 2+14(kx 1+3)(kx 2+3)=⎝ ⎛⎭⎪⎫1+k 24x 1x 2+34k (x 1+x 2)+34=k 2+44⎝ ⎛⎭⎪⎫-1k 2+4+34k ·-23k k 2+4+34=0.解得k =±2. (3)①当直线AB 斜率不存在时,即x 1=x 2,y 1=-y 2,由m ·n =0得x 21-y 214=0⇒y 21=4x 21. 又A (x 1,y 1)在椭圆上,所以x 21+4x 214=1,[来源:学&科&网Z&X&X&K]∴|x 1|=22,|y 1|=2,S =12|x 1||y 1-y 2|=1=12|x 1|·2|y 1|=1,所以三角形面积为定值.②当直线AB 斜率存在时,设AB 的方程为y =kx +b ,代入y 24+x 2=1,得:(k 2+4)x 2+2kbx +b 2-4=0.所以x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,x 1x 2+y 1y 24=0⇔x 1x 2+(kx 1+b )(kx 2+b )4=0,代入整理得2b 2-k 2=4,∴S =12·|b |1+k 2|AB |=12|b |(x 1+x 2)2-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b 22|b |=1. 所以△ABC 的面积为定值.点评:本题是平面向量与解析几何的交汇题,综合考查了椭圆方程,离心率,定值等知识与方法,当直线位置不确定时,应注意分斜率存在与斜率不存在讨论.[来源:Z&xx&].精品资料。

高中数学思想二 分类讨论思想 专题练习

高中数学思想二 分类讨论思想 专题练习

高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或322. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞-B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .136.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭7.已知函数,若,且,则的取值范围是( )A. B. C.D.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞9.已知函数,且在上的最大值为,则实数的值为( ) A . B .1 C. D .210.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3二、填空题11.已知,,,则的取值范围为________.ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________. 13.若数列,则__________. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极60︒{}n a 23n a n n +=+12231na a a n +++=+m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m ()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()xF x e a f x '=-()1,4a ∈ln a ()F x大值点?说明理由.高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或32答案 D解析 ∵m 是2,8的等比中项,∴m 2=16,∴m =±4. 当m =4时,曲线为双曲线,其中a =1,c =5,e =ca =5; 当m =-4时,曲线为椭圆,其中a =2,c =3,e =c a =32,故选D.2. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]答案 D解析 f (x )=e x +t e x +1=1+t -1e x +1,由题意得f (x )>0恒成立,所以t -1e x +1>-1恒成立,即t >-e x 恒成立,所以t ≥0.①若t ∈[0,1],则f (x )是增函数,当x →+∞时,得f (x )max →1,当x →-∞时,得f (x )min →t ,所以值域为(t,1).因为三角形任意两边之和大于第三边,所以t +t ≥1,解得12≤t ≤1;②若t ∈(1,+∞),则f (x )是减函数,当x →+∞时,得f (x )min →1,当x →-∞时,得f (x )max →t ,所以值域为(1,t ),同理可得1+1≥t ,所以1<t ≤2,综上得t ∈[12,2].3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞- B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-【答案】C 【详解】由题意,可得集合()(){}{}101A x x a x a x a x a =---<=<<+,所以{R C A x x a =≤或1}x a ≥+,又由集合{}{}2log 102B x x x x =<=<<,因为R B C A ⊆,所以2a ≥或10a +≤,解得1a ≤-或2a ≥, 所以实数a 的取值范围是][,(),12∞-⋃+∞-, 故选:C .4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠【答案】C 【详解】解析:指数函数13xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上是单调递减的, 由11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭可知,0a b >>. 所以11a b<,则11a b ->-.故C 正确;0a b ->,但不一定有1a b ->,则不一定有()ln 0a b ->,故A 错误;函数2xy =在(),-∞+∞上是单调递增的,0b a -<.则0221b a -<=,故B 错误; 当01c <<时,函数c y log x =在0,上单调递减,则log log c c a b <.故D 错误. 故选:C5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-, 当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+, 即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩ 故实数t 的最大值为13-. 故选:C.6.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭【答案】D 【详解】()0f x =,得1log a x x a =,即11log xax a ⎛⎫= ⎪⎝⎭.由题意知函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点.当1a >时,11log ,xay x y a ⎛⎫== ⎪⎝⎭草图如下,显然有两交点.当01a <<时,函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点时,注意到11,log xay y x a ⎛⎫== ⎪⎝⎭互为反函数,图象关于直线y x =对称,可知函数1x y a ⎛⎫= ⎪⎝⎭图象与直线y x =相切,设切点横坐标0x ,则0111ln 1x x x a a a ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得01e,e .e x a -=⎧⎪⎨⎪=⎩ 综上,a 的取值范围为1e e (1,)-⎧⎫+∞⎨⎬⎩⎭.故选:D .7.已知函数,若,且,则的取值范围是( )ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -A. B. C.D.【答案】A【解析】如图,作出函数的图象,不妨设,由可知函数的图象与直线有两个交点,而时,函数单调递增,其图象与轴交于点,所以.又,所以,,由,得,解得.由,即,解得;由,即,解得;记(),.所以当时,,函数单调递减;当时,,函数单调递增.所以函数的最小值为;而,.所以.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞【答案】A 【解析】[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()y f x =()()f m f n t ==()()f m f n =()f x y t =0x ≤()y f x =y (0,1)01t <≤m n <0m ≤0n >01t <≤0ln(1)1n <+≤01n e <≤-()f m t =112m t +=22m t =-()f n t =ln(1)n t +=1t n e =-()1(22)21t t g t n m e t e t =-=---=-+01t <≤()2tg t e '=-0ln 2t <<()0g t '<()g t ln 21t <≤()0g t '>()g t ()g t ln 2(ln 2)2ln 2132ln 2g e =-+=-0(0)12g e =+=(1)2112g e e =-+=-<32ln 2()2g t -≤<()3231f x ax x =-+'.显然()00f '≠,令()0f x '=得:2331x a x-=,()0x ≠ 令()2331x t x x -=,()0x ≠,()()()4311x x t x x+-'=-知: 当(),1x ∈-∞-时,()0t x '<,()t x 为减函数;当()1,0x ∈-时,()0t x '>,()t x 为增函数; 当()0,1x ∈时,()0t x '>,()t x 为增函数;当()1,x ∈+∞时,()0t x '<,()t x 为减函数, 作出()t x 的大致图象如图所示,则当()12a t <-=-时,()t x 存在唯一的正零点.故选A9.已知函数,且在上的最大值为,则实数的值为( ) A .B .1 C. D .2 【答案】B【解析】由已知得,对于任意的,有,当时,,不合题意;当时,,从而在单调递减,又函数在上图象是连续不断的,故函数在上的最大值为,不合题意;当时,,从而在,单调递增,又函数在上图象是连续不断的,故函数在上的最大值为,解得.()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()()sin cos f x a x x x '=+[]20x π∈,sin cos 0x x x +>0a =()32f x =-0a <()[]002x f x π∈'<,,()f x [0]2π, [0]2π,()203f =-0a >]2[0x π∈,,()0f x '>()f x [0]2π, [0]2π,()223322f a πππ-=⋅-=1a =10.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3 【答案】C【解析】由题意,得,若函数在上单调递减,则,即,所以,故②正确;不妨设,则,故①错;画出不等式组表示的平面区域,如图所示,令,则,①当,即时,抛物线与直线有公共点,联立两个方程消去得,,所以;当,即时,抛物线与平面区域必有公共点,综上所述,,所以有最小值,故③正确,故选C .二、填空题11.已知,,,则的取值范围为________. 【答案】【解析】因为,所以.当时,,可得;当时,()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -()232f x x ax b '=++()f x (0,1)(0)0(1)0f f '≤⎧⎨'≤⎩0320b a b ≤⎧⎨++≤⎩()()01(32)0g g b a b ⋅=⋅++≥32()235f x x x x =--+()()015(1235)0f f ⋅=⋅--+>0320b a b ≤⎧⎨++≤⎩23z a b =-2133z b a =-33z ->-9z <2133zb a =-230a b ++=b 2690a a z ++-=2(3)0z a =+≥09z ≤<33z-≤-9z ≥0z ≥23z a b =-{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a (,9]-∞B A ⊆Φ≠Φ=B B 或Φ=B 1253+<-a a 6<a Φ≠B,可得,综上:. 12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________.【答案】或 【解析】分类讨论:当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 综上可得,双曲线方程为:或. 13.若数列,则__________. 【答案】【解析】令,得,所以.当时,.与已知式相减,得,所以,时,适合⎪⎩⎪⎨⎧≤-≥+≥22533126a a a 96≤≤a 9≤a 60︒22113x y -=223177y x -=x 22221x y a b -=by x a=±22603{ 231btan aa b ==-=221{ 3a b ==22113x y -=y 22221y x a b -=ay x b=±22603{ 321btan aa b ==-=227{ 37a b ==223177y x -=22113x y -=223177y x -={}n a 23n a n n +=+12231na a a n +++=+226n n +1n =4a 1=16a 1=2n ≥)1(3)1(a a a 21-n 21-+-=+++n n 22)1(3)1()3(22+=----+=n n n n n a n 2)1(4+=n a n 1n =1a.所以,所以,∴. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.答案 18+23或12+4 3解析 该几何体有两种情况:第一种,由如图①所示的棱长为2的正方体挖去一个三棱锥P -ABC 所得到的,所求的表面积为6×22-3×(12×2×2)+34×(22)2=18+23(cm 2).第二种,由如图②所示的棱长为2的正方体挖去三棱锥P -ABC 与三棱锥M -DEF 所得到的,所求的表面积为6×22-6×(12×2×2)+2×34×(22)2=12+43(cm 2).n a 2)1(4+=n a n 441+=+n n a n 12231n a a an +++=+n n n n 622)448(2+=++-三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围.【解析】若为真:对,恒成立,设,配方得,∴在上的最小值为,∴,解得,∴为真时:;若为真:,成立,∴成立.设,易知在上是增函数,∴的最大值为,∴,∴为真时,,∵”为真,“”为假,∴与一真一假,当真假时,∴,当假真时,∴,综上所述,的取值范围是或. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点. (1)()'af x x x=+. 由切线的斜率为2得()'112f a =+=. ∴1a =.(2)()21ln 2g x a x x =+()1a x -+,0x >, ∴()'a g x x x =+()()()11x a x a x---+=. 1.当01a <<时,m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m p []1 1x ∀∈-,224822m m x x -≤--()222f x x x =--()()213f x x =--()f x []1 1-,3-2483m m -≤-1322m ≤≤p 1322m ≤≤q []1 2x ∃≤,212x mx -+>21x m x -<()211x g x x x x -==-()g x []1 2,()g x ()322g =32m <q 32m <p q ∨p q ∧p q p q 132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩32m =p q 132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或12m <m 12m <32m =由()'0g x >得0x a <<或1x >,()'0g x <得1a x <<, ∴()g x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增.又()21ln 2g a a a a =+()11ln 12a a a a a ⎛⎫-+=-- ⎪⎝⎭0<,()()22ln 220g a a a +=+>,∴当01a <<时函数()g x 恰有一个零点. 2.当1a =时,()'0g x ≥恒成立,()g x 在()0,+∞上递增.又()11202g =-<,()4ln40g =>, 所以当1a =时函数()g x 恰有一个零点. 3.当1a >时,由()'0g x >得01x <<或x a >,()'0g x <得1x a <<, ∴()g x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增. 又()1102g a =--<, ()()22ln 220g a a a +=+>,∴当1a >时函数()g x 恰有一个零点.综上,当0a >时,函数()()()1g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极大值点?说明理由.【解析】(1),当时,单调递减;当时,单调递增;因为,所以存在,使,且当时,,当时,.故函数在区间上有1个零点,即. (2)(法一)当时,.因为当时,;当,. 由(1)知,当时,;当时,.下证:当时,,即证., 记…,所以在单调递增,由,所以存在唯一零点,使得,且时,单调递减,时,单调递增.所以当时,.…… 由,得当时,. 故.当时,单调递增;当时,单调递减.所以存在()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()x F x e a f x '=-()1,4a ∈ln a ()F x ()6x a f x x e ⎛'⎫=-⎪⎝⎭06a x <<()()0f x f x '<,6ax >()()0f x f x '>,()00,110666a a a f f f ⎛⎫⎛⎫<=-+=⎪ ⎪⎝⎭⎝⎭0,166a a x ⎛⎫∈+ ⎪⎝⎭()00f x =00x x <<()0f x <0x x >()0f x >()f x ()0,+∞0x 1a >ln 0a >()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,a e ∈0ln a x <()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()[]2ln 1,1,6x g x x x x x e =--+∈()()3ln ,033x xg x x g x x''-='=->()g x '()1,e ()()110,1033eg g e ''=-=-()01,t e ∈()01g t '=()01,x t ∈()()0,g x g x '<()0,x t e ∈()()0,g x g x '>()1,x e ∈()()(){}max 1,g x g g e <()()21610,066e g g e -=-<=<()1,x e ∈()0g x <()0ln 0,0ln f a a x <<<0ln x a <<()()()()()0,0,0,xxe af x F x e a f x F x -'-<=0ln a x x <<()()()()()0,0,0,x xe af x F x e a f x F x -><=-<',使得为的极大值点.(2)(法二)因为当时,;当,. 由(1)知,当时,;当时,.所以存在无数个,使得为函数的极大值点,即存在无数个,使得成立,①…由(1),问题①等价于,存在无数个,使得成立,因为, 记,因为,当时,,所以在单调递增,因为,所以存在唯一零点,使得,且当时,单调递减;当时,单调递增;所以,当时,,②由,可得,代入②式可得,当时,, 所以,必存在,使得,即对任意有解, ()()1,1,4a e ∈⊂ln a ()F x ()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,4a ∈ln a ()F x ()1,4a ∈0ln a x <()1,4a ∈()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()()2ln 1,1,46x g x x x x x =--+∈()()ln ,1,4,3x g x x x '=-∈()33x g x x '-'=3,22x ⎛⎫∈ ⎪⎝⎭()0g x ''>()g x '3,22⎛⎫ ⎪⎝⎭()3312ln 0,2ln202223g g ⎛⎫=-=''- ⎪⎝⎭03,22t ⎛⎫∈⎪⎝⎭()00g t '=03,2x t ⎛⎫∈ ⎪⎝⎭()()0,g x g x '<()0,2x t ∈()()0,g x g x '>3,22x ⎡⎤∈⎢⎥⎣⎦()()200000min ln 16t g x g t t t t ==--+()00g t '=00ln 3t t =()()2000min 16t g x g t t ==-+03,22t ⎛⎫∈ ⎪⎝⎭()()220000311106628t t g t t -=-+=-≤-<3,22x ⎛⎫∈⎪⎝⎭()0g x <()3,2,ln 02a f a ⎛⎫∈< ⎪⎝⎭所以对任意,函数存在极大值点为.3,22a ⎛⎫∈⎪⎝⎭()F x ln a。

高考数学二轮复习第一部分思想方法研析指导二分类讨论思想课件文

高考数学二轮复习第一部分思想方法研析指导二分类讨论思想课件文
二、分类讨论思想
高考命题聚焦 从近五年的高考试题来看,分类讨论思想在高考试题中频繁出现, 已成为高考数学的一个热点,也是高考的难点.高考中经常会有几 道题,解题思路直接依赖于分类讨论,特别在解答题中(尤其导数与 函数)常有一道分类求解的压轴题,选择题、填空题也会出现不同 情形的分类讨论题.
思想方法诠释 1.分类讨论思想的含义 分类讨论思想就是当问题所给的对象不能进行统一研究时,需 要把研究对象按某个标准分类,然后对每一类分别研究,得出每一 类的结论,最后综合各类结果得到整个问题的解答.对问题实行分 类,分类标准等于是增加的一个已知条件,实现了有效增设,将大问 题分解为小问题,优化了解题思路,降低了问题难度. 2.分类讨论思想在解题中的应用 (1)由数学概念引起的分类讨论; (2)由性质、定理、公式的限制引起的分类讨论; (3)由数学运算要求引起的分类讨论; (4)由图形的不确定性引起的分类讨论; (5)由参数的变化引起的分类讨论.
D.-12
题后反思一般由图形的位置或形状变动引发的讨论包括:二
次函数对称轴位置的变动;函数问题中区间的变动;函数图象形状的
变动;直线由斜率引起的位置变动;圆锥曲线由焦点引起的位置变动 或由离心率引起的形状变动;立体几何中点、线、面的位置变动等.
答案D ������ + ������-2 ≥ 0,
解析 作出线性约束条件 ������������-������ + 2 ≥ 0,的可行域,当 k>0 时,如图①所
的取值范围是 (1,+∞) .
解析 设函数y=ax(a>0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a有两 个零点,就是函数y=ax与函数y=x+a的图象有两个交点.由图象(图 略)可知,当0<a<1时,两函数图象只有一个交点,不符合;当a>1时,因 为函数y=ax(a>1)的图象过点(0,1),而直线y=x+a所过的点一定在点 (0,1)的上方,所以一定有两个交点.故实数a的取值范围是(1,+∞).

[全]高中数学:分类讨论思想(含详细分析和例题解析)

[全]高中数学:分类讨论思想(含详细分析和例题解析)

[全]高中数学:分类讨论思想(含详细分析和例题解析)所谓分类讨论,就是当题目所给的对象不能进行统一研究时,就需要对研究对象按某个标准进行分类,然后对每个类别级别进行研究,得出每一类的结论,最后将各类结果进行综合,得到整个问题的解答。

分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略。

分类讨论,是一种重要的数学思想,也是一种逻辑方法,同时又是一种重要的解题策略。

在高中数学中,分类讨论时非常重要的一种解题思路,每次高考的数学试卷中,必然会有需要用到这种思想方法的题目。

一、分类讨论的要求及其意义1、分类讨论的要求:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

2、分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等。

(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{an}的前n项和公式等。

(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等。

(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等。

(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等。

二、分类讨论思想的原则为了分类的正确性,分类讨论必需遵循一定的原则进行,在中学阶段,我们经常用到的有以下四大原则:(1) 同一性原则:分类应按照同一标准进行,即每次分类不能同时使用几个不同的分类根据。

高考数学第二轮复习 分类讨论思想方法 人教版

高考数学第二轮复习 分类讨论思想方法 人教版

高考数学第二轮复习分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

如等比数列的前n项和的公式,分q=1和q≠1两种情况。

这种分类讨论题型可以称为性质型。

③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。

如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。

这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

一、方法简解:1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A B,那么a的范围是_____。

A. 0≤a≤1B. a≤1C. a<1D. 0<a<12.若a>0且a≠1,p=loga (a3+a+1),q=loga(a2+a+1),则p、q的大小关系是_____。

(新课标)天津市最新年高考数学二轮复习 思想方法训练2 分类讨论思想 理

(新课标)天津市最新年高考数学二轮复习 思想方法训练2 分类讨论思想 理

思想方法训练2 分类讨论思想一、能力突破训练1.已知函数f(x)=若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.(-∞,2)B.(-∞,4)C.[2,4]D.(2,+∞)2.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c23.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q4.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A.B.C.D.5.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N,=λ,其中λ为常数,则动点M的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线6.若x>0,且x≠1,则函数y=lg x+log x10的值域为()A.RB.[2,+∞)C.(-∞,-2]D.(-∞,-2]∪[2,+∞)7.设S n是等比数列{a n}的前n项和,S3,S9,S6成等差数列,且a2+a5=2a m,则m等于()A.6B.7C.8D.108.已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为()A.30°B.60°C.30°或60°D.45°或60°9.已知函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是.10.已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为.11.已知函数f(x)=2a sin2x-2a sin x cos x+a+b(a≠0)的定义域为,值域为[-5,1],求常数a,b的值.12.设a>0,函数f(x)=x2-(a+1)x+a(1+ln x).(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.二、思维提升训练13.若直线l过点P且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0B.x=-3或y=-C.x=-3D.x=-3或3x+4y+15=014.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(注:e为自然对数的底数)()A.(-1,0]B.C.(-1,0]∪D.15.已知a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a= 时,g(a)的值最小.16.已知函数f(x)=a ln x+x2(a为实数).(1)求函数f(x)在区间[1,e]上的最小值及相应的x值;(2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.17.设函数f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f'(x);(2)求A;(3)证明|f'(x)|≤2A.思想方法训练2分类讨论思想一、能力突破训练1.B解析当-<1时,显然满足条件,即a<2;当a≥2时,-1+a>2a-5,即2≤a<4.综上知,a<4,故选B.2.B解析在△ABC中,由余弦定理得cos A=,则A=又b=a,由正弦定理,得sin B=sin A=,则B=或B=当B=时,△ABC为直角三角形,选项C,D成立;当B=时,△ABC为等腰三角形,选项A成立,故选B.3.C解析当0<a<1时,y=a x和y=log a x在其定义域上均为减函数,∴a3+1<a2+1.∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,∴a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.4.C解析焦点在x轴上时,,此时离心率e=;焦点在y轴上时,,此时离心率e=,故选C.5.C解析不妨设|AB|=2,以AB中点O为原点,AB所在直线为x轴建立平面直角坐标系xOy,则A(-1,0),B(1,0),设M(x,y),则N(x,0),=(0,-y),=(x+1,0),=(1-x,0),代入已知式子得λx2+y2=λ,当λ=1时,曲线为A;当λ=2时,曲线为B;当λ<0时,曲线为D,所以选C.6.D解析当x>1时,y=lg x+log x10=lg x+2=2;当0<x<1时,y=lg x+log x10=--2=-2.故函数的值域为(-∞,-2]∪[2,+∞).7.C解析∵S3,S9,S6成等差数列,∴2S9=S3+S6.若公比q=1,显然有2S9≠S3+S6,因此q≠1,从而2,2q9-q6-q3=0,即2q6-q3-1=0,∴q3=-或q3=1(舍去).∵a2+a5=2a M,∴a2(1+q3-2q m-2)=0,1+q3-2q m-2=0,∴q m-2=,∴m=8.8.C解析球心位置有以下两种情况:球心在三棱锥内部;球心在三棱锥外部.球心在三棱锥内部时,三棱锥为正三棱锥,设O'为△ABC的中心,在△ABC中,可求得O'A=,所以可得OA=2,SO'=3,SA与平面ABC所成的角即为∠SAO',由tan∠SAO'=,得∠SAO'=60°.同理可得第二种情况中所成角为30°.9解析当a>1时,y=a x在区间[1,2]上递增,故a2-a=,得a=;当0<a<1时,y=a x在区间[1,2]上递减,故a-a2=,得a=故a=或a=10.4解析f(x)=g(x)=(1)当0<x≤1时,方程化为|-ln x+0|=1,解得x=或x=e(舍去).所以此时方程只有1个实根(2)当1<x<2时,方程可化为|ln x+2-x2|=1.设h(x)=ln x+2-x2,则h'(x)=-2x=因为1<x<2,所以h'(x)=<0,即函数h(x)在区间(1,2)上单调递减.因为h(1)=ln 1+2-12=1,h(2)=ln 2+2-22=ln 2-2,所以h(x)∈(ln 2-2,1).又ln 2-2<-1,故当1<x<2时方程只有1解.(3)当x≥2时,方程可化为|ln x+x2-6|=1.记函数p(x)=ln x+x2-6,显然p(x)在区间[2,+∞)上单调递增.故p(x)≥p(2)=ln 2+22-6=ln 2-2<-1.又p(3)=ln 3+32-6=ln 3+3>1,所以方程|p(x)|=1有2个解,即方程|ln x+x2-6|=1有2个解.综上可知,方程|f(x)+g(x)|=1共有4个实根.11.解f(x)=a(1-cos 2x)-a sin 2x+a+b=-2a sin+2a+b.∵x,∴2x+,∴-sin1.因此,由f(x)的值域为[-5,1],可得或解得12.解 (1)由已知x>0,f'(x)=x-(a+1)+因为曲线y=f(x)在(2,f(2))处切线的斜率为1,所以f'(2)=1,即2-(a+1)+=1,所以a=0,此时f(2)=2-2=0,故曲线f(x)在(2,f(2))处的切线方程为x-y-2=0.(2)f'(x)=x-(a+1)+①当0<a<1时,若x∈(0,a),则f'(x)>0,函数f(x)单调递增;若x∈(a,1),则f'(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f'(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-a2+a ln a,极小值是f(1)=-②当a=1时,若x∈(0,1),则f'(x)>0,若x=1,则f'(x)=0,若x∈(1,+∞),则f'(x)>0,所以函数f(x)在定义域内单调递增,此时f(x)没有极值点,也无极值.③当a>1时,若x∈(0,1),则f'(x)>0,函数f(x)单调递增;若x∈(1,a),则f'(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f'(x)>0,函数f(x)单调递增,此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-,极小值是f(a)=-a2+a ln a.综上,当0<a<1时,f(x)的极大值是-a2+a ln a,极小值是-;当a=1时,f(x)无极值;当a>1时,f(x)的极大值是-,极小值是-a2+a ln a.二、思维提升训练13.D解析若直线l的斜率不存在,则该直线的方程为x=-3,代入圆的方程解得y=±4,故直线l被圆截得的弦长为8,满足条件;若直线l的斜率存在,不妨设直线l的方程为y+=k(x+3),即kx-y+3k-=0,因为直线l被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l的距离为,解得k=-,此时直线l的方程为3x+4y+15=0.14.C解析因为方程f(x)=ax恰有两个不同的实数根,所以y=f(x)与y=ax的图象有2个交点,a 表示直线y=ax的斜率.当a>0,x>1时,y'=设切点为(x0,y0),k=,所以切线方程为y-y0=(x-x0),而切线过原点,所以y0=1,x0=e2,k=,所以切线l1的斜率为设过原点与y=x+1平行的直线为l2,则直线l2的斜率为,所以当直线在l1和l2之间时,符合题意,此时实数a的取值范围是当a<0时,设过原点与点(1,-1)的直线为l3,其斜率为-1,则在l3的位置以O为中心逆时针旋转一直转到水平位置都符合题意,此时实数a的取值范围是(-1,0].综上所述,实数a的取值范围是(-1,0],故选C.15.2-2解析当a≤0时,在区间[0,1]上,f(x)=|x2-ax|=x2-ax,且在区间[0,1]上为增函数,当x=1时,f(x)取得的最大值为f(1)=1-a;当0<a<1时,f(x)=在区间内递增,在区间上递减,在区间(a,1]上递增,且f,f(1)=1-a,-(1-a)=(a2+4a-4),∴当0<a<2-2时,<1-a.当2-2≤a<1时,1-a;当1≤a<2时,f(x)=-x2+ax在区间上递增,在区间上递减,当x=时,f(x)取得最大值f;当a≥2时,f(x)=-x2+ax在区间[0,1]上递增,当x=1时,f(x)取得最大值f(1)=a-1.则g(a)=在区间(-∞,2-2)上递减,在区间[2-2,+∞)上递增,即当a=2-2时,g(a)有最小值.16.解 (1)f(x)=a ln x+x2的定义域为(0,+∞),f'(x)=+2x=当x∈[1,e]时,2x2∈[2,2e2].若a≥-2,则f'(x)在区间[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故f(x)在区间[1,e]上单调递增,此时f(x)min=f(1)=1;若-2e2<a<-2,令f'(x)<0,解得1≤x<,此时f(x)单调递减;令f'(x)>0,解得<x≤e,此时f(x)单调递增,所以f(x)min=f ln;若a≤-2e2,f'(x)在区间[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0),故f(x)在区间[1,e]上单调递减,此时f(x)min=f(e)=a+e2.综上所述,当a≥-2时,f(x)min=1,相应的x=1;当-2e2<a<-2时,f(x)min=ln,相应的x=;当a≤-2e2时,f(x)min=a+e2,相应的x=e.(2)不等式f(x)≤(a+2)x可化为a(x-ln x)≥x2-2x.由x∈[1,e],知ln x≤1≤x且等号不能同时成立,得ln x<x,即x-ln x>0,因而a,x∈[1,e],令g(x)=(x∈[1,e]),则g'(x)=,当x∈[1,e]时,x-1≥0,ln x≤1,x+2-2ln x>0,从而g'(x)≥0(仅当x=1时取等号),所以g(x)在区间[1,e]上是增函数,故g(x)min=g(1)=-1,所以实数a的取值范围是[-1,+∞).17.(1)解f'(x)=-2αsin 2x-(α-1)sin x.(2)解 (分类讨论)当α≥1时,|f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.当0<α<1时,将f(x)变形为f(x)=2αcos2x+(α-1)cos x-1.令g(t)=2αt2+(α-1)t-1,则A是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=时,g(t)取得极小值,极小值为g=--1=-令-1<<1,解得α<-(舍去),α>当0<时,g(t)在区间(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α.当<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g又-|g(-1)|=>0,所以A=综上,A=(3)证明由(1)得|f'(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|.当0<时,|f'(x)|≤1+α≤2-4α<2(2-3α)=2A.当<α<1时,A=1,所以|f'(x)|≤1+α<2A.当α≥1时,|f'(x)|≤3α-1≤6α-4=2A.所以|f'(x)|≤2A.11。

高考数学文(二轮复习)课件《分类讨论思想》

高考数学文(二轮复习)课件《分类讨论思想》

由图形或图象引发的分类讨论
[试题调研] x+y-2≥0, (2014· 北京高考)若x,y满足kx-y+2≥0, y≥0, )
[例2]
且z=y-x的最小值为-4,则k的值为( A.2 B.-2 1 C.2
1 D.-2
[思路方法]
线性约束条件中含有参数,k的取值会对可行
域产生影响,因此解题时要注意对k的分类讨论.可将k分为 k>0,k<-1,k=-1与-1<k<0等情况讨论求解.
或0<x≤4,即不等式f(x)≥-2的解集为
1 -∞,- ∪(0,4],故选率、指数 函数、对数函数等.与这样的数学概念有关的问题往往需要根 据数学概念进行分类,从而全面完整地解决问题. (1)分段函数在自变量不同取值范围内,对应关系不同,必 须进行讨论.由数学定义引发的分类讨论一般由概念内涵所决 定,解决这类问题要求熟练掌握并理解概念的内涵与外延.
[回访名题] (1)(2013· 辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△ OAB为直角三角形,则必有( A.b=a3 1 B.b=a +a
两式相减,得 (q-1)Sn=nqn-1-q1-q2-„-qn-1
n n+1 n q - 1 nq - n + 1 q +1 n =nq - = . q-1 q-1
nqn+1-n+1qn+1 于是,Sn= . q-12 nn+1 若q=1,则Sn=1+2+3+„+n= 2 . nn+1 q=1, 2 所以Sn= n+1 n nq -n+1q +1 q≠1. 2 q - 1
(3)由性质、定理、公式的限制而引起的分类讨论:如函数 的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图 象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问 题,由于参数的取值不同会导致所得的结果不同,或者由于对 不同的参数值要运用不同的求解或证明方法等.

高考数学二轮总复习专题训练二十六 分类讨论思想 理

高考数学二轮总复习专题训练二十六 分类讨论思想 理

高考专题训练二十六 分类讨论思想班级_______ 姓名________时间:45分钟 分值:75分 总得分_______一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2, 当a n 为偶数时,3a n +1, 当a n 为奇数时.)若a 6=1,则m 所有可能的取值为( )A .4或5B .4或32C .5或32D .4,5或32解析:若a 5为偶数,则a 6=a 52=1,即a 5=2.若a 4为偶数,则a 5=a 42=2,∴a 4=4;若a 4为奇数,则有a 4=13舍).若a 3为偶数,则有a 3=8;若a 3为奇数,则a 3=1. 若a 2为偶数,则a 2=16或2;若a 2为奇数,则a 2=0(舍)或a 2=73舍).若a 1为偶数,则a 1=32或4; 若a 1为奇数,有a 1=5或a 1=13(舍).若a 5为奇数,有1=3a 5+1;所以a 5=0,不成立. 综上可知a 1=4或5或32. 答案:D点评:本题考查了分类讨论的应用,要注意数列中的条件是a n 为奇数或偶数,而不是n 为奇数或偶数.2.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 等于( ) A .-3B .-38C .3 D.38或-3解析:当a <0时,在x ∈[-3,2]上,当x =-1时取得最大值,得a =-3; 当a >0时,在x ∈[-3,2]上,当x =2时取得最大值,得a =38答案:D3.对一切实数,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .[-2,+∞)C .[-2,2]D .[0,+∞)解析:本题是不等式恒成立问题,可以构造函数,把函数转化为y =x +ax型,通过求解函数的最值得到结论.由不等式x 2+a |x |+1≥0对一切实数恒成立.①当x =0时,则1≥0,显然成立;②当x ≠0时,可得不等式a ≥-|x |-1|x |对x ≠0的一切实数成立.令f (x )=-|x |-1|x |=-⎝⎛⎭⎫|x |+1|x |≤-2.当且仅当|x |=1时,“=”成立. ∴f (x )max =-2,故a ≥f (x )max =-2. 答案:B4.0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析:(x -b )2-(ax )2>0,(x -b -ax )(x -b +ax )>0. 即[(1-a )x -b ][(1+a )x -b ]>0. ①令x 1=b 1-a x 2=b1+a .∵0<b <1+a ,则0<b1+a<1,即0<x 2<1.当1-a >0时,若0<a <1,则不等式①的解集为⎝⎛⎭⎫-∞,b 1+a ∪⎝⎛⎭⎫b1-a ,+∞,不符合题意.若-1<a <0,不等式的解集为⎝⎛⎭⎫-∞,b 1-a ∪⎝⎛⎭⎫b1+a ,+∞,不符合题意. 当1-a <0时,即a >1时,需x 1=b1-a <-2,a +1>b >-2(1-a ),∴a <3. 综上,1<a <3.故选C. 答案:C5.已知a =(-1,-2),b =(1,λ).若a 与b 的夹角为钝角,则λ的取值范围是( )A.⎝⎛⎭⎫-∞,-12B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,2∪(2,+∞) D .(2,+∞) 解析:∵〈a ,b 〉为钝角,∴a ²b <0,即有λ>-12.又当λ=2时,a 与b 反向.故选C.答案:C6.对任意两实数a ,b 定义运算“*”如下,a *b =⎩⎪⎨⎪⎧a a ≤b ,b a >b ,)则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .(-∞,0]B .[log 223,0]C .[log 223,+∞) D .R解析:根据题目给出的情境,得f (x )=log 12 (3x -2)*log 2x =log 2⎝⎛⎭⎫13x -2*log 2x =⎩⎪⎨⎪⎧log 213x -2 x ≥1,log 2x 0<x <1.)由于y =log 2x 的图象在定义域上为增函数,可得f (x )的值域为(-∞,0].故选A.答案:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 7.若函数f (x )=4x +a ²2x +a +1在(-∞,+∞)上存在零点,则实数a 的取值范围为________.解析:设2x =t (t >0),则函数可化为g (t )=t 2+at +a +1,t ∈(0,+∞),函数f (x )在(-∞,+∞)上存在零点,等价于函数g (t )在(0,+∞)上有零点.(1)当函数g (t )在(0,+∞)上存在两个零点时,实数a 应满足⎩⎪⎨⎪⎧Δ=a 2-4a +1≥0,-a 2>0,g 0=a +1>0,解得-1<a ≤2-2 2.(2)当函数g (t )在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a 应满足g (0)=a +1<0,解得a <-1.(3)当函数g (t )的一个零点是0时,g (0)=a +1,a =-1,此时可求得函数g (t )的另一个零点是1,符合题目要求.综合(1)(2)(3)知a 的取值范围是a ≤2-2 2.答案:a ≤2-2 28.连掷两次骰子得到的点数为m 和n ,记向量a =(m ,n ),与向量b =(1,-1)的夹角为θ,则θ∈(0,π2]的概率是________.解析:∵m >0,n >0,∴a =(m ,n )与b =(1,-1)不可能同向. ∴夹角θ≠0.∴θ∈(0,π2]⇔a ²b ≥0,∴m ≥n . 当m =6时,n =6,5,4,3,2,1; 当m =5时,n =5,4,3,2,1; 当m =4时,n =4,3,2,1; 当m =3时,n =3,2,1; 当m =2时,n =2,1; 当m =1时,n =1; ∴概率是6+5+4+3+2+16³6=712.答案:7129.当点M (x ,y )在如图所示的△ABC 内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2).则实数k 的取值范围是________.解析:如图,延长BC 交y 轴于点D ,目标函数z =kx +y 中z 的几何意义是直线kx +y -z =0在y 轴上的截距,由题意得当此直线经过点C (1,2)时,z 取得最大值,显然此时直线kx +y -z =0与y 轴的交点应该在点A 和点D 之间,而k AC =2-11-0=1,k BD =k BC =2-01-3=-1,直线kx +y -z =0的斜率为-k ,所以-1≤-k ≤1,解得k ∈[-1,1].答案:[-1,1]10.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析:若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2. ∵|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 解得|PF 1|=143,|PF 2|=43.∴|PF 1||PF 2|=72若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2=|PF 1|2+(6-|PF 1|)2. 解得|PF 1|=4,|PF 2|=2.∴|PF 1||PF 2|=2.综上,|PF 1||PF 2|=72或2.答案:72或2三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知a >0,且a ≠1,数列{a n }的前n 项和为S n ,它满足条件a n -1S n =1-1a数列{b n }中,b n =a n ²lg a n .(1)求数列{b n }的前n 项和T n ;(2)若对一切n ∈N *,都有b n <b n +1,求a 的取值范围.分析:(1)本题从a n -1S n =1-1a可以得出S n ,进而由a n 和S n 的关系a n =⎩⎪⎨⎪⎧S 1 n =1,S n -S n -1 n ≥2.)可求出数列{a n }的通项,也就求出了{b n }的通项公式.(2)应注意分a >1和0<a <1讨论.解:(1)a n -1S n =1-1a ,∴S n =a a n -1a -1.当n =1时,a 1=S 1=a a 1-1a -1=a ;当n ≥2时,a n =S n -S n -1=a a n -1a -1-a a n -1-1a -1=a n.∴a n =a n (n ∈N *).此时,b n =a n ²lg a n =n ²a nlg a . ∴T n =b 1+b 2+…+b n =lg a (a +2a 2+3a 3+…+na n ).设u n =a +2a 2+3a 3+…+na n ,∴(1-a )u n =a +a 2+a 3+…+a n -nan +1=a a n -1a -1-nan+1.∴u n =na n +1a -1-a a n -1a -12.∴T n =lg a [n ²a n +1a -1-a a n -1a -12].(2)由b n <b n +1⇒na n lg a <(n +1)a n +1lg a . ①当a >1时,由lg a >0,可得a >nn +1.∵n n +1<1(n ∈N *),a >1,∴a >n n +1对一切n ∈N *都成立,此时a 的范围为a >1.②当0<a <1时,由lg a <0可得n >(n +1)a ,即a <nn +1,即a <⎝⎛⎭n n +1min .∵nn +1≥12,∴a <12时,对一切n ∈N *,a <n n +1都成立,此时,a 的范围为0<a <12. 由①②知:对一切n ∈N *,都有b n <b n +1的a 的范围是0<a <12或a >1.12.(13分)设A (x 1,y 1),B (x 2,y 2)是椭圆y 2a 2+x 2b 2=1(a >b >0)上两点.已知m =⎝⎛⎭⎫x 1b ,y 1a ,n =⎝⎛⎭⎫x 2b ,y 2a ,若m ²n =0且椭圆的离心率e =32,短轴长为2,O 为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c )(c 为半焦距),求直线AB 的斜率k ;(3)试问△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 分析:(1)由e =ca =32及b =1可求a .(2)设出AB 的直线方程,代入椭圆方程,结合根与系数的关系及条件m ²n =0,解出k 值.(3)应分k AB 不存在及k AB 存在两种情况讨论求解.解:(1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =32.∴a =2,c = 3.椭圆的方程为y 24+x 2=1. (2)由题意,设AB 的方程为y =kx +3,由⎩⎪⎨⎪⎧y =kx +3,y 24+x 2=1,整理得(k 2+4)x 2+23kx -1=0.∴x 1+x 2=-23k k 2+4x 1x 2=-1k 2+4.由已知m ²n =0得:x 1x 2b 2+y 1y 2a 2=x 1x 2+14(kx 1+3)(kx 2+3) =⎝⎛⎭⎫1+k 24x 1x 2+34k (x 1+x 2)+34=k 2+44⎝⎭⎫-1k 2+4+34k ²-23k k 2+4+34=0.解得k =± 2.(3)①当直线AB 斜率不存在时,即x 1=x 2,y 1=-y 2,由m ²n =0得x 21-y 214=0⇒y 21=4x 21.又A (x 1,y 1)在椭圆上,所以x 21+4x 214=1,∴|x 1|=22,|y 1|=2,S =12|x 1||y 1-y 2|=1=12|x 1|²2|y 1|=1,所以三角形面积为定值.②当直线AB 斜率存在时,设AB 的方程为y =kx +b ,代入y 24+x 2=1,得:(k 2+4)x 2+2kbx +b 2-4=0.所以x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,x 1x 2+y 1y 24=0⇔x 1x 2+kx 1+b kx 2+b 4=0,代入整理得2b 2-k 2=4,∴S =12²|b |1+k 2|AB |=12|b |x 1+x 22-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b 22|b |=1.所以△ABC 的面积为定值.点评:本题是平面向量与解析几何的交汇题,综合考查了椭圆方程,离心率,定值等知识与方法,当直线位置不确定时,应注意分斜率存在与斜率不存在讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题训练二十六 分类讨论思想班级_______ 姓名________时间:45分钟 分值:75分 总得分_______一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2, 当a n 为偶数时,3a n +1, 当a n 为奇数时.)若a 6=1,则m 所有可能的取值为( )A .4或5B .4或32C .5或32D .4,5或32解析:若a 5为偶数,则a 6=a 52=1,即a 5=2.若a 4为偶数,则a 5=a 42=2,∴a 4=4;若a 4为奇数,则有a 4=13(舍).若a 3为偶数,则有a 3=8;若a 3为奇数,则a 3=1. 若a 2为偶数,则a 2=16或2;若a 2为奇数,则a 2=0(舍)或a 2=73(舍).若a 1为偶数,则a 1=32或4; 若a 1为奇数,有a 1=5或a 1=13(舍).若a 5为奇数,有1=3a 5+1;所以a 5=0,不成立. 综上可知a 1=4或5或32. 答案:D点评:本题考查了分类讨论的应用,要注意数列中的条件是a n 为奇数或偶数,而不是n 为奇数或偶数.2.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 等于( ) A .-3B .-38C .3 D.38或-3解析:当a <0时,在x ∈[-3,2]上,当x =-1时取得最大值,得a =-3; 当a >0时,在x ∈[-3,2]上,当x =2时取得最大值,得a =38.答案:D3.对一切实数,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .[-2,+∞)C .[-2,2]D .[0,+∞)解析:本题是不等式恒成立问题,可以构造函数,把函数转化为y =x +ax型,通过求解函数的最值得到结论.由不等式x 2+a |x |+1≥0对一切实数恒成立.①当x =0时,则1≥0,显然成立;②当x ≠0时,可得不等式a ≥-|x |-1|x |对x ≠0的一切实数成立.令f (x )=-|x |-1|x |=-⎝⎛⎭⎪⎫|x |+1|x |≤-2.当且仅当|x |=1时,“=”成立. ∴f (x )max =-2,故a ≥f (x )max =-2. 答案:B4.0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析:(x -b )2-(ax )2>0,(x -b -ax )(x -b +ax )>0.即[(1-a )x -b ][(1+a )x -b ]>0. ① 令x 1=b 1-a ,x 2=b1+a. ∵0<b <1+a ,则0<b1+a<1,即0<x 2<1.当1-a >0时,若0<a <1,则不等式①的解集为⎝ ⎛⎭⎪⎫-∞,b 1+a ∪⎝ ⎛⎭⎪⎫b1-a ,+∞,不符合题意.若-1<a <0,不等式的解集为⎝ ⎛⎭⎪⎫-∞,b 1-a ∪⎝ ⎛⎭⎪⎫b1+a ,+∞,不符合题意.当1-a <0时,即a >1时,需x 1=b1-a <-2,a +1>b >-2(1-a ),∴a <3. 综上,1<a <3.故选C. 答案:C5.已知a =(-1,-2),b =(1,λ).若a 与b 的夹角为钝角,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-12B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) D .(2,+∞)解析:∵〈a ,b 〉为钝角,∴a ·b <0,即有λ>-12.又当λ=2时,a 与b 反向.故选C.答案:C6.对任意两实数a ,b 定义运算“*”如下,a *b =⎩⎪⎨⎪⎧aa ≤b , b a >b ,)则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .(-∞,0]B .[log 223,0]C .[log 223,+∞) D .R解析:根据题目给出的情境,得f (x )=log 12(3x -2)*log 2x =log 2⎝ ⎛⎭⎪⎫13x -2*log 2x =⎩⎪⎨⎪⎧log 213x -2 x ,log 2xx )由于y =log 2x 的图象在定义域上为增函数,可得f (x )的值域为(-∞,0].故选A.答案:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 7.若函数f (x )=4x +a ·2x+a +1在(-∞,+∞)上存在零点,则实数a 的取值范围为________.解析:设2x=t (t >0),则函数可化为g (t )=t 2+at +a +1,t ∈(0,+∞),函数f (x )在(-∞,+∞)上存在零点,等价于函数g (t )在(0,+∞)上有零点.(1)当函数g (t )在(0,+∞)上存在两个零点时,实数a 应满足⎩⎪⎨⎪⎧Δ=a 2-a +,-a 2>0,g =a +1>0,解得-1<a ≤2-2 2.(2)当函数g (t )在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a 应满足g (0)=a +1<0,解得a <-1.(3)当函数g (t )的一个零点是0时,g (0)=a +1,a =-1,此时可求得函数g (t )的另一个零点是1,符合题目要求.综合(1)(2)(3)知a 的取值范围是a ≤2-2 2.答案:a ≤2-2 28.连掷两次骰子得到的点数为m 和n ,记向量a =(m ,n ),与向量b =(1,-1)的夹角为θ,则θ∈(0,π2]的概率是________.解析:∵m >0,n >0,∴a =(m ,n )与b =(1,-1)不可能同向. ∴夹角θ≠0.∴θ∈(0,π2]⇔a ·b ≥0,∴m ≥n .当m =6时,n =6,5,4,3,2,1; 当m =5时,n =5,4,3,2,1; 当m =4时,n =4,3,2,1; 当m =3时,n =3,2,1; 当m =2时,n =2,1; 当m =1时,n =1;∴概率是6+5+4+3+2+16×6=712.答案:7129.当点M (x ,y )在如图所示的△ABC 内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2).则实数k 的取值范围是________.解析:如图,延长BC 交y 轴于点D ,目标函数z =kx +y 中z 的几何意义是直线kx +y -z =0在y 轴上的截距,由题意得当此直线经过点C (1,2)时,z 取得最大值,显然此时直线kx +y -z =0与y 轴的交点应该在点A 和点D 之间,而k AC =2-11-0=1,k BD =k BC =2-01-3=-1,直线kx +y -z =0的斜率为-k ,所以-1≤-k ≤1,解得k ∈[-1,1].答案:[-1,1]10.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析:若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2. ∵|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 解得|PF 1|=143,|PF 2|=43.∴|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2=|PF 1|2+(6-|PF 1|)2. 解得|PF 1|=4,|PF 2|=2.∴|PF 1||PF 2|=2. 综上,|PF 1||PF 2|=72或2.答案:72或2三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知a >0,且a ≠1,数列{a n }的前n 项和为S n ,它满足条件a n -1S n =1-1a.数列{b n }中,b n =a n ·lg a n.(1)求数列{b n }的前n 项和T n ;(2)若对一切n ∈N *,都有b n <b n +1,求a 的取值范围.分析:(1)本题从a n -1S n =1-1a可以得出S n ,进而由a n 和S n 的关系a n =⎩⎪⎨⎪⎧S 1n =,S n -S n -1 n)可求出数列{a n }的通项,也就求出了{b n }的通项公式.(2)应注意分a >1和0<a <1讨论.解:(1)a n -1S n =1-1a ,∴S n =a a n -a -1.当n =1时,a 1=S 1=a a 1-a -1=a ;当n ≥2时,a n =S n -S n -1=a a n -a -1-a a n -1-a -1=a n.∴a n =a n(n ∈N *).此时,b n =a n ·lg a n=n ·a nlg a . ∴T n =b 1+b 2+…+b n =lg a (a +2a 2+3a 3+…+na n).设u n =a +2a 2+3a 3+…+na n ,∴(1-a )u n =a +a 2+a 3+…+a n -na n +1=a a n -a -1-nan+1.∴u n =na n +1a -1-a a n -a -2.∴T n =lg a [n ·a n +1a -1-a a n -a -2].(2)由b n <b n +1⇒na nlg a <(n +1)a n +1lg a .①当a >1时,由lg a >0,可得a >nn +1.∵nn +1<1(n ∈N *),a >1,∴a >nn +1对一切n ∈N *都成立,此时a 的范围为a >1.②当0<a <1时,由lg a <0可得n >(n +1)a ,即a <nn +1,即a <⎝ ⎛⎭⎪⎫n n +1min .∵nn +1≥12,∴a <12时,对一切n ∈N *,a <n n +1都成立,此时,a 的范围为0<a <12. 由①②知:对一切n ∈N *,都有b n <b n +1的a 的范围是0<a <12或a >1.12.(13分)设A (x 1,y 1),B (x 2,y 2)是椭圆y 2a 2+x 2b 2=1(a >b >0)上两点.已知m =⎝ ⎛⎭⎪⎫x 1b ,y 1a ,n =⎝ ⎛⎭⎪⎫x 2b ,y 2a ,若m ·n =0且椭圆的离心率e =32,短轴长为2,O 为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c )(c 为半焦距),求直线AB 的斜率k ;(3)试问△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 分析:(1)由e =ca =32及b =1可求a .(2)设出AB 的直线方程,代入椭圆方程,结合根与系数的关系及条件m ·n =0,解出k 值.(3)应分k AB 不存在及k AB 存在两种情况讨论求解.解:(1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =32.∴a =2,c = 3.椭圆的方程为y 24+x 2=1. (2)由题意,设AB 的方程为y =kx +3,由⎩⎪⎨⎪⎧y =kx +3,y 24+x 2=1,整理得(k 2+4)x 2+23kx -1=0.∴x 1+x 2=-23k k 2+4,x 1x 2=-1k 2+4.由已知m ·n =0得:x 1x 2b 2+y 1y 2a 2=x 1x 2+14(kx 1+3)(kx 2+3) =⎝ ⎛⎭⎪⎫1+k 24x 1x 2+34k (x 1+x 2)+34=k 2+44⎝ ⎛⎭⎪⎫-1k 2+4+34k ·-23k k 2+4+34=0.解得k =± 2. (3)①当直线AB 斜率不存在时,即x 1=x 2,y 1=-y 2,由m ·n =0得x 21-y 214=0⇒y 21=4x 21.又A (x 1,y 1)在椭圆上,所以x 21+4x 214=1,∴|x 1|=22,|y 1|=2,S =12|x 1||y 1-y 2|=1=12|x 1|·2|y 1|=1,所以三角形面积为定值.②当直线AB 斜率存在时,设AB 的方程为y =kx +b ,代入y 24+x 2=1,得:(k 2+4)x 2+2kbx +b 2-4=0.所以x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,x 1x 2+y 1y 24=0⇔x 1x 2+kx 1+bkx 2+b4=0,代入整理得2b 2-k 2=4,∴S =12·|b |1+k 2|AB |=12|b |x 1+x 22-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b22|b |=1. 所以△ABC 的面积为定值.点评:本题是平面向量与解析几何的交汇题,综合考查了椭圆方程,离心率,定值等知识与方法,当直线位置不确定时,应注意分斜率存在与斜率不存在讨论.。

相关文档
最新文档