高中学业水平考试复习必背数学公式
高中数学必背公式大全

高中数学必背公式大全一、代数部分。
1. 二项式定理。
(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。
2. 一元二次方程求根公式。
ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。
3. 等差数列通项公式。
an = a₁ + (n-1)d。
4. 等比数列通项公式。
an = a₁ q^(n-1)。
5. 两点间距离公式。
两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。
6. 直线斜率公式。
直线y=kx+b的斜率为k。
7. 二次函数顶点坐标。
二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。
二、几何部分。
1. 直角三角形勾股定理。
a² + b² = c²。
2. 直角三角形中正弦、余弦、正切公式。
sinA = a/c, cosA = b/c, tanA = a/b。
3. 三角形面积公式。
三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。
4. 圆周长和面积公式。
圆周长C=2πr, 圆面积S=πr²。
5. 正多边形内角和公式。
正n边形内角和为(n-2) 180°。
6. 圆锥、圆柱、球体积公式。
圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。
三、概率与统计部分。
1. 随机事件概率公式。
P(A) = n(A)/n(S)。
2. 期望公式。
E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。
3. 正态分布概率公式。
P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。
高二数学学业水平考试必背公式

高二数学学业水平考试必背公式一、二次函数y = ax 2 +bx + c 的性质1、顶点坐标公式:24,24b ac b a a ⎛⎫-- ⎪⎝⎭24b ac =- 对称轴:2b x a=- 最大(小)值:244ac b a -2、若一元二次方程()002≠=++a c bx ax 中,两根为1x ,2x 。
则abx x -=+21,12c x x a ⋅=。
二、指数与指数函数1、幂的运算法则: (1)m n m na a a+⋅= (2)m n m na a a-÷= (3)()nm mn a a = (4)()n n n ab a b =(5) nnn a a b b ⎛⎫= ⎪⎝⎭(6)01a = (a ≠0) (7) 1n n a a-= (8)n ma =2、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)2三、对数与对数函数1、对数的运算法则:(1)a b = N ⇔b = log a N (2)log a 1 = 0 (3)log a a = 1 (4)log a Na N=(5)log a (MN ) = log a M + log a N (6)log a (NM ) = log a M — log a N(7)log log n ma a mb b n = (8)换底公式:log a N = a Nb b log log (9)log a N = a Nlog 12、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)四、幂函数:一般地,函数y x α=叫做幂函数.其中x 为自变量,α为常数.3【零点存在性原理】如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。
高中数学会考公式表

高中数学会考公式表1. 代数公式1. 二次方程求根公式:- 给定 $ax^2 + bx + c = 0$,则 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$2. 一元二次不等式求解公式:- 给定 $ax^2 + bx + c > 0$,则 $x \in (-\infty, x_1) \cup (x_2,+\infty)$,其中 $x_1$ 和 $x_2$ 分别是方程 $ax^2 + bx + c = 0$ 的两个根。
2. 几何公式1. 长方形面积公式:- 长方形的面积 $A$ 等于长度 $l$ 乘以宽度 $w$,即 $A = lw$。
2. 圆的面积公式:- 给定圆的半径 $r$,它的面积 $A$ 等于 $\pi r^2$。
3. 三角形的面积公式:- 给定三角形的底边长 $b$ 和高 $h$,它的面积 $A$ 等于$\frac{1}{2}bh$。
3. 概率公式1. 组合公式:- 给定整数 $n$ 和 $k$,计算组合数 $C(n, k)$ 的公式为 $C(n, k) = \frac{n!}{k!(n-k)!}$,其中 $n!$ 表示 $n$ 的阶乘。
2. 条件概率公式:- 对于事件 $A$ 和事件 $B$,条件概率 $P(A|B)$ 表示在事件$B$ 发生的条件下事件 $A$ 发生的概率,计算公式为 $P(A|B) =\frac{P(A \cap B)}{P(B)}$。
> 注意:以上公式仅适用于一般情况,特定问题可能需要特殊的公式或方法来求解。
在实际应用中,应根据具体情况选择合适的公式和方法进行计算和求解。
以上是高中数学会考常用的一些公式,希望对你有帮助!。
高中数学会考必修公式总结大全

高中数学会考必修公式总结大全作为高中数学的重要组成部分,会考必修公式的掌握对于学生的数学成绩至关重要。
本文将总结高中数学会考必修的公式,帮助同学们更好地理解和掌握这些知识点。
一、有理数运算公式1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 减法法则:a-b-c=a-(b+c)4. 乘法交换律:ab=ba5. 乘法结合律:(ab)c=a(bc)6. 乘法分配律:(a+b)c=ac+bc二、数列求和公式1. 等差数列求和:Sn=(a1+an)n/2或Sn=n(a1+an)/22. 等比数列求和:Sn=a1(1-q^n)/(1-q)或Sn=A1/(1-q)+An/(1-q)三、基本不等式公式1. 平均值不等式:a+b≥2√ab(当且仅当a=b时等号成立)2. 海伦-秦九韶公式:√(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2四、几何公式1. 两点之间的距离公式:点A(x1,y1),B(x2,y2),则AB的长度为|AB|=√[(x2-x1)²+(y2-y1)²]2. 向量加法、减法、数乘运算公式:(1)a=(x,y),b=(x',y')→a+b=(x+x',y+y');(2)(c,d)+a=(c+x,d+y);(3)λa=(λx,λy);(4)(a-b)·i=x-y,(a-b)·j=xj+yj;3. 圆的方程:圆的一般方程为(x-a)²+(y-b)²=r²,其中圆心坐标为(a,b),半径为r;4. 直线与圆的位置关系判断公式:d<r,则直线与圆相交;d=r,则直线与圆相切;d>r,则直线与圆相离。
五、三角函数公式高中数学会考中,三角函数是非常重要的一部分内容。
以下是一些常见的三角函数公式:1. 正弦函数(sin):y=sinx;余弦函数(cos):y=cosx;正切函数(tan):y=tanx。
高中必背的数学公式(完整归纳)

高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
高中数学学业水平考试必备公式

一、1、定义域:〔1〕根号: 〔2〕分母: 〔3〕对数: 2、对数与指数互换:725log 8x a =⇔=⇔()a b a b a b x x x x x =÷==3、奇函数:f(x)与f(-x)_____ 偶函数:f(x)与f(-x)_____二、1、诱导公式:sin ()πα+= cos ()πα+= tan ()πα+=sin () πα-= cos () πα-= tan () πα-=sin ()2πα+= cos ()2πα+=sin ()2πα-= cos ()2πα-= sin 2) (πα+= cos 2) (πα+= tan 2) (πα+=sin (2)πα-= cos (2)πα-= tan (2)πα-= sin ( )α-= cos ( )α-= tan ( )α-= 2、两角和与差公式: Sin: Cos: Tan:3、二倍角: sin2α=cos2α= = = tan2α=4、正弦定理: 余弦定理:log log log log a a a a M N M N +=-=6、sin()y A x ωϕ=+的周期是: cos()y A x ωϕ=+的周期是:tan()y A x ωϕ=+的周期是:7、同角三角函数关系:〔1〕 〔2〕三、等差数列通项公式: 前n 项和公式: 等差中项:〔a,b,c 〕等比数列通项公式: 前n 项和公式: 等比中项:〔a,b,c 〕四、直线:1.〔k 与倾斜角〕k= 两点的斜率公式k=2.3.直线Ax+By+C=0的斜率:4.点到直线距离公式:5.平行线间的距离公式:6.圆的标准方程: 圆心: 半径:7.圆的一般方程: 〔方程表示圆的条件: 〕 圆心: 半径:8.直线与圆相切,则:9.直线与圆相交的弦长公式:12//l l ⇔12l l ⊥⇔220x yDx Ey F ++++=公式答案:一、1、定义域:〔1〕根号:大于或等于0 〔2〕分母:不等于0 〔3〕对数:真数>0 2、对数与指数互换:2725log 5log 878x ax a =⇔==⇔=()a b a b a b a b a b a bx x x x x x x x +-=÷== 3、奇函数:f(x)与f(-x)_相反____ 偶函数:f(x)与f(-x)__相同___二、1、诱导公式:sin ()πα+= —sin α cos ()πα+=—cos α tan ()πα+=tan αsin () πα-=sin α cos () πα-=—cos α tan () πα-=—tan αsin ()2πα+=cos α cos ()2πα+=—sin αsin ()2πα-= cos α cos ()2πα-= sin α sin 2) (πα+=sin α cos 2) (πα+=cos α tan 2) (πα+= tan αsin (2)πα-=sin α cos (2)πα-=cos α tan (2)πα-= tan α sin ( )α-= —sin α cos ( )α-=cos α tan ( )α-=—tan α 2、两角和与差公式:()()()sin sin cos cos sin cos cos cos sin sin tan tan tan 1tan tan αβαβαβαβαβαβαβαβαβ±=±±=±±=3、二倍角:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=-4、正弦定理:2sin sin sin a b cR A B C===〔R 为外接圆半径〕余弦定理:log log log ()log log log a a a a a aM N MN M M N N+=-=2222222222cos 2cos 2cos a b c bc A b a c ac Bc a b ab C=+-=+-=+-6、sin()y A x ωϕ=+的周期是:T ω=cos()y A x ωϕ=+的周期是:T ω=tan()y A x ωϕ=+的周期是:T πω=7、同角三角函数关系:〔1〕22sin cos 1αα+= 〔2〕sin tan cos ααα=三、等差数列通项公式: 前n 项和公式: 等差中项:〔a,b,c 〕 :2b=a+c等比数列通项公式: 前n 项和公式: 等比中项:〔a,b,c 〕:四、直线:1.〔k 与倾斜角〕k=两点的斜率公式k= 2.3.直线Ax+By+C=0的斜率:4.点到直线距离公式:5.平行线间的距离公式:6.圆的标准方程:圆心:〔a,b 〕 半径:r 7.圆的一般方程:圆心: 半径:8.直线与圆相切,则:d=r 〔d 为圆心到直线距离〕 9.直线与圆相交的弦长公式:2121y y x x --1(1)n a a n d =+-11()(1)22n n a a n n n d S na +-==+11n n a a q -=111,1(1),111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩2b a c =tan α1212//l l k k ⇔=12121l l k k ⊥⇔=-d =Ay =-d =222()()x a y b r -+-=22220(40)x y Dx Ey F D E F ++++=+->(,)22D E --2r =AB =。
高二数学会考必背公式知识点

高二数学会考必背公式知识点在高中数学的学习中,必背公式是提高解题效率和准确性的基础。
掌握了这些公式,能够快速、准确地解决各类数学问题。
以下是高二数学会考必背公式知识点:1. 二次函数相关公式:- 一般式:$y = ax^2 + bx + c$- 根的判别式:$\Delta = b^2 - 4ac$- 顶点坐标:$(h, k)$,其中$h = -\frac{b}{2a}$,$k = f(h) =\frac{\Delta}{4a}$- 对称轴:$x = -\frac{b}{2a}$- 平移变换:$y = a(x - h)^2 + k$2. 三角函数相关公式:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正切定理:$\tan A = \frac{\sin A}{\cos A}$- 三角和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3. 平面几何相关公式:- 任意三角形面积公式:$S = \frac{1}{2} \cdot a \cdot b \cdot \sin C$- 直角三角形勾股定理:$c^2 = a^2 + b^2$- 中线定理:三角形三条中线交于一点且平分彼此的长度- 高线定理:三角形三条高线交于一点,且交点到三边的距离相等4. 概率与统计相关公式:- 排列公式:$A_n^m = \frac{n!}{(n-m)!}$- 组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$- 事件的概率:$P(A) = \frac{N(A)}{N(S)}$- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 独立事件概率:$P(A \cap B) = P(A) \cdot P(B)$5. 数列与级数相关公式:- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等差数列前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$- 等差数列求和公式:$S_n = \frac{n}{2}(2a_1 + (n-1)d)$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 等比数列前n项和公式(当$|q| < 1$):$S_n = a_1 \cdot \frac{1-q^n}{1-q}$以上是高二数学会考必背的公式知识点,掌握并熟练运用这些公式,能够在数学问题的解答中更加得心应手。
高中必背88个数学公式

高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。
2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。
3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。
4. 长方形面积公式:长方形的面积等于长乘以宽。
5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。
6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。
7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。
8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。
9. 圆周长公式:圆的周长等于直径乘以圆周率。
10. 球体表面积公式:球体的表面积等于四倍的圆面积。
11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。
12. 一次函数方程: y = kx + b。
13. 二次函数方程: y = ax² + bx + c。
14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。
15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。
16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。
17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。
18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。
19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。
20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。
21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中学业水平考试复习必背数学公式
必修一
1.★元素与集合的关系
如果a 是集合A 的元素,就说a 属于集合A ,记作: ;
如果a 不是集合A 的元素,就说a 不属于集合A ,记作: .
过关题:【2014年湖南学考真题】已知元素{0,1,2,3}a ∈,且{0,1,2}a ∉,则a 的值为( )
A.0
B.1
C.2
D.3
2. ★集合的运算:A B =I ;A B =U ; 补集:U C A = . 过关题1:【2012年湖南学考真题】已知集合{1,0,2}A =-,{,3}B x =,若{2}A B =I , 则x 的值为( )
A .3
B .2
C .0
D .-1
过关题2:【2013年湖南学考真题】已知集合{0,1,2}M =,{}N x =,若{0,1,2,3}M N =U , 则x 的值为( )
A .3
B .2
C .1
D .0
3.子集的个数问题:若集合A 有n 个元素,则集合A 有 个子集,有 个真子集.
4.★函数定义域:① ;② ;③ .
过关题1:【2015年湖南学考真题】函数)3lg()(-=x x f 的定义域为____________..
过关题2:函数()f x =的定义域是( ) A. ()1,+∞ B. [)1,2(2,)+∞U C. [)1,2 D. [)1,+∞
5.★奇偶性
(1)奇函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有 ,那么函数 ()f x 叫奇函数.
(2)偶函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有 ,那么函数 ()f x 叫偶函数.
(3)奇(偶)函数图像的特点:奇函数图象关于原点对称;偶函数图象关于y 对称.
过关题1:【2010年湖南学考真题】下列函数中,为偶函数的是( )
A. ()f x x =
B. 1()f x x
= C. 2()f x x = D. ()sin f x x = 过关题2:下列四个函数中,在区间),0(+∞上为增函数的是( )
A. x y -=1
B. x x y -=2
C. 11+-=x y
D. ||x y -= 6.★函数的单调性 (1) 增函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是增函数, 区间D 称为函数()f x 的单调 区间.
(2)减函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有 ,那么就说函数()f x 在区间D 上是减函数, 区间D 称为函数()f x 的单调 区间.
(3)一次函数()0y kx b k =+≠,
当0k >时,y 随x 的增大而 ,当0k <时,y 随x 的增大而 ;
(4)反比例函数()0k y k x
=≠ , 当0k >时,在每个区间内y 随x 的增大而 ,当0k <时,在每个区间内y 随x 的增大而 ;
(5)二次函数()20y ax bx c a =++≠,
当0a >时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 . 当0a <时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 .
(6)指数函数(0,1)x y a a a =>≠
当1a >时,y 随x 的增大而 ,当01a <<时,y 随x 的增大而 .
(7)对数函数log (0,1)a y x a a =>≠
当1a >时,y 随x 的增大而 ,当01a <<时,y 随x 的增大而 .
过关题1:【2011年湖南学考真题】在区间(0,]+∞为增函数的是( )
A .()f x x =-
B .()1f x x =
C .()lg f x x =
D .1()2x
f x ⎛⎫= ⎪⎝⎭ 过关题2:【2014年湖南学考真题】已知函数
,[0,2],()4,(2,4].x x f x x x
∈⎧⎪=⎨∈⎪⎩ (1)画出函数()f x 的大致图像;。