2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷
河北省2019-2020学年八年级下学期期末数学试题D卷

河北省2019-2020学年八年级下学期期末数学试题D卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知三角形的两边长是4和6,第三边的长是方程的根,则此三角形的周长为()A.10B.12C.14D.12或142 . 若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A.B.C.D.3 . 使等式自左到右变形成立的条件是().A.B.C.D.且4 . 函数y=+中自变量x的取值范围是()A.x≤3B.x<3C.x≠3D.x>35 . 如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为()A.B.C.D.6 . 2013年1月份,气象台不断发布雾霾橙色预警信号,多地PM2.5值濒临“爆表”,北京城区曾一度逼近每立方米0.001克,超新国标PM2.5日浓度限值每立方米0.000075克十倍以上,数字0.000075用科学记数法表示为()A.7.5×10-6B.75×10-4C.0.75×10-3D.7.5×10-57 . 如图,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1 = 0.5m,最下面一级踏板的长度A7B7 = 0.8m.则第五级踏板A5B5的长度为()A.0.6m B.0.65m C.0.7m D.0.75m8 . 一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.B.C.D.二、填空题9 . 已知:如图,菱形ABCD中,对角线AC与BD 相交于点O,OE∥DC交BC于点E,AC=6,BD=8,则OE的长为_________10 . 若方程x2+ax+b=0有两个相等的实数根,则a,b之间的关系是_____.11 . 已知~,且=1:4,则与的周长比为:__________.12 . 二次函数的顶点坐标为___________,对称轴是____________;13 . 在△ABC中,已知∠C=90°,,则= .14 . 如图,正比例函数y=kx与反比例函数y =的图象相交于A,B两点,过B作X轴的垂线交X轴于点C,连接AC,则△ABC的面积是三、解答题15 . 已知:AB∥CD,平面内有一点E,连接AE、CE(1)如图1,求证:∠E=∠A+∠C;(2)如图2,CD上有一点F,连接AF、EF,若∠FAE=∠FEA,∠EFD=2∠C,求证:∠AFC=2∠AEC;(3)如图3,在(2)的条件下,平面内有一点G,连接AG、CG,若∠GCE与∠GAE互为补角,5∠AFC=2∠G,求∠G的度数.16 . 为保护学生视力,学校课桌椅的高度都是按一定的关系科学配套设计.小明对学校所添置的一批课桌椅进行观察研究,发现它们可以根据人的身长调节高度,于是他测量了一套课桌、椅子相对应的四档高度,得到如下数据;(1)小明经过对数据探究,发现:桌高y (cm)是椅高x (cm)的一次函数,请你帮助他求出一个一次函数的关系式;(不要求写出x的取值范围)(2)小明回家后,测量了自己家里的写字台和椅子,写字台的高度为77 cm,椅子的高度为43.5 cm,请你判断它们是否配套?说明理由.17 . 在如图的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形.(1)画出此中心对称图形的对称中心O;(2)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)18 . 在一次测量旗杆高度的活动中,某数学兴趣小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD 表示一根标杆,EF表示旗杆,AB,CD,EF都垂直于地面,若AB=1.6米,CD=2米,人与标杆之间的距离BD=1米,标杆与旗杆之间的距离DF=30米,求旗杆EF的高.19 . 春暖花开,市民纷纷外出踏青,某种品牌鞋专卖店抓住机遇,利用10周年店庆对其中畅销的M款运动鞋进行促销,M款运动鞋每双的成本价为800元,标价为1200元.(1)M款运动鞋每双最多降价多少元,才能使利润率不低于20%;(2)该店以前每周共售出M款运动鞋100双,2017年3月的一个周末,恰好是该店的10周年店庆,这个周末M款运动鞋每双在标价的基础上降价m%,结果这个周末卖出的M款运动鞋的数量比原来一周卖出的M款运动鞋的数量增加了m%,这周周末的利润达到了40000元,求m的值.20 . 如图,一天,我国一渔政船航行到处时,发现正东方向的我领海区域处有一可疑渔船,可疑渔船正向西北方向航行,我渔政船立即沿北偏东方向航行,在我领海区域的处截获可疑渔船.我渔政船的航行路程为是海里,问可疑渔船的航行路程是多少海里?(结果保留根号)21 . 已知中,.(1)如图,在中,若,且,求证:;(2)如图,在和中,若,且CD垂直平分AE,,,求BD的长.22 . 已知:,求代数式的值.23 . 如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO 向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.24 . 已知一次函数的图象过点,.(1)求此函数的表达式;(2)若点在此函数的图象上,求的值.。
2019-2020学年冀教版初二数学下册期末测试卷(含答案)

2019-2020学年八年级(下)期末数学试卷、仔细选一选(本大题共 12个小题,每小题 3分,共36分)1 .为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是 ()A .选择七年级一个班进行调查 B.选择八年级全体学生进行调查C.选择全校七至九年级学号是 5的整数倍的学生进行调查D.对九年级每个班按 5%的比例用抽签的方法确定调查者 2 .下列角度不可能是多边形内角和的是( )A. 180°B. 270°C. 360°D, 900°3 .函数y=,口中自变量x 的取值范围是( )A , x>2B. x<2C. xw2D. x>2ABCD 中,点E, F 分别在边 AB, BC 上,AF=DE, AF 和DE 相交于点 G,观5 .如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是(A.七年级借阅文学类图书的人数最多B.八年级借阅教辅类图书的人数最少C.两个年级借阅文学类图书的人数最多D.七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同4.如图,在正方形 C. 2个D. 1个七年籁八年缴6.如图,矩形ABCD的顶点A, C分别在直线a, b上,且a//b, / 1=50° ,则/ 2的度数为()A. 30°B. 40°C. 50°D. 60°7,已知A (x i, y i) , B (X2, y2)是一次函数y= (2a-1) x- 3图象上的两点,当X1V X2时,有yi>y2,则a的取值范围是( )A . a<2B . a>T~ C. a>2 D. a<-8.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB , EC, DB,下列条件中,不能使四边形DBCE成为菱形的是( )A--------------- BA . AB= BE B. BEX DC C. / ABE= 90。
2019-2020学年河北省邯郸市八年级下学期期末考试数学试卷及答案解析

第 1 页 共 21 页2019-2020学年河北省邯郸市八年级下学期期末考试数学试卷一.选择题(共16小题,满分42分)1.(3分)函数y =x √x+3的自变量x 的取值范围是( ) A .x >﹣3 B .x ≠﹣3 C .x ≥﹣3 D .x >﹣3且x ≠02.(3分)一组数据8,3,8,6,7,8,7的众数和极差分别是( )A .8,3B .8,5C .7,8D .8,73.(3分)李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( )A .金额B .数量C .单价D .金额和数量4.(3分)下列关系式中,y 不是x 的函数的是( )A .y =3x +1B .y =2xC .y =−12xD .|y |=x5.(3分)设x 表示两位数,y 表示三位数,如果把x 放在y 的左边组成一个五位数,可表示为( )A .xyB .1000x +yC .x +yD .100x +y6.(3分)满足下列条件的△ABC 中,不是直角三角形的是( )A .b 2=c 2﹣a 2B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .∠A :∠B :∠C =3:4:57.(3分)下列说法中正确的是( )A .一个游戏的中奖概率是10%,则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .若甲组数据的方差S 甲2=0.01,乙组数据的方差S 乙2=0.1,则乙组数据比甲组数据稳定D .一组数据8,3,7,8,8,9,10的众数和中位数都是88.(3分)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是。
邯郸市数学八年级下学期期末考试试卷

邯郸市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020八上·长丰期末) 函数中,自变量的取值范围是()A . >2B . ≥2C . ≤2D . <22. (2分) (2019八下·任城期末) 下列二次根式中,是最简二次根式的是()A .B .C .D .3. (2分)连降6天大雨,某水库的蓄水量随时间的增加而直线上升,若该水库的蓄水量V(万m3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A . 降雨后,蓄水量每天减少5万米³B . 降雨后,蓄水量每天增加5万米³C . 降雨开始时,蓄水量为20万米³D . 降雨第6天,蓄水量每天增加40万米³4. (2分)(2017·盘锦模拟) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A .B .C .D .5. (2分) (2016八下·微山期中) 如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2 ;④四边形ACEB的面积是16.则以上结论正确的是()A . ①②③B . ①②④C . ①③④D . ②④6. (2分)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示),如果大正方形的面积是49,小正方形的面积为4,直角三角形的两直角边长分别为a,b,那么下列结论:(1)a2+b2=49,(2)b﹣a=2,(3)ab= ,(4)a+b= 中,正确结论的个数有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共8题;共9分)7. (1分)若长方形的宽为3 cm,长为2 cm,则长方形的面积为 ________ cm2.8. (2分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.若a=2,b=4,则c=________;若a=2,c=4,则b=________;若c=26,a:b=5:12,则a=________,b=________.9. (1分) (2017八下·陆川期末) 如图,一次函数y1=k1+b1与y2=k2+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为________.10. (1分) (2020八上·苏州期末) 如图,已知点A(x1 , y1)、B(x2 , y2)在一次函数y=kx+b(k<0)的图像上,则y1________y2。
河北省2019-2020年八年级下学期期末考试数学试卷

河北省2019-2020年八年级下学期期末考试数学试卷一、选择题(1-6小题,每小题2分,7-12小题,每小题三分,共30分)1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>2.已知分式的值为0,则x的值为()A.2B.﹣2 C.3D.﹣33.下列图形中,不是中心对称图形的是()A.B.C.D.4.下列分式是最简分式的是()A.B.C.D.5.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.A C=AD B.A B=AB C.∠ABC=∠ABD D.∠BAC=∠BAD6.把多项式x2﹣x分解因式,得到的因式是()A.只有x B.x2和x C.x2和﹣x D.x和x﹣17.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.12cm B.9cm C.6cm D.3cm8.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.19.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>010.△ABC中,AB=AC,在△ABC内求作一点O,使点O到三边的距离相等.甲同学的作法如图1所示,乙同学的作法如图2所示,对于两人的作法,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.乙对,甲不对11.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D. x<﹣512.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为()A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°二、填空题(每小题3分,共18分)13.若x2+kx+4是一个完全平方式,则常数k的值为.14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.15.在数轴上有A、B两点,其中点A所对应的数是a,点B所对应的数是1.己知A、B 两点的距离小于3,请写出a所满足的不等式.16.若解分式方程产生增根,则m=.17.如图,ABCD是一块长方形场地,AB=42米,AD=25米,从A、B两处入口的小路都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.18.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.三、解答题(本题共8小题,共72分)19.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.20.先化简(1﹣)÷,再从﹣2,﹣1,0中选一个合适的数代入并求值.21.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.如图,在▱ABCD中,点E、F分别是对角线BD上两点,且BF=DE,连接AF、CE.求证:四边形AFCE是平行四边形.24.如图,MA⊥AB于A,NB⊥AB于B,点O是AB的中点,点D是BN上一点,且BD=AO,点C是AM上一点,∠COD=α.(1)如图1,若AC=AO,则OC与OD的数量关系为,α=;(2)在(1)的条件下,若点P为BN上一点,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°,得到线段OQ,连接CQ,在图2中补全图形.请猜想CQ与DP的数量关系,并证明你的结论.(3)在(2)的条件下,若∠OQC=30°,OC=,则CQ=(用含α的代数式表示).25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.【问题背景】如图1,图2,过平行四边形一组对角的顶点画直线,或者过一组对边的中点画直线,可以把此四边形分割成面积相等的两部分.如图3,图4,分别过两组对角的顶点画直线,或者分别过两组对边的中点画直线,可以把该平行四边形分割成面积相等的四部分.【探究发现】(1)如图5,点E为▱ABCD内任意一点,过点E画一条直线,将▱ABCD分成面积相等的两部分,简述画法并说明画法的正确性.(2)请在图6中画出两条直线,将▱ABCD分割成四部分,且使含有平行四边形一组对角的两部分面积相等.要求:其中一条直线经过点E(不必叙述画法)回答:有多少种方法?它们有怎样的共同特点?(3)如图7,已知▱ABCD中,BD平分∠ABC,点P为BC边上任意一点.请在图中画出两条直线,将该平行四边形分成面积相等的四部分.要求其中一条直线经过点P.简要叙述画法.【延伸提升】(1)如图8,▱ABCD,两邻边的长度之比AB:BC=1:2,点Q为BC边上任意一点.请用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.要求:画出图形并简要叙述画图方法.(2)对于任意▱ABCD,两邻边的长度之比AB:BC=a:b,点Q为BC边上任意一点.如果用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.请简要叙述画图方法.八年级下学期期末数学试卷一、选择题(1-6小题,每小题2分,7-12小题,每小题三分,共30分)1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>考点:不等式的性质.分析:根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.解答:解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知分式的值为0,则x的值为()A.2B.﹣2 C.3D.﹣3考点:分式的值为零的条件.分析:根据分式的分子为零,分母不为零,分式的值为零,可得答案.解答:解:由分式的值为0,得,解得x=2,故选:A.点评:本题考查了分式值为零的条件,分式的分子为零,分母不为零,分式的值为零,注意不要遗漏分母不为零.3.下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误;故选C.点评:本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列分式是最简分式的是()A.B.C.D.考点:最简分式.分析:要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.解答:解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.点评:此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.5.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.A C=AD B.A B=AB C.∠ABC=∠ABD D.∠BAC=∠BAD考点:直角三角形全等的判定.分析:由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.解答:解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选A.点评:此题考查了直角三角形全等的判定,知道“HL”即为斜边及一直角边对应相等的两直角三角形全等是解题的关键.6.把多项式x2﹣x分解因式,得到的因式是()A.只有x B.x2和x C.x2和﹣x D.x和x﹣1考点:因式分解-提公因式法.专题:计算题.分析:原式提取x分解得到结果,即可做出判断.解答:解:原式=x(x﹣1),故选D.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.7.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.12cm B.9cm C.6cm D.3cm考点:三角形中位线定理;平行四边形的性质.分析:首先根据平行四边形的对角线互相平分,可得点O是AC的中点,然后根据点E 是BC的中点,可得OE是△ABC的中位线,据此求出AB的长为多少即可.解答:解:∵对角线AC,BD交于点O,∴点O是AC的中点,∵点E是BC的中点,∴OE是△ABC的中位线,∴AB=2OE=2×3=6(cm),即AB的长为6cm.故选:C.点评:(1)此题主要考查了三角形中位线定理,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了平行四边形的性质的应用,要熟练掌握,解答此题的关键是要明确平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.8.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.1考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算;解答:解:原式==a+b.故选B.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.9.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>0考点:命题与定理.分析:根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.解答:解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.10.△ABC中,AB=AC,在△ABC内求作一点O,使点O到三边的距离相等.甲同学的作法如图1所示,乙同学的作法如图2所示,对于两人的作法,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.乙对,甲不对考点:作图—复杂作图;角平分线的性质.专题:作图题.分析:根据等腰三角形的性质得到BC的垂直平分线平分∠BAC,根据角平分线的性质可判断甲同学的作法正确;同时也可判断乙同学的作法正确.解答:解:甲同学作了∠ABC的平分线和底边BC的垂直平分线,因为AB=AC,所以BC的垂直平分线平分∠BAC,则点O为△ABC内角的平分线,点O到三边的距离相等,所以甲同学的作法正确;乙同学作了∠ABC和∠ACB的平分线,则点O到三边的距离相等,所以乙同学的作法正确.故选A.点评:本题考查了作图:复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和角平分线的性质.11.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣5考点:一次函数与一元一次不等式.分析:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax﹣3的图象上面.解答:解:从图象得到,当x>﹣2时,y=3x+b的图象对应的点在函数y=ax﹣3的图象上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故选A.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为()A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°考点:平移的性质;方向角;等边三角形的判定与性质.分析:根据方位角的概念,画图正确表示出方位角,利用等边三角形的判定与性质即可求解.解答:解:从图中可发现移动形成的三角形ABC中,AB=AC=3,∠BAC=90°﹣30°=60°,故△ABC是等边三角形.∴∠ACB=60°,∴∠2=90°﹣60°=30°.所以本题的答案为南偏东30°.故选D.点评:解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.二、填空题(每小题3分,共18分)13.若x2+kx+4是一个完全平方式,则常数k的值为±4.考点:完全平方式.专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.解答:解:∵x2+kx+4=x2+kx+22,∴kx=±2×2x,解得k=±4.故答案为:±4.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.在数轴上有A、B两点,其中点A所对应的数是a,点B所对应的数是1.己知A、B 两点的距离小于3,请写出a所满足的不等式﹣2<a<4.考点:由实际问题抽象出一元一次不等式;数轴.分析:根据题意列出不等式组a﹣1<3和1﹣a<3解答即可.解答:解:由题意可得:a﹣1<3和1﹣a<3,解得:﹣2<a<4.故答案为:﹣2<a<4.点评:此题考查不等式的应用,关键是根据题意列出不等式组a﹣1<3和1﹣a<3.16.若解分式方程产生增根,则m=﹣5.考点:分式方程的增根.专题:计算题.分析:分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.解答:解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.如图,ABCD是一块长方形场地,AB=42米,AD=25米,从A、B两处入口的小路都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为960米2.考点:生活中的平移现象.分析:根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.解答:解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(42﹣2)米,宽为(25﹣1)米.所以草坪的面积应该是长×宽=(42﹣2)(25﹣1)=960(米2).故答案为960.点评:此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.18.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.考点:等边三角形的性质.专题:压轴题;规律型.分析:由于点B1是△OBA两条中线的交点,则点B1是△OBA的重心,而△OBA是等边三角形,所以点B1也是△OBA的内心,∠BOB1=30°,∠A1OB=90°,由于每构造一次三角形,OB i 边与OB边的夹角增加30°,所以还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合;又因为任意两个等边三角形都相似,根据相似三角形的面积比等于相似比的平方,由△OB1A1与△OBA的面积比为,求得构造出的最后一个三角形的面积.解答:解:∵点B1是面积为1的等边△OBA的两条中线的交点,∴点B1是△OBA的重心,也是内心,∴∠BOB1=30°,∵△OB1A1是等边三角形,∴∠A1OB=60°+30°=90°,∵每构造一次三角形,OB i 边与OB边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA 的边OB第一次重合,∴构造出的最后一个三角形为等边△OB10A10.如图,过点B1作B1M⊥OB于点M,∵cos∠B1OM=cos30°==,∴===,即=,∴=()2=,即S△OB1A1=S△OBA=,同理,可得=()2=,即S△OB2A2=S△OB1A1=()2=,…,∴S△OB10A10=S△OB9A9=()10=,即构造出的最后一个三角形的面积是.故答案为.点评:本题考查了等边三角形的性质,三角函数的定义,相似三角形的判定与性质等知识,有一定难度.根据条件判断构造出的最后一个三角形为等边△OB10A10及利用相似三角形的面积比等于相似比的平方,得出△OB1A1与△OBA的面积比为,进而总结出规律是解题的关键.三、解答题(本题共8小题,共72分)19.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣,解不等式②得:x<1,∴不等式组的解集为﹣<x<1,在数轴上表示不等式组的解集为:,∴不等式组的整数解为﹣1,0.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.20.先化简(1﹣)÷,再从﹣2,﹣1,0中选一个合适的数代入并求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.解答:解:原式=•=,当x=0时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).考点:因式分解的应用.分析:用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.解答:解:阴影部分面积=πR2﹣4πr2=π(R2﹣4r2)=π(R﹣2r)(R+2r)=3×﹙6.8+2×1.6﹚×﹙6.8﹣2×1.6﹚=108.点评:此题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.解答:解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).点评:此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.23.如图,在▱ABCD中,点E、F分别是对角线BD上两点,且BF=DE,连接AF、CE.求证:四边形AFCE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:可连接对角线AC,通过对角线互相平分得出结论.解答:证明:连接AC交BD于O,∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形.点评:本题考查了平行四边形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.24.如图,MA⊥AB于A,NB⊥AB于B,点O是AB的中点,点D是BN上一点,且BD=AO,点C是AM上一点,∠COD=α.(1)如图1,若AC=AO,则OC与OD的数量关系为OC=OD,α=90°;(2)在(1)的条件下,若点P为BN上一点,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°,得到线段OQ,连接CQ,在图2中补全图形.请猜想CQ与DP的数量关系,并证明你的结论.(3)在(2)的条件下,若∠OQC=30°,OC=,则CQ=(﹣1)a(用含α的代数式表示).考点:几何变换综合题.分析:(1)根据题意和三角形全等的判定证明△CAO≌△DBO,根据全等三角形的性质得到答案;(2)证明△QOC≌△POD,即可得到CQ=DP;(3)根据△QOC≌△POD,求出PD的长,即可得到CQ的长.解答:解:(1)∵点O是AB的中点,∴AO=BO,又∵BD=AO,∴BD=BO,∴∠DOB=∠BDO=45°,又∵AC=AO,∴AC=BD,在△CAO和△DBO中,,∴△CAO≌△DBO,∴OC=OD,∠COA=∠BOD=45°,∴∠COD=α=90°;(2)如图2,∵∠COD=∠POQ=90°,∴∠QOC=∠POD,在△QOC和△POD中,,∴△QOC≌△POD,∴CQ=DP;(3)∵OD=OC=,△BOD是等腰直角三角形,∴BD=OB=a,∵∠OPD=∠OQC=30°,∴BP=a,则PD=a﹣a,∴CQ=PD=(﹣1)a.点评:本题考查的是旋转变换的性质、全等三角形的判定和性质,理解旋转方向、旋转角和旋转中心的概念、掌握全等三角形的判定定理和性质定理是解题的关键.25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?考点:分式方程的应用;一元一次不等式的应用.专题:工程问题.分析:(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.解答:解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.26.【问题背景】如图1,图2,过平行四边形一组对角的顶点画直线,或者过一组对边的中点画直线,可以把此四边形分割成面积相等的两部分.如图3,图4,分别过两组对角的顶点画直线,或者分别过两组对边的中点画直线,可以把该平行四边形分割成面积相等的四部分.【探究发现】(1)如图5,点E为▱ABCD内任意一点,过点E画一条直线,将▱ABCD分成面积相等的两部分,简述画法并说明画法的正确性.(2)请在图6中画出两条直线,将▱ABCD分割成四部分,且使含有平行四边形一组对角的两部分面积相等.要求:其中一条直线经过点E(不必叙述画法)回答:有多少种方法?它们有怎样的共同特点?(3)如图7,已知▱ABCD中,BD平分∠ABC,点P为BC边上任意一点.请在图中画出两条直线,将该平行四边形分成面积相等的四部分.要求其中一条直线经过点P.简要叙述画法.【延伸提升】(1)如图8,▱ABCD,两邻边的长度之比AB:BC=1:2,点Q为BC边上任意一点.请用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.要求:画出图形并简要叙述画图方法.(2)对于任意▱ABCD,两邻边的长度之比AB:BC=a:b,点Q为BC边上任意一点.如果用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.请简要叙述画图方法.考点:四边形综合题.分析:【探究发现】(1)利用平行四边形的性质,对角线互相平分,可得△AON≌△COF,由S△ABC=S▱ABCD,可得S四边形ABFN=S▱ABCD;(2)由平行四边形性质可得全等三角形,利用全等三角形面积相等可得结论;(3)连接AC,交BD于点O,过点O,P作直线OP,在AB上取一点M,使BM=CP,过点M,O作直线MO,由平行四边形的性质和对角线的性质可得结论;【延伸提升】(1)由两邻边的长度之比AB:BC=1:2,根据三角形的面积一定,底边和高成反比例,可得结论;(2)由(1)三角形的面积一定,底边和高成反比例,可得结论.。
2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷

2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷一、选择题(每小题给出的四个选项中只有一项是正确的,每小题3分,共36分)1.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形2.(3分)要使式子有意义,则x的取值范围是()A.x≤1B.x≥1C.x>0D.x>﹣13.(3分)下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,64.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(3分)下列计算正确的是()A.×=B.+=C.=4D.﹣=6.(3分)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)7.(3分)顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形8.(3分)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(3分)在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为()A.(6,0)B.(4,0)C.(6,0)或(﹣16,0)D.(4,0)或(﹣16,0)10.(3分)如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是边AC上一动点,则线段DN+MN的最小值为()A.8B.8C.2D.1011.(3分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的()A.B.C.D.12.(3分)已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6),一次函数y=kx﹣1(k≠0)的图象将四边形ABCD分成面积相等的两部分,则k=()A.2B.C.5D.6二、填空题(每小题3分,共12分)13.(3分)比较大小:.(填“>”、“=”、“<”).14.(3分)一组数据:2,1,2,5,3,2的众数是.15.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,所得的直线不经过第象限.16.(3分)下列命题中,其逆命题成立的是.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.三、解答题(解答写出文字说明、证明过程或演算步骤.共52分)17.(10分)计算题:(1)(+)(﹣);(2)+3.18.(10分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)一一记录下来,则在这组数据中,众数是多少?19.(10分)阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.20.(10分)如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.21.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题给出的四个选项中只有一项是正确的,每小题3分,共36分)1.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.2.【解答】解:由题意得,1﹣x≥0,解得x≤1.故选:A.3.【解答】解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:A.4.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.【解答】解:A、×=,正确;B、+无法计算,故此选项错误;C、=2,故此选项错误;D、﹣=2﹣,故此选项错误;故选:A.6.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.8.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.9.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,∴AB===10,∴AC=10,∴C(﹣16,0)或(4,0).故选:D.10.【解答】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM==10,即DN+MN的最小值是10;故选:D.11.【解答】解:由题意,得y=30﹣5t,∵y≥0,t≥0,∴30﹣5t≥0,∴t≤6,∴0≤t≤6,∴y=30﹣5t是降函数且图象是一条线段.故选:B.12.【解答】解:∵A(0,0),B(10,0),C(10,6),D(0,6),∴OD=BC,CD=AB,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,∴对角线AC、BD的交点坐标为(5,3),∴直线y=kx﹣1经过点(5,3)时,直线将四边形ABCD的面积分成相等的两部分,∴3=5k﹣1,∴k=.故选:B.二、填空题(每小题3分,共12分)13.【解答】解:∵=∴∴故答案为:<.14.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.15.【解答】解:由正比例函数y=﹣2x的图象向上平移3个单位,得y=﹣2x+3,一次函数y=﹣2x+3经过一二四象限,不经过三象限,故答案为:三.16.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意;②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意;成立的有①④,故答案为:①④.三、解答题(解答写出文字说明、证明过程或演算步骤.共52分)17.【解答】解:(1)原式==2﹣3=﹣1;(2)原式=2﹣3+3=2﹣3+=0.18.【解答】解:(1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,所以平均每人捐款==11.5(元);(3)因为初中生最多,所以众数为10(元).19.【解答】解:(1)P,Q两点间的距离==13;(2)△AOB是直角三角形,理由如下:AO2=(1﹣0)2+(2﹣0)2=5,BO2=(4﹣0)2+(﹣2﹣0)2=20,AB2=(4﹣1)2+(﹣2﹣2)2=25,则AO2+BO2=AB2,∴△AOB是直角三角形.20.【解答】解:(1)∵直线y=kx+b经过点A(﹣5,0),B(﹣1,4),,解得,∴y=x+5(2)∵若直线y=﹣2x﹣4与直线AB相交于点C,∴,解得,故点C(﹣3,2).∵y=﹣2x﹣4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,﹣4),直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积为:DE•|∁x|=×9×3=.(3)根据图象可得x>﹣3.21.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。
2019-2020学年邯郸市魏县八年级下学期期末数学试卷

2019-2020学年邯郸市魏县八年级下学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A. 两点之间的线段最短B. 三角形具有稳定性C. 长方形是轴对称图形D. 长方形的四个角都是直角2.已知二次根式√2a−1,则a的取值范围是()A. a<12B. a≤12C. a>12D. a≥123.三角形边长分别为下列各数,其中能围成直角三角形的是()A. 2,3,4B. 3,4,5C. 4,5,6D. 5,6,74.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:成绩(分)3637383940人数(人)12142表中表示成绩分数的数据中,中位数是()A. 38分B. 38.5分C. 39分D. 39.5分5. 下列计算正确的是()A. √5+√2=√7B. (−x)2−x3=−x5C. (−2x+y)(−2x−y)=4x2−y2D. (x−2y)2=x2−4y26. 已知直线l:y=√33x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A. 42016B. 42015C. 42014D. 420137. 如图,四边形ABCD中,AC=BD,顺次连结四边形各边中点得到的图形是()A. 菱形B. 矩形C. 正方形D. 以上都不对8. 函数与函数在同一坐标系中的大致图象是()A. B.C. D.9. 如图,O为两同心圆圆心,点A为大圆上一点,点B为小圆上一点,且∠ABO=90°,AB=3,则该圆环的面积为()A.B. 3πC. 9πD. 6π10. 如图,在平面直角坐标系中,点M的坐标为M(√5,2),那么cosα的值是()A. √52B. 23C. 2√55D. √5311. 某蓄水桶的形状如图所示,60min可将水桶注满,其中水位ℎ(cm)随着注水时间t(min)的变化而变化,假定进水管的水速是均匀的,则h与t的函数图象大致为()。
2019-2020学年冀教版八年级数学下册期末测试题(含答案)

2019-2020学年八年级数学下册期末测试卷、选择题(本大题共16个小题,每小题各2分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的,)A. 审核书稿中的错别字B. 对某校八一班同学的身高情况进行调查C. 对某校的卫生死角进行调查D. 对全县中学生目前的睡眠情况进行调查 A. 4, 3, 5 2cm,菱形的一条对角线也是长 2cm,则另一条对角线长是( 1. 卜列调查适合抽样调查的是(2. 卜列各点中,在第四象限的点是(A . (2, 3) B. (— 2, - 3) C. (2, - 3) D. (— 2, 3)3. 卜列图形是中心对称图形但不是轴对称图形的是B.矩形C.正三角形D.平行四边形 4.点(-2, - 3)关于原点的对称点的坐标是( A. (2, 3)B. (— 2, 3)C. (- 2, - 3) D . (2, - 3) 5.下列关系式中: y= - 3x+1、y = 、y = x 2+1、y=w7x, y 是x 的一次函数的有(ZC. 3个6. 2014年4月13日,某中学初三650名学生参加了中考体育测试, 为了了解这些学生的体考成绩,现从中抽取了 50名学生的体考成绩进行了分析,以下说法正确的是A .这50名学生是总体的一个样本B.每位学生的体考成绩是个体C. 50名学生是样本容量D . 650名学生是总体7 .顺次连接四边形各边的中点,所成的四边形必定是(A.等腰梯形B.直角梯形C.矩形D.平行四边形 8.点M 的坐标是(3,-4),则点M 到x 轴和y 轴和原点的距离分别是(C. 3, 5, 49.已知菱形的边长等于10.已知点P (m-3, m-1)在第二象限,贝U m的取值范围在数轴上表示正确的是(12. 如图,表示 A 点的位置,正确的是(A. (- 1 , 1)B. (- 4, 1)C. (- 2, - 1)D. (1, -2)14, 下列说法中,错误的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相平分的四边形是平行四边形C. 菱形的对角线互相垂直D. 平行四边形的对角线互相平分15. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程 S (米)B. —U0 12 3 +0 12 3 4 D. ------ --------------0 12 3 411 .如果一个正多边形的一个外角为 30 ,那么这个正多边形的边数是(C. 12D. 18B. 在O 点的东北方向上C. 在O 点东偏北40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷一、选择题(每小题给出的四个选项中只有一项是正确的,每小题3分,共36分)1.(3分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形2.(3分)要使式子有意义,则x的取值范围是()A.x≤1B.x≥1C.x>0D.x>﹣13.(3分)下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,64.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(3分)下列计算正确的是()A.×=B.+=C.=4D.﹣=6.(3分)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)7.(3分)顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形8.(3分)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(3分)在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为()A.(6,0)B.(4,0)C.(6,0)或(﹣16,0)D.(4,0)或(﹣16,0)10.(3分)如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是边AC上一动点,则线段DN+MN的最小值为()A.8B.8C.2D.1011.(3分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的()A.B.C.D.12.(3分)已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6),一次函数y=kx﹣1(k≠0)的图象将四边形ABCD分成面积相等的两部分,则k=()A.2B.C.5D.6二、填空题(每小题3分,共12分)13.(3分)比较大小:.(填“>”、“=”、“<”).14.(3分)一组数据:2,1,2,5,3,2的众数是.15.(3分)将正比例函数y=﹣2x的图象向上平移3个单位,所得的直线不经过第象限.16.(3分)下列命题中,其逆命题成立的是.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.三、解答题(解答写出文字说明、证明过程或演算步骤.共52分)17.(10分)计算题:(1)(+)(﹣);(2)+3.18.(10分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)一一记录下来,则在这组数据中,众数是多少?19.(10分)阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.20.(10分)如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.21.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2019-2020学年河北省邯郸市魏县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题给出的四个选项中只有一项是正确的,每小题3分,共36分)1.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.2.【解答】解:由题意得,1﹣x≥0,解得x≤1.故选:A.3.【解答】解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:A.4.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.【解答】解:A、×=,正确;B、+无法计算,故此选项错误;C、=2,故此选项错误;D、﹣=2﹣,故此选项错误;故选:A.6.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.8.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.9.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,∴AB===10,∴AC=10,∴C(﹣16,0)或(4,0).故选:D.10.【解答】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM==10,即DN+MN的最小值是10;故选:D.11.【解答】解:由题意,得y=30﹣5t,∵y≥0,t≥0,∴30﹣5t≥0,∴t≤6,∴0≤t≤6,∴y=30﹣5t是降函数且图象是一条线段.故选:B.12.【解答】解:∵A(0,0),B(10,0),C(10,6),D(0,6),∴OD=BC,CD=AB,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,∴对角线AC、BD的交点坐标为(5,3),∴直线y=kx﹣1经过点(5,3)时,直线将四边形ABCD的面积分成相等的两部分,∴3=5k﹣1,∴k=.故选:B.二、填空题(每小题3分,共12分)13.【解答】解:∵=∴∴故答案为:<.14.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.15.【解答】解:由正比例函数y=﹣2x的图象向上平移3个单位,得y=﹣2x+3,一次函数y=﹣2x+3经过一二四象限,不经过三象限,故答案为:三.16.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意;②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意;成立的有①④,故答案为:①④.三、解答题(解答写出文字说明、证明过程或演算步骤.共52分)17.【解答】解:(1)原式==2﹣3=﹣1;(2)原式=2﹣3+3=2﹣3+=0.18.【解答】解:(1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,所以平均每人捐款==11.5(元);(3)因为初中生最多,所以众数为10(元).19.【解答】解:(1)P,Q两点间的距离==13;(2)△AOB是直角三角形,理由如下:AO2=(1﹣0)2+(2﹣0)2=5,BO2=(4﹣0)2+(﹣2﹣0)2=20,AB2=(4﹣1)2+(﹣2﹣2)2=25,则AO2+BO2=AB2,∴△AOB是直角三角形.20.【解答】解:(1)∵直线y=kx+b经过点A(﹣5,0),B(﹣1,4),,解得,∴y=x+5(2)∵若直线y=﹣2x﹣4与直线AB相交于点C,∴,解得,故点C(﹣3,2).∵y=﹣2x﹣4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,﹣4),直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积为:DE•|∁x|=×9×3=.(3)根据图象可得x>﹣3.21.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。