比较冒泡算法,选择算法,希尔排序算法
C程序经典算法50例

C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。
2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。
3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。
4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。
5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。
6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。
7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。
8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。
9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。
10.基数排序算法:从低位到高位依次对元素进行排序。
11.斐波那契数列算法:计算斐波那契数列的第n项。
12.阶乘算法:计算给定数字的阶乘。
13.排列问题算法:生成给定数组的全排列。
14.组合问题算法:生成给定数组的所有组合。
15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。
16.最长递增子序列算法:找出给定数组中的最长递增子序列。
17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。
18.最短路径算法:计算给定有向图的最短路径。
19.最小生成树算法:构建给定连通图的最小生成树。
20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。
21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。
22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。
23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。
24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。
25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。
检索排序算法

检索排序算法一、前言随着信息化时代的到来,数据量急剧增长,如何快速、准确地从海量数据中检索出所需信息成为了一项重要的任务。
而检索排序算法作为解决这一问题的关键技术之一,其研究和应用也日益受到关注。
二、概述检索排序算法是指在给定的数据集合中按照某种规则对数据进行排序,以便更快地找到所需信息。
常见的检索排序算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序等。
三、冒泡排序冒泡排序是一种简单直观的算法,其基本思想是将相邻两个元素进行比较,如果顺序不对就交换位置。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然冒泡排序算法简单易懂,但由于其时间复杂度较高,在大规模数据集合中表现不佳。
四、选择排序选择排序是另一种简单直观的算法,其基本思想是每次从未排好序的元素中选出最小(或最大)的一个元素放到已排好序的末尾。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然选择排序算法比冒泡排序算法稍微快一些,但其时间复杂度仍然较高。
五、插入排序插入排序是一种简单高效的算法,其基本思想是将未排序的元素逐个插入到已排序的元素中。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
虽然插入排序算法比冒泡排序和选择排序算法要快一些,但其时间复杂度仍然较高。
六、希尔排序希尔排序是一种改进的插入排序算法,其基本思想是先将整个序列分成若干个子序列进行插入排序,再逐步缩小子序列长度直至为1。
通过多次遍历整个序列,最终可以将序列按照升序或降序排列。
希尔排序算法相对于插入排序算法而言,在大规模数据集合中表现更好。
七、归并排序归并排序是一种基于分治思想的算法,其基本思想是将待排元素分成两部分进行递归处理,直到每部分只有一个元素为止。
然后再将两部分有序地合并成一个有序序列。
通过多次递归处理,最终可以将整个序列按照升序或降序排列。
归并排序算法相对于前面几种算法而言,在大规模数据集合中表现更好。
八、快速排序快速排序是一种基于分治思想的算法,其基本思想是选择一个基准元素,将小于基准元素的元素放到左边,大于基准元素的元素放到右边,然后再对左右两部分进行递归处理。
java算法总结

java算法总结一、排序1、冒泡排序:t冒泡排序是一种简单的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
2、选择排序:t选择排序是一种简单直观的排序算法,无论什么数据进去都是O(n)的时间复杂度。
所以用到它的时候,数据规模越小越好。
唯一的好处可能就是不占用额外的内存空间了吧。
3、插入排序:t插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
4、希尔排序:t希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。
希尔排序是非稳定排序算法。
该方法的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
二、查找1、线性查找:t线性查找又称顺序查找,是一种最简单的查找算法。
从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则查找成功;若扫描结束仍没有找到关键字等于k的结点,则表示表中不存在关键字等于k的结点,查找失败。
2、二分查找:t二分查找又称折半查找,要求待查找的序列有序。
每次取中间位置的值与待查关键字比较,如果中间位置的值更大,则在前半部分循环这个查找的过程,如果中间位置的值更小,则在后半部分循环这个查找的过程。
3、二叉查找树:t二叉查找树(Binary Search Tree,简称BST),又被称为二叉搜索树、有序二叉树。
它是一棵空树或者是具有下列性质的二叉树:若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;任意节点的左、右子树也分别为二叉查找树;没有键值相等的节点三、字符串处理1、KMP算法:tKMP算法是由Donald E.Knuth、Vaughn R. Pratt和James H.Morris三人于1977年提出的一种改进的字符串匹配算法,它利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。
排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
[考试]几种排序的算法时间复杂度比较
![[考试]几种排序的算法时间复杂度比较](https://img.taocdn.com/s3/m/fb84bc1517fc700abb68a98271fe910ef12dae87.png)
几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。
这样,经过i遍处理之后,前i个记录的位置已经是正确的了。
2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。
第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。
要达到这个目的,我们可以用顺序比较的方法。
首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。
图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。
3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。
在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。
所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。
如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。
显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。
在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。
一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
各种排序算法的优缺点

一、冒泡排序已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。
首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。
再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。
再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。
这样处理一轮后,a[n]的值一定是这组数据中最大的。
再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。
再对a[1]~a[n-2]以相同方法处理一轮,以此类推。
共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定;缺点:慢,每次只能移动相邻两个数据。
二、选择排序每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……③第i趟排序第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。
该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
优点:移动数据的次数已知(n-1次);缺点:比较次数多。
三、插入排序已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。
C语言经典算法大全

C语言经典算法大全1. 冒泡排序(Bubble Sort):比较相邻的元素,如果顺序错误就交换位置,直到整个序列有序。
2. 快速排序(Quick Sort):选择一个中间元素作为基准,将序列分成两部分,左边的元素都小于等于基准,右边的元素都大于等于基准,然后递归地对两个子序列进行排序。
3. 插入排序(Insertion Sort):将元素逐个插入到已经排序的序列中,直到整个序列有序。
4. 选择排序(Selection Sort):每次选择一个最小(或最大)的元素放到有序序列的末尾(或开头),直到整个序列有序。
5. 归并排序(Merge Sort):将序列分成若干个子序列,对每个子序列进行排序,然后再将已排好序的子序列合并成一个有序序列。
6. 希尔排序(Shell Sort):将序列划分成若干个小的子序列分别进行直接插入排序,然后逐渐减小子序列的间隔直到整个序列有序。
7. 堆排序(Heap Sort):利用堆这种数据结构进行排序,构建一个大(或小)根堆,依次将根节点(最大或最小值)和最后一个节点交换位置,然后重新调整堆。
8. 计数排序(Counting Sort):统计每个元素的出现次数,然后根据统计结果,将元素按照顺序放入相应位置,从而实现排序。
9. 桶排序(Bucket Sort):将元素分到不同的桶中,桶内元素进行排序,然后按照桶的顺序将元素取出,从而实现排序。
10.基数排序(Radix Sort):根据元素的位数进行排序,首先排个位,然后排十位,以此类推,直到排完最高位。
除了上述排序算法之外,C语言中还有许多其他经典算法,例如二分查找、递归、深度优先、广度优先、贪心算法、动态规划等等。
这些算法都有各自的特点和应用场景,对于提高编程水平和解决实际问题都有很大的帮助。
总结起来,掌握C语言的经典算法对于编程爱好者来说是非常重要的。
它们可以帮助我们更好地理解计算机科学的基本原理和数据结构,提高我们编写程序的能力和效率。
各种排序方法的比较与讨论

各种排序方法的比较与讨论现在流行的排序有:选择排序、直接插入排序、冒泡排序、希尔排序、快速排序、堆排序、归并排序、基数排序。
一、选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [38 65 97 76 49 27 49]第二趟排序后13 27 [65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 973.void selectionSort(Type* arr,long len){long i=0,j=0;/*iterator value*/long maxPos;assertF(arr!=NULL,"In InsertSort sort,arr is NULL\n");for(i=len-1;i>=1;i--){maxPos=i;for(j=0;jif(arr[maxPos]if(maxPos!=i)swapArrData(arr,maxPos,i);}}选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.二.直接插入排序插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、算法简介
冒泡排序算法、选择排序算法和希尔排序算法是三种常用的排序算法。
这三种算法的共同点是都属于比较排序算法,即通过比较元素之间的大小,进行排序。
下面将分别对这三种算法进行介绍。
二、冒泡排序算法
冒泡排序算法的基本思想是对相邻的元素进行比较,如果逆序则交换它们的位置,直到整个序列有序为止。
具体实现过程如下:
1. 设置循环次数为 n-1,n 为待排序序列长度。
2. 对于每一次循环,从第一个元素开始,依次比较相邻的两个元素,如果逆序则交换它们的位置。
3. 每一次循环结束后,待排序序列中最大的元素就会被排到末尾。
4. 重复执行上述步骤,直到整个序列有序。
冒泡排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较好,适用于数据量较小的情况。
三、选择排序算法
选择排序算法的基本思想是从待排序序列中选择最小的元素,放到已排序序列的末尾,直到整个序列有序为止。
具体实现过程如下:
1. 设置循环次数为 n-1,n 为待排序序列长度。
2. 对于每一次循环,从第一个元素开始,找到待排序序列中最小的元素,并将其放到已排序序列的末尾。
3. 重复执行上述步骤,直到整个序列有序。
选择排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较小的情况。
四、希尔排序算法
希尔排序算法也称为缩小增量排序算法,是插入排序算法的一种改进。
希尔排序算法的基本思想是将待排序序列分成若干个子序列,对每个子序列进行插入排序,然后再对整个序列进行一次插入排序,直到整个序列有序为止。
具体实现过程如下:
1. 设置一个增量值 gap,将待排序序列分成若干个子序列,每个子序列包含的元素个数为 gap。
2. 对于每个子序列,进行插入排序。
3. 减小增量值 gap,重复执行上述步骤,直到 gap=1。
4. 对整个序列进行一次插入排序,使得序列有序。
希尔排序算法的时间复杂度为 O(n^2),空间复杂度为 O(1),稳定性较差,适用于数据量较大的情况。
五、总结
冒泡排序算法、选择排序算法和希尔排序算法是三种常用的排序算法。
它们都采用比较元素大小的方式进行排序,但具体实现过程略有不同,导致时间复杂度和稳定性等方面也有所不同。
在实际应用中,可以根据数据量的大小和稳定性要求等因素,选择合适的排序算法进行使用。