自动控制原理复阻抗法
自动控制原理习题及解答

对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
(3)写中间变量关系式
式中,α为空气阻力系数 为运动线速度。
(4)消中间变量得运动方程式
(2-1)
此方程为二阶非线性齐次方程。
(5)线性化
由前可知,在=0的附近,非线性函数sin≈,故代入式(2-1)可得线性化方程为
例2-3已知机械旋转系统如图2-3所示,试列出系统运动方程。
图2-3机械旋转系统
解:(1)设输入量作用力矩Mf,输出为旋转角速度。
运动方程可直接用复阻抗写出:
整理成因果关系:
图2-15电气系统结构图
画结构图如图2-15所示:
求传递函数为:
对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系统之间相似量的对应关系见表2-1。
表2-1相似量
机械系统
xi
x0
自动控制原理习题及其解答 第二章

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。
(2)由牛顿定律写原始方程。
h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。
(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。
(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。
自动控制原理(第二章)

∫
∞ 0
f (t )e st dt
南理工泰州科技学院
Basis of Control Engineering ——Basic Concept of Automatic Control ——Bas与象函数之间的对应 关系列成对照表的形式.通过查表, 关系列成对照表的形式.通过查表,就能 够知道原函数的象函数, 够知道原函数的象函数,或象函数的原函 常用函数的拉氏变换的对照表如表2 数,常用函数的拉氏变换的对照表如表2-3 所示. 所示.
Basis of Control Engineering ——Basic Concept of Automatic Control ——Basic
拉氏变换的基本定理
(3)积分定理. )积分定理. (4)位移定理. )位移定理.
L[ ∫
t 0
1 f ( t ) dt ] = F ( s ) s
L[ f (t τ0 )1(t τ0 )] = eτ0s F(s)
静态数学模型:静态条件下, 静态数学模型:静态条件下,描述各变量间关系的 代数方程; 代数方程; 动态数学模型: 动态数学模型:描述变量各阶导数之间关系的微分 方程. 方程.
建立控制系统数学模型的方法:分析法和 建立控制系统数学模型的方法:分析法和实验 法.
南理工泰州科技学院
Basis of Control Engineering ——Basic Concept of Automatic Control ——Basic
南理工泰州科技学院
Basis of Control Engineering ——Basic Concept of Automatic Control ——Basic
黄家英自动控制原理第二版第二章习题答案

6 s
部分分式展开 5 1 −4 Y(s) = + + s+3 s+2 s
∴ y (t ) = −4e −3 t + 5e −2t + 1 , t ≥ 0
已知控制系统的微分方程(或微分方程组) B2.9 已知控制系统的微分方程(或微分方程组)为
式中r(t)为输入量,y(t)为输出量, (t)、 (t)和 式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t) r(t)为输入量 为输出量 为中间变量, 均为常数。 为中间变量,τ、β、K1和K2均为常数。 试求: a)各系统的传递函数Y(s)/R(s);(b)各系统含 各系统的传递函数Y(s)/R(s) 试求:(a)各系统的传递函数Y(s)/R(s);(b)各系统含 有哪些典型环节? 有哪些典型环节?
在图B2.4所示的电路中电压u (t)为输入量 B2.4所示的电路中电压 为输入量, B2.4 在图B2.4所示的电路中电压u1(t)为输入量,试以电 (t)或 (t)作为输出量 分别列写该系统的微分方程。 作为输出量, 压u2(t)或uC2(t)作为输出量,分别列写该系统的微分方程。
B 2.4解: u 2作为输出,应用网络的 复阻抗法: 作为输出, 复阻抗法: Q U 2 (s ) = U 1 (s ) 1 R1 1 C1s + R2 + 1 C 2s R1 + C1s 1 (R 2 + ) C 2s
B2.8 设系统的微分方程为
试用拉氏变换法进行求解。 试用拉氏变换法进行求解。
B 2.8解: 进行拉氏变换 & s 2 Y(s) - (sy(0) + y(0)) + 5sY(s) - 5y(0) + 6Y(s) =
自动控制原理试卷及答案

1《自动控制原理》试卷(A 卷)一、 用运算放大器组成的有源电网络如图所示,试采用复数阻抗法写出它的传递函数。
(10分)(1图 )(3图)二、假设某系统对于单位阶跃输入信号的响应为t te et y 10602.12.01)(---+= 。
(a) 求该系统的闭环传递函数。
(b) 确定该系统的阻尼系数。
(10分)三、试用梅逊增益公式求图中系统的闭环传递函数。
(写出步骤)(10分)四、控制系统的结构如图所示,设 r(t ) = t ⋅ 1(t ) ,p (t ) = 1(t )定义e (t ) = r(t ))(t y -,试求系统的稳态误差。
(10分))(t p )(t r -++)(t y 1+s )1(1+s s +(4图)五、试确定题图所示系统参数K 和ξ的稳定域。
(写步骤)(10分)(5图)六、设单位反馈控制系统的开环传递函数为(1) 绘制根轨迹,并加以简要说明。
(2) 当系统的阻尼振荡频率s rad /1d =ω时试确定闭环主导极点的值与相应的增益值。
(15分)七、最小相位系统的开环对数幅频特性的渐近线如图所示,确定系统的开环传递函数。
(10分)八、已知最小相位系统校正前后系统的折线对数幅频特性如图所示,其中Lo(ω)为校正前特性,L开(ω)为校正后特性。
(1)试作出校正装置的对数幅频特性Lc(ω)(折线);(2)试写出校正装置的传递函数Gc(s);(3)计算校正后系统的相位裕度γ。
(15分)cp为s右半平面上的开环根的个数,v为开九、设开环系统的奈氏曲线如下图所示,其中,环积分环节的个数,试判别闭环系统的稳定性。
(10分)(a)(b)2《自动控制原理》试卷(B 卷)一、 求下图所示系统的传递函数)(/)(0s U s U i 。
(10分)(1图) (3图)二、假设某系统对于单位阶跃输入信号的响应为t t e e t y 10602.12.01)(---+= 。
(a) 求该系统的闭环传递函数。
自动控制原理试卷及答案

1《自动控制原理》试卷(A 卷)一、 用运算放大器组成的有源电网络如图所示,试采用复数阻抗法写出它的传递函数。
(10分)(1图 )(3图)二、假设某系统对于单位阶跃输入信号的响应为t t e e t y 10602.12.01)(---+= 。
(a) 求该系统的闭环传递函数。
(b) 确定该系统的阻尼系数。
(10分)三、试用梅逊增益公式求图中系统的闭环传递函数。
(写出步骤)(10分)四、控制系统的结构如图所示,设 r(t ) = t ⋅ 1(t ) ,p (t ) = 1(t )定义e (t ) = r(t ))(t y -,试求系统的稳态误差。
(10分)(4图)五、试确定题图所示系统参数K 和ξ的稳定域。
(写步骤)(10分)(5图)六、设单位反馈控制系统的开环传递函数为(1) 绘制根轨迹,并加以简要说明。
(2) 当系统的阻尼振荡频率s rad /1d =ω时试确定闭环主导极点的值与相应的增益值。
(15分)七、最小相位系统的开环对数幅频特性的渐近线如图所示,确定系统的开环传递函数。
(10分)八、已知最小相位系统校正前后系统的折线对数幅频特性如图所示,其中Lo(ω)为校正前特性,L开(ω)为校正后特性。
(1)试作出校正装置的对数幅频特性Lc(ω)(折线);(2)试写出校正装置的传递函数Gc(s);(3)计算校正后系统的相位裕度γ。
(15分)cp为s右半平面上的开环根的个数,v为开九、设开环系统的奈氏曲线如下图所示,其中,环积分环节的个数,试判别闭环系统的稳定性。
(10分)(a)(b)2《自动控制原理》试卷(B 卷)一、 求下图所示系统的传递函数)(/)(0s U s U i 。
(10分)(1图) (3图)二、假设某系统对于单位阶跃输入信号的响应为t t e e t y 10602.12.01)(---+= 。
(a) 求该系统的闭环传递函数。
(b) 确定该系统的阻尼系数。
(10分)三、系统的信号流图如图所示,求输出C (S )的表达式。
自动控制原理课后习题答案第二章

解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为
自动控制原理复习资料

(3)若遵循前一个环节的输出为下一个环节的输入, 则容易画图。
例题 系统的微分方程为:
x1 (t ) r (t ) c (t ) dx2 (t ) T1 K1 x1 (t ) x2 (t ) dt x3 (t ) x2 (t ) K 3c (t ) dc (t ) T2 c (t ) K 2 x3 (t ) dt
R1 ( s)
R1(S)
R1(S)
+ -
G1(S) G3(S)
C1(S)
+
G1(S)
C1(S)
G4(S)
G3(S) G2(S) -1 G4(S)
R2(S)
G2(S)
C2(S)
+
C1 ( s) G1 ( s) G( s) R1 (s) 1 G1 ( s)G2 ( s)G3 ( s)G4 ( s)
注意
负反馈取+ 正反馈取-
2-7. 求闭环传递函数。
R1(S)
+ -
G1(S) G3(S) G4(S)
C1(S)
R2(S)
G2(S)
C2(S)
+
方法要点: 一个输入作用,另一个输入为0; 关注一个输出时,与另外一个输出没有关系; 化简时碰到比较器处的“负号”时,一定要用-1代替。
(1)求 C1 (s) ,令R2(s)=0
ui
1 SC1
C1
R2
C2
1 SC2
I (s)
R1 +
U i ( s)
uo
U o ( s)
1 R1 C1s U i (s) I (s) 2 1 U ( s ) C C R R s (C2 R2 C1R1 )s 1 o 1 2 1 2 R1 G( s ) C1s U i ( s) C2 R1s 1 U o ( s) ( R2 ) I ( s) sC2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理复阻抗法
一、复阻抗法的原理
复阻抗法是根据控制系统中被控对象的特性来设计控制策略的一种方法。
控制策略的设计基本思想是使被控对象的复阻抗与期望的复阻抗匹配,从而实现系统的稳定和性能的优化。
复阻抗可以表示为一个复数,包括实部和虚部。
在自动控制系统中,
实部反映了系统的稳态特性,虚部反映了系统的动态特性。
因此,通过改
变复阻抗的实部和虚部,可以实现对被控对象的稳态和动态响应的调节。
复阻抗的变化可以通过改变系统的参数或引入控制器来实现。
一般情
况下,可以通过PID控制器来实现复阻抗的调节。
PID控制器包括比例、
积分和微分控制三部分,可以通过调节这三个控制参数来改变系统的复阻抗。
二、复阻抗法的特点
1.灵活性:复阻抗法可以根据被控对象的特性来设计,因此具有很大
的灵活性。
可以通过调节PID控制器的参数来实现对系统响应的调节,从
而达到期望的控制效果。
2.适应性:复阻抗法可以适应不同的被控对象和不同的工作状态。
通
过根据实际需求和被控对象的特性来调节PID控制器的参数,可以实现对
不同工作状态的自适应控制。
3.鲁棒性:复阻抗法通过改变系统的参数来实现对被控对象的调节,
因此具有很好的鲁棒性。
即使在参数发生变化或者干扰存在的情况下,复
阻抗法仍然可以有效地控制系统。
4.可靠性:复阻抗法不依赖于准确的数学模型,而是通过对系统的特
性进行分析和调节来实现控制。
因此,即使在模型不准确或者存在不确定
性的情况下,复阻抗法仍然可以实现良好的控制效果。
三、复阻抗法的应用
复阻抗法广泛应用于各种自动控制系统中,特别是与多个被控对象相
互影响的复杂系统中。
以下是复阻抗法的一些应用场景:
1.机器人控制:由于机器人系统通常包括多个控制对象和多个传感器,因此复阻抗法非常适用于机器人的控制。
可以根据机器人的特性来设计复
阻抗法控制策略,实现对机器人的稳定和精确控制。
2.电力系统控制:电力系统通常由多个发电机、变压器和负荷组成,
存在复杂的互联关系。
复阻抗法可以应用于电力系统的自动控制中,通过
调节发电机和负荷之间的复阻抗来实现电力系统的稳定运行。
3.交通信号控制:交通信号控制系统需要根据交通流量和道路状况来
自动调节信号灯的变化。
复阻抗法可以应用于交通信号控制系统中,以实
现对信号灯的灵活调节和交通流量的高效控制。
总结:复阻抗法是一种常用的自动控制原理,通过改变系统的复阻抗
来实现对被控对象的调节。
它具有灵活性、适应性、鲁棒性和可靠性等特点,在机器人控制、电力系统控制和交通信号控制等领域有广泛应用。
其
优势在于不依赖于准确的数学模型,可以适应各种工作状态和不确定性。