第8章 无穷级数练习题解析

合集下载

第8章无穷级数练习题解析

第8章无穷级数练习题解析

第8章⽆穷级数练习题解析第8章⽆穷级数练习题习题8.11.判断题(对的划“√”,错的划“×”)(1)级数部分和的极限已求出,则级数收敛.若部分和的极限不存在,则级数发散.()(2)若级数∑∞=±1)(n n nv u收敛,则级数∑∞=1n n u 与级数∑∞=1n n v 都收敛.()(3)改变级数的有限项不会改变级数的和.()(4)当0lim =∞→n n u 时,级数∑∞=1n nu不⼀定收敛.()2.⽤级数的“∑”形式填空(1),!3!2!1 +++ 即.(2),7151311 +-+-即.(3)+++4ln 313ln 212ln 1即.(4),63524101 +++++-即. 3.判断下列各级数的收敛性,并求收敛级数的和(1) -+-3322747474.(2) +++πππ553321.(5)∑∞=-+1)1(nn n.4.级数∑∞=+1)31 21(nnn是否收敛?若收敛,求其和.5.制造灯泡需要抽去玻璃泡中的空⽓,设灯泡中原有空⽓的质量m,在多次抽⽓时,每⼀次抽出的空⽓质量为上次剩余质量的20%,连续不断地抽,抽出的空⽓质量最多是多少?习题8.21.⽤“收敛”或“发散”填空(1)∑∞=13 1n n.()(2)∑∞=122.()(3)∑∞=1!n n.()(4)∑∞=12.11nn.()2.判断下列正项级数的收敛性(1)∑∞=+11 9.01n n.(2)∑∞=++12658nnn.(3)∑∞=+.3.判断下列级数是否收敛(1)∑∞=--1)1 (nnnπ. (2) ∑∞=--1311)1(nnn.(3) ∑∞=-122sin)1(.(4) ∑∞=-+12)1(1nnn.4.判断下列级数的收敛性(1)∑∞=++1)2(1n n n n .(2)∑∞=??+11n nn n .(3)∑∞=--1131arcsin )1(n n n .(4)∑∞=+-1=12n n n.(6)∑∞=166n n n.(7))0,(,31211>++++++b a b a b a b a .(8)∑∞=+++1) 3)(2)(1(n n n n n.(9) ++++++nn 134232.(10) +-+-2227151311.习题8.31.求下列幂级数的收敛区间(1) ------n x x x x n 3232.(2) -++++n nnx x x x 3333233322.(3) +?++?+?+?+nnn x x x x x 33433323443322.(4) ++++++nnx n x x x 3322321.(5) +??++??+?+)2(64264242232n x x x x n.(6)∑∞=++-11=--122212n n nx n .(8) ∑∞=?+13)1(n nn n x . (9) ∑∑∞=∞=++-112212)1(n n n n n n n x n x .(10)??∑∑∞=∞=11!n n n n n x n x .2.利⽤逐项求导数或逐项求积分或逐项相乘的⽅法,求下列级数在收敛区间上的和函数(1)∑∞=--122212n n nx n .(2) ++++753753x x x x .(3) +++13951392x x x .(4) +?+?+?433221432x x x .(5) +?+?+?+?3254433221x x x .(6)∑∑∞=∞=11!n n n n n x n x .习题8.41.将下列函数展开为x 的幂级数,并指出其收敛域(1)xe 2.(2))1,0(≠>a a a x 且.(3)2sin x.(4))0()ln(>+a x a .(5)-=)2cos 1(21sin sin 2+xt dt41.(8)?x dt tt 0sin .(9)?-xt dt e22.2.将下列函数展开为x 的幂级数,并指出其收敛半径(1))0(22>+a x a .(2)x arcsin .(3))1ln(2x x ++.3.⽤级数的展开式,近似计算下列各值(1)e (取前五项).(2)521?(取前三项).(3)?18sin (取前两项).4.计算下列积分的近似值(计算前三项)(1)212dx e x .(2)?10sin dx xx.(3)?11.0dx xe x.习题8.5(2)设周期函数)(2)(ππ<≤-=x xx f ,则它的傅⾥叶系数 =0a ,=n a , =1b , =nb .(3)⽤周期为π2的函数)(x f 的傅⾥叶系数公式,求周期为l 的函数)(t g 的傅⾥叶级数,应作代换=t .(4)周期为l 的函数)(x f 的傅⾥叶系数=0a ,=n a ,=n b .2.把下列周期函数展开成傅⾥叶级数(1)<≤<≤-=ππt t t u 0100)(.(2)<≤+<≤--=ππx x x x x f 0,10,1)(.(3)<≤-<≤-+=ππππt t t t t f 0,0,)(.(4))(2cos)(ππ<≤-=x xx f .(5)??<≤<≤--<≤--=21,11112,1)(x x x x x f .(6)2121,1)(2<≤--=x x x f .3.将函数)11()(≤≤-=x e x f x展开成傅⽒级数.4.将函数)0()(ππ≤≤-=x x x f 分别展开成正弦级数和余弦级数.5.将周期为4的单向窄脉冲信号,展开成傅⾥叶级数的复数形式,其表达式<≤<<--≤≤-=221,02121,211.判断题(对的划“√”,错的划“×”)(1)若,0lim =∞→n n u 则级数∑∞=1n nu收敛.()(2)若级数∑∞=1n nu发散,则级数∑∞=≠10(n nc cu为常数)也发散.()(3)改变级数的有限多个项,级数的敛散性不变.()(4)若级数∑∞=1n nu收敛,则∑∞=-+1212)(n n n u u收敛.()(5)若)(x f 是周期函数为π2的函数,且满⾜收敛定理的条件,则在任意点x 处)(x f 的傅⽒级数收敛于)(x f .()2.⽤“收敛”或“发散”填空 (1)若级数∑∞u收敛,则∑∞=+1)001.0(n nu.(2)级数∞=1n (3)当10<=-+111n nn aa . (4)级数∞=1n n (5)级数∞=n3.单项选择题(1)下列级数中,收敛的是()(A ) ∑∞=--11)1(n n n ;(B ) ∑∞=+-1232)1(n n n n;(C ) ∑∞=+115n n ;(D )∑∞=-+1231n n n .(2)下列级数中,绝对收敛的是()(A )∑∞=-1)1(n n n ;(B )∑∞=++12123n n n ;(C )∑∞=-??? ??-1132)1(n nn ;(D )∑∞=-+-11)1ln()1(n n n . (3)幂级数∑∞=1n nnx 的收敛区间是()(A )[]1,1-;(B )[)1,1-;(C )(]1,1-;(D )()1,1-. (4)函数2)(x e x f -=展开成x 的幂级数是()(A )∑∞=12!n n n x ;(B )∑∞=-12!)1(n n n n x ;(C )∑∞=1!n n n x ;(D )∑∞=--11!)1(n nn n x .(5) 设)(x f 的周期为π2,它在[)ππ,-的表达式),(,2)(ππ<≤-=x x x f 则)(x f 的傅⽒展开式为()(A )∑∞=+-11sin )1(2n n nx n ;(B )∑∞=+-11sin )1(4n n nx n ;(C )),)12(,(sin )1(411Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π;(D )),)12(,(sin )1(211Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π.4.判别下列各级数的敛散性(1))0(1112>+∑∞=a a n .(2)∑∞=+112tann n n π.(3)∑∞=+11tann n n π. (4)∑∞=1sincos n nn ππ.(5) ∑∞=+112!n n n . (6) ∑∞=--1ln )1(n n n n .(B )组1.⽤已知函数的展开式,将下列函数展开成x 的幂级数(1)x e x x f -=3)(.(2)x x f 2cos )(2=.(3)211)(x x f -=.(4)321)(2--=x x x f .2.⽤已知函数的展开式,将下列函数展开成2-x 的幂级数(1)x x f -=41)(.(2)x x f ln )(=.3.将下列周期函数展开成傅⾥叶级数(1))(sin )(ππ<≤-=x ax x f (a 为⾮整数的常数).(2))()(22πππ<≤--=x x x f .(3) )()(3ππ<≤-=x x x f .4.把周期函数<≤<≤--=22,2)(x x xx f 展开成傅⽒级数.5.将≤≤-<≤-=24,440,)(T t T T T x t t q 分别展开成正弦型级数和余弦型级数.6.将)210(1)(2≤≤-=x x x f 分别展开成正弦型级数和余弦型级数.第8题图7.把函数≤≤<≤--=ππππx x x f 0,40,4)(展开成傅⽒级数,并由它导出(1)+-+-=71513114π.(2) ++--+-=131111917151163π.8.将下⾯波形的函数展开成傅⾥叶级数。

无穷级数复习题

无穷级数复习题

无穷级数复习题无穷级数是数学中一个重要的概念,它在数学分析、微积分以及其他数学领域中有着广泛的应用。

在本文中,我们将复习一些关于无穷级数的基本概念和性质,并通过一些例题来加深对这一概念的理解。

首先,我们来回顾一下无穷级数的定义。

无穷级数是由一系列无穷多个数相加而得到的数列。

通常表示为:S = a1 + a2 + a3 + ...其中,a1、a2、a3等为数列的项。

如果这个无穷级数的部分和(也称为部分和数列)Sn = a1 + a2 + ... + an在n趋向于无穷大时存在有限的极限L,那么我们说这个无穷级数收敛,记作S = L。

反之,如果部分和数列Sn在n趋向于无穷大时不存在有限的极限,那么我们说这个无穷级数发散。

接下来,我们来看几个例题,通过计算来判断这些无穷级数是收敛还是发散。

例题1:考虑无穷级数S = 1 + 1/2 + 1/4 + 1/8 + ...这个级数是一个几何级数,公比为1/2。

我们知道,当公比的绝对值小于1时,几何级数收敛。

因此,这个级数是收敛的。

例题2:考虑无穷级数S = 1 + 2 + 3 + 4 + ...这个级数是一个等差级数,公差为1。

我们知道,等差级数只有在公差小于1时才能收敛。

因此,这个级数是发散的。

例题3:考虑无穷级数S = 1 - 1 + 1 - 1 + ...这个级数是一个交错级数,每一项的符号交替出现。

对于交错级数,我们可以使用交错级数判别法来判断其收敛性。

根据该定理,如果交错级数的绝对值数列是一个单调递减趋于零的数列,那么这个交错级数收敛。

在这个例子中,绝对值数列为1, 1, 1, ...,显然不满足单调递减趋于零的条件,因此这个级数是发散的。

通过以上的例题,我们可以看到,判断一个无穷级数的收敛性需要使用不同的方法和定理。

在实际应用中,我们经常会遇到一些特殊的无穷级数,比如幂级数、傅里叶级数等,它们在数学和物理等领域中有着重要的应用。

幂级数是一个形如S = a0 + a1x + a2x^2 + ... + anx^n + ...的级数,其中a0、a1、a2等为常数,x为变量。

无穷级数习题课含解答

无穷级数习题课含解答

无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。

高等数学习题精讲之8无穷级数

高等数学习题精讲之8无穷级数

第8章 无 穷 级 数§8. 1 常数项级数1.级数的概念(1)数列{}n u 的各项依次相加所得的表达式称为无穷级数121nn n uu u u ∞==++++∑(2)121nn in i S uu u u ===+++∑,称为级数1n n u ∞=∑的前n 项部分和。

(3)若lim n n S S →∞=,则1nn u∞=∑收敛,且1nn uS ∞==∑;若n n S ∞→lim 不存在,则1n n u ∞=∑发散。

收敛原理:1nn u∞=∑收敛 ⇒ 0,0N ε∀>∃>,使当n N >,对任何自然数p 有12n n n p a a a ε+++++<2. 级数的性质 (1)若1nn uA ∞==∑,1n n v B ∞==∑,则()111n n n n n n n u v u v A B αβαβαβ∞∞∞===±=±=±∑∑∑(2)加上或去掉有限项不影响级数的敛散性 (3)收敛级数加括号后仍收敛于原级数的和 (4)若∑∞=1n nu收敛,则必有0lim =∞→n n u注意:(1)∑∞=1n nu与∑∞=1n nku具有相同敛散性;(2)若∑∞=1n nu收敛,∑∞=1n nv发散,则()∑∞=±1n n nv u发散;(3)若∑∞=1n nu,∑∞=1n nv均发散,则()∑∞=±1n n nv u敛散性不确定;(4)若加括号后级数发散,则原级数发散;若加括号后级数收敛,则原级数敛散性不确定;(5)级数收敛的必要条件常用来判别级数发散。

3. 正项级数审敛法(设∑∞=1n nu与∑∞=1n nv为正项级数,0n v ≠)(1)正项级数∑∞=1n nu收敛的充分必要条件是其部分和序列{}n S 有界。

(2)比较判别法:若n n u kv ≤(0k >),则1111n n n n n nn n v u u v ∞∞==∞∞==⎧⇒⎪⎪⎨⎪⇒⎪⎩∑∑∑∑收敛收敛发散发散比较法的极限形式:若lim nn n u l v →∞=,则 00l l ≤<+∞⎧⎨<≤+∞⎩收敛性相同发散性相同注意:(1)若分母,分子关于n 的最高次数分别为q p ,,则∑∞=1n n u ⎩⎨⎧≤->-11q p q p 发散收敛;(2)若当∞→n 时,n n v u ~,则∑∞=1n nu与∑∞=1n nv具有相同敛散性;(3)当∞→n 时,ln ,,,!,annn n a n n (1)a >,后者较前者趋于+∞的速度快 两个重要级数:几何级数∑∞=-⎩⎨⎧≥<=1111n n q q aq发散收敛;p -级数 1111p n p n p ∞=>⎧=⎨≤⎩∑收敛发散(3)比值/根值判别法:11lim 11n n n u u l +→∞⎧⎫<⎧⎪⎪⎪=>⎨⎪=⎩收敛发散失效(4)积分判别法:若()f x 在[)1,+∞上非负单调连续,则1()n f n ∞=∑与1()f x dx +∞⎰具有相同敛散性4. 任意项级数(1)交错级数判别法:若()111n n n u ∞-=-∑()0n u >满足1lim 0n n nn u u u +→∞≥⎧⎪⎨=⎪⎩,则()111n n n u ∞-=-∑收敛,且其和1u S ≤,其余和1+≤n n u R常用n u 递减的判别:11n nu u +<;10n n u u +->;()n u f n =,()0f x '< (2)任意项级数判别法(n u 符号不定)1111,,n n n n n n n n u u u u ∞∞==∞∞==⎧⎪⎪⎨⎪⎪⎩∑∑∑∑若收敛,则收敛 称为绝对收敛若发散,而收敛 称为条件收敛 定理表明任意项级数的收敛问题可以转化为正项级数的问题,因此可以用正项级数的判别法判定级数是否绝对收敛。

第8章 无穷级数--答案

第8章 无穷级数--答案

收敛,

∑u
n =1

2 n

∑v
n =1

2
n
都收敛.
(C)若正项级数

∑u
n =1
n
发散,则 un ≥
1 . n
(D)若级数
∑ un 收敛,且 un ≥ vn ( n = 1, 2,
n =1
) ,则 ∑ vn 2 也收敛.
n =1

解,选 A, ( un + vn ) = un + 2un vn + vn ≤ 2(un + vn ) ,因为
1 1+ x ⎧ , x <1 ⎪−1 + ln 由于 S1 ( 0 ) = 0 ,故 S1 ( x ) = ⎨ 2x 1− x ⎪0, x=0 ⎩ 1 ⎧ 1 1+ x − , x <1 ⎪ ln S ( x ) = S1 ( x ) − S2 ( x ) = ⎨ 2 x 1 − x 1 − x 2 ⎪0, x=0 ⎩
7. (95)将函数 f ( x ) = ln 1 − x − 2 x 解: f ( x ) = ln 1 − x − 2 x
(
2
) 展开成 x 的幂级数,并指出其收敛区间。
(
2
) = ln (1 + x ) + ln (1 − 2 x )
4
ln (1 + x ) = ∑ ( −1)
n=0 ∞

n
第8章 一、填空选择 1. (91)设 0 ≤ an < (A)
无穷级数 (答案)
1 ( n = 1, 2, n

) ,则下列级数中肯定收敛的是(

高等数学课后习题及答案(共11单元)08无穷级数

高等数学课后习题及答案(共11单元)08无穷级数

习题9-11.写出下列级数的前五项:(1) ∑∞=++1211n n n; (2) ∑∞=⋅-12)12(1n nn ; (3) ∑∞=-1)1(n nn ; (4)∑∞=1n nne.解 (1)第一项为1,第二项为53,第三项为104,第四项为175,第五项为266。

(2)第一项为21,第二项为121,第三项为401,第四项为1121,第五项为2881。

(3)第一项为-1,第二项为21,第三项为31-,第四项为41,第五项为51-。

(4)第一项为e ,第二项为22e ,第三项为33e ,第四项为44e ,第五项为55e 。

2.写出下列级数的一般项:(1) 1111357++++… (2) 1112ln 23ln 34ln 4+++…(3) 11234024567-++++++…(4)2345625101726a a a a a -+-+-…解 (1) 121-=n u n (2)()()1ln 11++=n n u n(3)12+-=n n u n (4)()11211-+-=+n a u n n n3.根据级数收敛与发散的定义,判别下列级数的敛散性,如果收敛,并求其和. (1)∑∞=12n n ; (2)∑∞=+-1)12)(12(1n n n ; (3)∑∞=++-+1)122(n n n n .解:(1) 级数的部分和为()222-12-121-==+n nn S 因为 ()+∞=-=+∞→∞→22lim lim 1n n n n S所以级数∑∞=12n n发散.(2)因为()()⎪⎭⎫⎝⎛+=+-121-1-212112121n n n n所以级数的部分和为 ()()12121751531311+-++⨯+⨯+⨯=n n S n⎪⎭⎫⎝⎛+++++=121-1-2171-5151-3131-121n n ⎪⎭⎫ ⎝⎛+=121-121n 12+=n n而 21121lim12limlim =+=+=∞→∞→∞→nn nS n n n n 所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为21.(3)因为()()()n n n n n n n -+-+-+=+++11212-2所以级数的部分和为()()n n n S n ++++++++=12-2232-4122-3 )(()()()()()nn n n -11-22-3-3-41-2-2-3+-+++++= )(()()1212--+-+=n n()()12121--+++=n n而 ()()2-112lim121limlim =--+++=∞→∞→∞→n n n n n n s所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为2-1. 4.判别下列级数的敛散性,若收敛,并求其和. (1) 1111124816-+-+-… (2) 234e e e e -+-+… (3) 2233121212()()()232323++++++… (4) 231ln 3ln 3ln 3++++ (5)∑∞=+1)11ln(n n n(6)∑∞=1sinn nn π(7) 231sin1sin 1sin 1-+-+ (8)++-++⋅+⋅+⋅)15)(45(1161111161611n n解:(1) 级数的部分和可写为∑=-⎪⎭⎫ ⎝⎛⨯-=nn n n n s 1142141因为∑∞=-1141n n 是41=q 的等比数列,收敛并且和为3441-11=.同理∑∞=⨯1421n n是41=q 的等比数列,收敛并且和为3241-1121=⨯. 根据级数性质,∑∞=-⎪⎭⎫⎝⎛⨯-1142141n n n 也收敛,其和为 ∑∞=-⎪⎭⎫ ⎝⎛⨯-1142141n n n =∑∞=-1141n n -∑∞=⨯1421n n=3232-34=(2) 级数的部分和可写为()()()()n n n nn nn n e e e ee e e e e ees 2222221212111111-+=-----=-=∑=- 因为 ()-∞=-+=∞→∞→n n n n e ees 211limlim所以根据定义,该级数发散。

第8章 无穷级数练习题解析

第8章 无穷级数练习题解析

第8章 无穷级数练习题习题8.11.判断题(对的划“√”,错的划“×”)(1)级数部分和的极限已求出,则级数收敛.若部分和的极限不存在,则级数发散. ( )(2)若级数∑∞=±1)(n n nv u收敛,则级数∑∞=1n n u 与级数∑∞=1n n v 都收敛.( ) (3)改变级数的有限项不会改变级数的和.( ) (4)当0lim =∞→n n u 时,级数∑∞=1n nu不一定收敛.( )2.用级数的“∑”形式填空(1),!3!2!1 +++ 即 . (2),7151311 +-+-即 . (3)+++4ln 313ln 212ln 1即 . (4),63524101 +++++-即 . 3.判断下列各级数的收敛性,并求收敛级数的和(1) -+-3322747474. (2) +++πππ543ln ln ln .(3) +⋅+⋅+⋅751531311. (4) ++++7453321.(5)∑∞=-+1)1(nn n.4.级数∑∞=+1)31 21(nnn是否收敛?若收敛,求其和.5.制造灯泡需要抽去玻璃泡中的空气,设灯泡中原有空气的质量m,在多次抽气时,每一次抽出的空气质量为上次剩余质量的20%,连续不断地抽,抽出的空气质量最多是多少?习题8.21.用“收敛”或“发散”填空(1)∑∞=13 1n n.()(2)∑∞=1222lnnn.()(3)∑∞=1!n n.()(4)∑∞=12.11nn.()2.判断下列正项级数的收敛性(1)∑∞=+11 9.01n n.(2)∑∞=++12658nnn.(3)∑∞=+15 23n n.3.判断下列级数是否收敛(1)∑∞=--1)1 (nnnπ. (2) ∑∞=--1311)1(nnn.(3) ∑∞=-122sin)1(n nnn.(4) ∑∞=⎥⎦⎤⎢⎣⎡-+12)1(1nnn.4.判断下列级数的收敛性(1)∑∞=++1)2(1n n n n . (2)∑∞=⎪⎭⎫⎝⎛+11n nn n .(3)∑∞=--1131arcsin )1(n n n . (4)∑∞=+-1321)1(n n n n .(5)∑∞=12n n n. (6)∑∞=166n n n.(7))0,(,31211>++++++b a b a b a b a . (8)∑∞=+++1)3)(2)(1(n n n n n.(9) ++++++nn 134232. (10) +-+-2227151311.习题8.31.求下列幂级数的收敛区间(1) ------n x x x x n 3232. (2) -++++n nnx x x x 3333233322.(3) +⋅++⋅+⋅+⋅+nnn x x x x x 33433323443322.(4) ++++++nnx n x x x 3322321.(5) +⋅⋅++⋅⋅+⋅+)2(64264242232n x x x x n.(6)∑∞=++-11212)1(n n nn x . (7) ∑∞=--122212n n nx n .(8) ∑∞=⋅+13)1(n nn n x . (9) ∑∑∞=∞=++-112212)1(n n n n n n n x n x .(10) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∞=∞=11!n n n n n x n x .2.利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数(1)∑∞=--122212n n nx n . (2) ++++753753x x x x .(3) +++13951392x x x . (4) +⋅+⋅+⋅433221432x x x .(5) +⋅+⋅+⋅+⋅3254433221x x x . (6)⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛∑∑∞=∞=11!n n n n n x n x .习题8.41.将下列函数展开为x 的幂级数,并指出其收敛域 (1)xe 2. (2))1,0(≠>a a a x 且.(3)2sin x. (4))0()ln(>+a x a .(5)⎥⎦⎤⎢⎣⎡-=)2cos 1(21sin sin 22x x x 提示:. (6))1ln()1(x x ++.(7)⎰+xt dt41. (8)⎰x dt tt 0sin .(9)⎰-xt dt e22.2.将下列函数展开为x 的幂级数,并指出其收敛半径(1))0(22>+a x a . (2)x arcsin .(3))1ln(2x x ++.3.用级数的展开式,近似计算下列各值(1)e (取前五项). (2)521⋅(取前三项).(3)︒18sin (取前两项).4.计算下列积分的近似值(计算前三项)(1)⎰212dx e x . (2)⎰10sin dx xx.(3)⎰11.0dx xe x.习题8.51.填空(1)若)(x f 在[]ππ,-上满足收敛定理的条件,则在连续点0x 处它的傅里叶级数与)(0x f .(2)设周期函数)(2)(ππ<≤-=x xx f ,则它的傅里叶系数 =0a ,=n a , =1b , =nb .(3)用周期为π2的函数)(x f 的傅里叶系数公式,求周期为l 的函数)(t g 的傅里叶级数,应作代换=t .(4)周期为l 的函数)(x f 的傅里叶系数=0a ,=n a ,=n b .2.把下列周期函数展开成傅里叶级数 (1)⎩⎨⎧<≤<≤-=ππt t t u 0100)(. (2)⎩⎨⎧<≤+<≤--=ππx x x x x f 0,10,1)(.(3)⎩⎨⎧<≤-<≤-+=ππππt t t t t f 0,0,)(. (4))(2cos)(ππ<≤-=x xx f .(5)⎪⎩⎪⎨⎧<≤<≤--<≤--=21,11112,1)(x x x x x f . (6)2121,1)(2<≤--=x x x f .3.将函数)11()(≤≤-=x e x f x展开成傅氏级数.4.将函数)0()(ππ≤≤-=x x x f 分别展开成正弦级数和余弦级数.5.将周期为4的单向窄脉冲信号,展开成傅里叶级数的复数形式,其表达式⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<--≤≤-=221,02121,212,0)(t t e t t f .复习题八(A )组1.判断题(对的划“√”,错的划“×”) (1)若,0lim =∞→n n u 则级数∑∞=1n nu收敛.( )(2)若级数∑∞=1n nu发散,则级数∑∞=≠10(n nc cu为常数)也发散.( ) (3)改变级数的有限多个项,级数的敛散性不变.( ) (4)若级数∑∞=1n nu收敛,则∑∞=-+1212)(n n n u u收敛.( ) (5)若)(x f 是周期函数为π2的函数,且满足收敛定理的条件,则在任意点x 处)(x f 的傅氏级数收敛于)(x f .( )2.用“收敛”或“发散”填空 (1)若级数∑∞=1n nu收敛,则∑∞=+1)001.0(n nu.(2)级数∞=1n (3)当10<<a 时,级数∑∞=-+111n nn aa . (4)级数∞=1n n (5)级数∞=n3.单项选择题(1)下列级数中,收敛的是( )(A ) ∑∞=--11)1(n n n ; (B ) ∑∞=+-1232)1(n n n n; (C ) ∑∞=+115n n ; (D )∑∞=-+1231n n n .(2)下列级数中,绝对收敛的是( )(A )∑∞=-1)1(n n n ; (B )∑∞=++12123n n n ; (C )∑∞=-⎪⎭⎫ ⎝⎛-1132)1(n nn ; (D )∑∞=-+-11)1ln()1(n n n . (3)幂级数∑∞=1n nnx 的收敛区间是( )(A )[]1,1-; (B )[)1,1-; (C )(]1,1-; (D )()1,1-. (4)函数2)(x e x f -=展开成x 的幂级数是( )(A )∑∞=12!n n n x ; (B )∑∞=-12!)1(n n n n x ; (C )∑∞=1!n n n x ; (D )∑∞=--11!)1(n nn n x .(5) 设)(x f 的周期为π2,它在[)ππ,-的表达式),(,2)(ππ<≤-=x x x f 则)(x f 的傅氏展开式为( )(A )∑∞=+-11sin )1(2n n nx n ; (B )∑∞=+-11sin )1(4n n nx n ;(C )),)12(,(sin )1(411Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π;(D )),)12(,(sin )1(211Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π.4.判别下列各级数的敛散性(1))0(1112>+∑∞=a a n . (2)∑∞=+112tann n n π.(3)∑∞=+112tann n n π. (4)∑∞=1sincos n nn ππ.(5) ∑∞=+112!n n n . (6) ∑∞=--1ln )1(n n n n .(B ) 组1.用已知函数的展开式,将下列函数展开成x 的幂级数(1)x e x x f -=3)(. (2)x x f 2cos )(2=.(3)211)(x x f -=. (4)321)(2--=x x x f .2.用已知函数的展开式,将下列函数展开成2-x 的幂级数 (1)xx f -=41)(. (2)x x f ln )(=.3.将下列周期函数展开成傅里叶级数(1))(sin )(ππ<≤-=x ax x f (a 为非整数的常数).(2))()(22πππ<≤--=x x x f .(3) )()(3ππ<≤-=x x x f .4.把周期函数⎪⎩⎪⎨⎧<≤<≤--=20102,2)(x x xx f 展开成傅氏级数.5.将⎪⎪⎩⎪⎪⎨⎧≤≤-<≤-=24,440,)(T t T T T x t t q 分别展开成正弦型级数和余弦型级数.6.将)210(1)(2≤≤-=x x x f 分别展开成正弦型级数和余弦型级数.第8题图7.把函数⎪⎪⎩⎪⎪⎨⎧≤≤<≤--=ππππx x x f 0,40,4)(展开成傅氏级数,并由它导出(1)+-+-=71513114π. (2) ++--+-=131111917151163π.8.将下面波形的函数展开成傅里叶级数9.将下面半波整流后的周期函数)(t f 展开成傅氏级数10.将)10()(2≤≤=x x x f ,展开成正弦级数和余弦级数。

无穷级数例题选解

无穷级数例题选解

无穷级数例题选解1.判别下列级数的敛散性:212111111!21sin;ln(1);;()32n nn n n n n n nnnn ∞∞∞∞+====++-∑∑∑∑解:1)2211sinnn<,而∑∞=121n n收敛,由比较审敛法知 ∑∞=121sinn n收敛。

2))(1~)11ln(∞→+n nn,而∑∞=11n n发散,由比较审敛法的极限形式知∑∞=+1)11ln(n n发散。

3) e n n n nn n u u nn nn n nn n 11lim !)1()!1(limlim11=⎪⎭⎫⎝⎛+=⋅++==∞→+∞→+∞→ρ,1<ρ,由比值审敛法知∑∞=1!n nnn 收敛。

4) 9423122312lim lim12=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+==∞→∞→nn nnn n n n n u ρ, 1<ρ,由根值审敛法知 ∑∞=+⎪⎭⎫⎝⎛-+1122312n n n n 收敛。

2.判别下列级数是绝对收敛,条件收敛,还是发散?211(1)[]3n n n n ∞-=-+∑;21c o s 3nn n n ∞=∑;111(1)n n ∞-=-∑。

解:1)对于级数∑∞=--1213)1(n nn n ,由31||||lim1==+∞→n n n u u ρ,知级数∑∞=--1213)1(n nn n 绝对收敛,易知∑∞=--111)1(n n n条件收敛,故211(1)[]3n n n n ∞-=-+∑条件收敛。

2)n nnu n n n =≤3|3cos |22,由31lim1==+∞→nn n u u ρ,知级数∑∞=123n nn 收敛,故21cos 3nn n n ∞=∑绝对收敛。

3)记nn u n ln 1-=,n u n 1≥,而∑∞=11n n发散,故∑∞=1n n u 发散,令x x x f ln )(-=,xx f 11)(-=',当1>x 时,0)(>'x f ,故)(x f 在区间),1(+∞内单调增加,由此可知 1+>n n u u ,又0l i m =∞→n n u ,故11(1)n n ∞-=-∑收敛,但非绝对收敛,即为条件收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 无穷级数练习题习题8.11.判断题(对的划“√”,错的划“×”)(1)级数部分和的极限已求出,则级数收敛.若部分和的极限不存在,则级数发散. ( )(2)若级数∑∞=±1)(n n nv u收敛,则级数∑∞=1n n u 与级数∑∞=1n n v 都收敛.( ) (3)改变级数的有限项不会改变级数的和.( ) (4)当0lim =∞→n n u 时,级数∑∞=1n nu不一定收敛.( )2.用级数的“∑”形式填空(1),!3!2!1 +++ 即 . (2),7151311 +-+-即 . (3)+++4ln 313ln 212ln 1即 . (4),63524101 +++++-即 . 3.判断下列各级数的收敛性,并求收敛级数的和(1) -+-3322747474. (2) +++πππ543ln ln ln .(3) +⋅+⋅+⋅751531311. (4) ++++7453321.(5)∑∞=-+1)1(nn n.4.级数∑∞=+1)31 21(nnn是否收敛?若收敛,求其和.5.制造灯泡需要抽去玻璃泡中的空气,设灯泡中原有空气的质量m,在多次抽气时,每一次抽出的空气质量为上次剩余质量的20%,连续不断地抽,抽出的空气质量最多是多少?习题8.21.用“收敛”或“发散”填空(1)∑∞=13 1n n.()(2)∑∞=1222lnnn.()(3)∑∞=1!n n.()(4)∑∞=12.11nn.()2.判断下列正项级数的收敛性(1)∑∞=+11 9.01n n.(2)∑∞=++12658nnn.(3)∑∞=+15 23n n.3.判断下列级数是否收敛(1)∑∞=--1)1 (nnnπ. (2) ∑∞=--1311)1(nnn.(3) ∑∞=-122sin)1(n nnn.(4) ∑∞=⎥⎦⎤⎢⎣⎡-+12)1(1nnn.4.判断下列级数的收敛性(1)∑∞=++1)2(1n n n n . (2)∑∞=⎪⎭⎫⎝⎛+11n nn n .(3)∑∞=--1131arcsin )1(n n n . (4)∑∞=+-1321)1(n n n n .(5)∑∞=12n n n. (6)∑∞=166n n n.(7))0,(,31211>++++++b a b a b a b a . (8)∑∞=+++1)3)(2)(1(n n n n n.(9) ++++++nn 134232. (10) +-+-2227151311.习题8.31.求下列幂级数的收敛区间(1) ------n x x x x n 3232. (2) -++++n nnx x x x 3333233322.(3) +⋅++⋅+⋅+⋅+nnn x x x x x 33433323443322.(4) ++++++nnx n x x x 3322321.(5) +⋅⋅++⋅⋅+⋅+)2(64264242232n x x x x n.(6)∑∞=++-11212)1(n n nn x . (7) ∑∞=--122212n n nx n .(8) ∑∞=⋅+13)1(n nn n x . (9) ∑∑∞=∞=++-112212)1(n n n n n n n x n x .(10) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∞=∞=11!n n n n n x n x .2.利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数(1)∑∞=--122212n n nx n . (2) ++++753753x x x x .(3) +++13951392x x x . (4) +⋅+⋅+⋅433221432x x x .(5) +⋅+⋅+⋅+⋅3254433221x x x . (6)⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛∑∑∞=∞=11!n n n n n x n x .习题8.41.将下列函数展开为x 的幂级数,并指出其收敛域 (1)xe 2. (2))1,0(≠>a a a x 且.(3)2sin x. (4))0()ln(>+a x a .(5)⎥⎦⎤⎢⎣⎡-=)2cos 1(21sin sin 22x x x 提示:. (6))1ln()1(x x ++.(7)⎰+xt dt41. (8)⎰x dt tt 0sin .(9)⎰-xt dt e22.2.将下列函数展开为x 的幂级数,并指出其收敛半径(1))0(22>+a x a . (2)x arcsin .(3))1ln(2x x ++.3.用级数的展开式,近似计算下列各值(1)e (取前五项). (2)521⋅(取前三项).(3)︒18sin (取前两项).4.计算下列积分的近似值(计算前三项)(1)⎰212dx e x . (2)⎰10sin dx xx.(3)⎰11.0dx xe x.习题8.51.填空(1)若)(x f 在[]ππ,-上满足收敛定理的条件,则在连续点0x 处它的傅里叶级数与)(0x f .(2)设周期函数)(2)(ππ<≤-=x xx f ,则它的傅里叶系数 =0a ,=n a , =1b , =nb .(3)用周期为π2的函数)(x f 的傅里叶系数公式,求周期为l 的函数)(t g 的傅里叶级数,应作代换=t .(4)周期为l 的函数)(x f 的傅里叶系数=0a ,=n a ,=n b .2.把下列周期函数展开成傅里叶级数 (1)⎩⎨⎧<≤<≤-=ππt t t u 0100)(. (2)⎩⎨⎧<≤+<≤--=ππx x x x x f 0,10,1)(.(3)⎩⎨⎧<≤-<≤-+=ππππt t t t t f 0,0,)(. (4))(2cos)(ππ<≤-=x xx f .(5)⎪⎩⎪⎨⎧<≤<≤--<≤--=21,11112,1)(x x x x x f . (6)2121,1)(2<≤--=x x x f .3.将函数)11()(≤≤-=x e x f x展开成傅氏级数.4.将函数)0()(ππ≤≤-=x x x f 分别展开成正弦级数和余弦级数.5.将周期为4的单向窄脉冲信号,展开成傅里叶级数的复数形式,其表达式⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<--≤≤-=221,02121,212,0)(t t e t t f .复习题八(A )组1.判断题(对的划“√”,错的划“×”) (1)若,0lim =∞→n n u 则级数∑∞=1n nu收敛.( )(2)若级数∑∞=1n nu发散,则级数∑∞=≠10(n nc cu为常数)也发散.( ) (3)改变级数的有限多个项,级数的敛散性不变.( ) (4)若级数∑∞=1n nu收敛,则∑∞=-+1212)(n n n u u收敛.( ) (5)若)(x f 是周期函数为π2的函数,且满足收敛定理的条件,则在任意点x 处)(x f 的傅氏级数收敛于)(x f .( )2.用“收敛”或“发散”填空 (1)若级数∑∞=1n nu收敛,则∑∞=+1)001.0(n nu.(2)级数∞=1n (3)当10<<a 时,级数∑∞=-+111n nn aa . (4)级数∞=1n n (5)级数∞=n3.单项选择题(1)下列级数中,收敛的是( )(A ) ∑∞=--11)1(n n n ; (B ) ∑∞=+-1232)1(n n n n; (C ) ∑∞=+115n n ; (D )∑∞=-+1231n n n .(2)下列级数中,绝对收敛的是( )(A )∑∞=-1)1(n n n ; (B )∑∞=++12123n n n ; (C )∑∞=-⎪⎭⎫ ⎝⎛-1132)1(n nn ; (D )∑∞=-+-11)1ln()1(n n n . (3)幂级数∑∞=1n nnx 的收敛区间是( )(A )[]1,1-; (B )[)1,1-; (C )(]1,1-; (D )()1,1-. (4)函数2)(x e x f -=展开成x 的幂级数是( )(A )∑∞=12!n n n x ; (B )∑∞=-12!)1(n n n n x ; (C )∑∞=1!n n n x ; (D )∑∞=--11!)1(n nn n x .(5) 设)(x f 的周期为π2,它在[)ππ,-的表达式),(,2)(ππ<≤-=x x x f 则)(x f 的傅氏展开式为( )(A )∑∞=+-11sin )1(2n n nx n ; (B )∑∞=+-11sin )1(4n n nx n ;(C )),)12(,(sin )1(411Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π;(D )),)12(,(sin )1(211Z k k x x nx n n n ∈-≠+∞<<-∞-∑∞=+π.4.判别下列各级数的敛散性(1))0(1112>+∑∞=a a n . (2)∑∞=+112tann n n π.(3)∑∞=+112tann n n π. (4)∑∞=1sincos n nn ππ.(5) ∑∞=+112!n n n . (6) ∑∞=--1ln )1(n n n n .(B ) 组1.用已知函数的展开式,将下列函数展开成x 的幂级数(1)x e x x f -=3)(. (2)x x f 2cos )(2=.(3)211)(x x f -=. (4)321)(2--=x x x f .2.用已知函数的展开式,将下列函数展开成2-x 的幂级数 (1)xx f -=41)(. (2)x x f ln )(=.3.将下列周期函数展开成傅里叶级数(1))(sin )(ππ<≤-=x ax x f (a 为非整数的常数).(2))()(22πππ<≤--=x x x f .(3) )()(3ππ<≤-=x x x f .4.把周期函数⎪⎩⎪⎨⎧<≤<≤--=20102,2)(x x xx f 展开成傅氏级数.5.将⎪⎪⎩⎪⎪⎨⎧≤≤-<≤-=24,440,)(T t T T T x t t q 分别展开成正弦型级数和余弦型级数.6.将)210(1)(2≤≤-=x x x f 分别展开成正弦型级数和余弦型级数.第8题图7.把函数⎪⎪⎩⎪⎪⎨⎧≤≤<≤--=ππππx x x f 0,40,4)(展开成傅氏级数,并由它导出(1)+-+-=71513114π. (2) ++--+-=131111917151163π.8.将下面波形的函数展开成傅里叶级数9.将下面半波整流后的周期函数)(t f 展开成傅氏级数10.将)10()(2≤≤=x x x f ,展开成正弦级数和余弦级数。

相关文档
最新文档