人教版高中数学必修二第1章《空间几何体复习》导学案
4.必修二第一章《空间几何体》导学案.

三、达标检测
1.下列四个命题中,真命题是(
)
A. 棱柱的面中,至少有两个面互相平行
;
B.棱柱中两个互相平行的平面一定是棱柱的底面
C.棱柱的任意两个侧面一定不平行
D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形
2.下列几何体中,不属于多面体的是 ……………………
A. 立方体
B. 三棱柱
C.长方体
(一 )阅读教材第 3 页,回答下列问题:
旋转体:
.
(二 )阅读教材第 5~ 6 页,回答下列问题:
1.圆柱、锥、台和球的定义以及结构特征,相关概念
.
2.画出圆柱、锥、台,并画出轴、母线,指出圆柱、锥、台的轴、底面、侧面、母线
.
(注意标出几何体的顶点字母)
3.球的截面的性质:用一个平面去截球,得到一个截面,
、
、
;
旋转体包括:
、
、
、
.
( 2)分类方式二:
柱体包括:
、
;
锥体包括:
、
;
台体包括:
、
.
球体 .
2.指出下列图形是由哪些简单的几何体构成的
( 1)
( 2)
( 3)
( 1)
;
( 2)
;
( 3)
.
二、合作探究
例 1:如图,是由等腰梯形、矩形、半圆、圆和三角形对接成的轴对称图形,若将它
轴旋转 1800 后形成一个组合体,下列说法中不正确的是
4.利用斜二测画法画直观图时: ①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形; 以上结论中,正确的是
.
【学习重点】 画出简单组合体的三视图 .
高中数学必修二导学案:第一章空间几何体复习

第一章空间几何体复习三维目标1.认识柱、锥、台、球及其简单组合体的构造特点;2.能画出简单空间几何体的三视图,能辨别三视图所表示的立体模型;3.认识球、柱体、锥体与台体的表面积和体积的计算公式. 能用这些公式解决简单实质问题.________________________________________________________________________________目标三导学做思 1问题 1.请做以下基础练习( 1)充满气的车轮内胎可由下边某个图形绕对称轴旋转而成,这个图形是()( 2)如图,在正四周体A- BCD中, E 、 F、 G 分别是三角形ADC、 ABD、 BCD的中心,则△EFG在该正四周体各个面上的射影全部可能的序号是(C)A.①③B.②③④C.③④D.②④AF??EB G?CD①②③④*(3) 如下图,圆台的上、下底半径和高的比为1:4:4 ,母线长为 10,则圆台的侧面积为( ) A.81πB.100πC.14πD.169π1问题 2.请梳理本章的知识构造.【学做思2】1. 已知三棱锥的底面是边长为 1 的正三角形,两条侧棱长为6311333________.22,则第三条侧棱长的取值范围是2正视图侧视图3俯视图2.―个几何体的三视图如下图( 单位 : m ), 则该几何体的体积为 ______ m3 .*3 .长方体A1B1C1D1ABCD 内接于底面半径为1,高为 1 的圆柱内,如图,设矩形 ABCD 的面积为S,长方体 A1B1C1D1- ABCD 的体积为 V,设矩形ABCD 的一边长 AB= x.(1)将 S 表达为 x 的函数;(2)求 V 的最大值.达标检测1. 已知两个圆锥,底面重合在一同,此中一个圆锥极点究竟面的距2(2)离为 2cm,另一个圆锥极点究竟面的距离为3cm,则其直观图中这两个极点之间的距离为() A. 2cm B.3cm C.2.5cm D.5cm2. 一个几何体的三视图如图(2) 所示,此中正视图和侧视图是腰长为 4 的两个全等的等腰直角三角形,则用________个这样的几何体能够拼成一个棱长为 4 的正方体.3.圆柱形容器内盛有高度为8cm 的水,若放入三个同样的球( 球的半径与圆柱的底面半径同样 ) 后,水恰巧吞没最上边的球如图(3) 所示,则球的半径是________cm.(3)*4 .已知在直三棱柱ABC- A1B1C1中,底面为直角三角形,∠ ACB= 90°, AC= 6,BC= CC1=2,P 是 BC1上一动点,如图所示,则CP+ PA1的最小值为 _____.3。
人教A版最新必修二第1章《空间几何体》导学案设计(含答案)1.1 第2课时

最新人教版数学精品教学资料第2课时圆柱、圆锥、圆台、球及简单组合体的结构特征[学习目标] 1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.知识点一圆柱的结构特征1.定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.2.相关概念(图1).3.表示法:圆柱用表示它的轴的字母表示,图中圆柱表示为圆柱O′O.思考圆柱的母线有多少条?它们之间有什么关系?答圆柱的母线有无数条;相互平行.知识点二圆锥的结构特征1.定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.2.相关概念(图2).3.表示法:圆锥用表示它的轴的字母表示,图中圆锥表示为圆锥SO.思考圆锥过轴的截面叫做轴截面,那么圆锥的轴截面是什么形状?答等腰三角形.知识点三圆台的结构特征1.定义:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.2.相关概念(图3).3.表示法:圆台用表示轴的字母表示,图中圆台表示为圆台OO′.思考圆台的两条母线所在的直线一定相交吗?答一定.由于圆台是由圆锥截得的,故两条母线所在的直线一定相交.知识点四球的结构特征1.定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.2.相关概念(图4).3.表示法:球常用表示球心的字母表示,图中的球表示为球O.思考球能否由圆面旋转而成?答能.圆面以直径所在的直线为旋转轴,旋转半周形成的旋转体即为球.知识点五简单组合体1.概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.题型一旋转体的结构特征例1判断下列各命题是否正确:(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解(1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错.应为球面.反思与感悟 1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.跟踪训练1下列命题正确的是________.(只填序号)①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段;⑦球面上任意三点可能在一条直线上;⑧用一个平面去截球,得到的截面是一个圆面.答案④⑥⑧解析①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四个不同的点,则这四点就在球面上,故⑤错误;根据球的半径定义,知⑥正确;球面上任意三点一定不共线,故⑦错误;用一个平面去截球,一定截得一个圆面,故⑧正确.题型二简单组合体的结构特征例2如图(1)、(2)所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?解旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.反思与感悟 1.平面图形以一边所在直线为轴旋转时,要过有关顶点向轴作垂线,然后想象所得旋转体的结构和组成.2.必要时作模型培养动手能力.跟踪训练2已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解(1)以AB边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC边所在的直线为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD边所在的直线为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.题型三 有关几何体的计算问题例3 如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解 设圆台的母线长为l cm ,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r ,4r . 过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm. ∴SA ′SA =O ′A ′OA . ∴33+l =r 4r =14. 解得l =9(cm), 即圆台的母线长为9 cm.反思与感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪训练3 圆台的上、下底面半径分别为5 cm,10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到点A ,求: (1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.解 (1)如图所示,将侧面展开,绳子的最短距离为侧面展开图中AM的长度,θ=10-520×360°=90°.设OB ′=L ′, 则5L ′·360°=90°,L ′=20 cm. ∴OA =40 cm ,OM =30 cm. ∴AM =OA 2+OM 2=50 cm.即绳子最短长度为50 cm.(2)作OQ ⊥AM 于点Q ,交弧BB ′于点P , 则PQ 为所求的最短距离. ∵OA ·OM =AM ·OQ , ∴OQ =24 cm.故PQ =OQ -OP =24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.1.下列几何体是台体的是( )答案 D解析 台体包括棱台和圆台两种,A 的错误在于四条侧棱没有交于一点,B 的错误在于截面与圆锥底面不平行.C 是棱锥,结合棱台和圆台的定义可知D 正确. 2.给出下列说法:①直线绕直线旋转形成柱面;②曲线平移一定形成曲面;③直角梯形绕一边旋转形成圆台;④半圆绕直径所在直线旋转一周形成球.其中正确的个数为( ) A.1 B.2 C.3 D.0 答案 A解析 ①错,当两直线相交时,不能形成柱面;②错,也可能形成平面;③错,若绕底边旋转,则形成组合体;④根据球的定义知正确.3.向高为H 的水瓶中以恒定的速度注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )答案 B解析 令h =H2,由图象知此时注水体积大于几何体体积的一半,所以B 正确.4.一个圆锥的母线长为20 cm ,母线与轴的夹角为30°,则圆锥的高为________cm. 答案 10 3解析 h =20cos 30°=10 3 (cm).5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为_______. 答案 2解析 如图所示,设等边三角形ABC 为圆锥的轴截面,由题意知圆锥的母线长即为△ABC 的边长,且S △ABC =34AB 2,∴3=34AB 2,∴AB =2.故正确答案为2.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.一、选择题1.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台答案 D解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.2.过球面上任意两点A、B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确答案 B解析当过A,B的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时过A,B作球的大圆有无数个;当直线AB不经过球心O时,经过A,B,O的截面就是一个大圆,这时只能作出一个大圆.3.一个正方体内接于一个球,过球心作一截面,则截面可能的图形是()A.①③B.②④C.①②③D.②③④答案 C解析当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.4.一平面截球O得到半径为 5 cm的圆面,球心到这个平面的距离是2 cm,则球的半径是()A.9 cmB.3 cmC.1 cmD.2 cm答案 B解析设球的半径为R.根据勾股定理,有R=(5)2+22=3(cm).5.过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是()A.πB.2πC.3πD.23π答案 A解析 如图,可知∠OAO ′=60°,∴O ′A =12OA =1,即截面圆的半径是1,则该截面的面积是π.6.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( ) A.4 B.3 C.2 D.0.5 答案 B解析 如图所示,∵两个平行截面的面积分别为5π、8π,∴两个截面圆的半径分别为r 1=5,r 2=2 2. ∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3.7.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )答案 B解析 由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离,故正确答案为B. 二、填空题8.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________. 答案 2 2解析 设圆锥的底面半径为r ,则圆锥的高h =42-r 2.∴由题意可知12·2r ·h =r42-r 2=8,∴r 2=8,∴h =2 2.9.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的______.(填序号)答案 ③解析 易知截面是一个非等边的等腰三角形,排除①④;等腰三角形的底边是正三棱锥的一条棱,这条棱不可能与内切球有交点,所以排除②;而等腰三角形的两条腰正好是正三棱锥两个面的中线,且经过内切球在两个面上的切点,所以正确答案是③. 10.一个无盖的正方体盒子展开后的平面图如图所示,A ,B ,C 是展开图上的三点,则在正方体盒子中∠ABC =________. 答案 90°解析 如图所示,将平面图折成正方体.很明显点A ,B ,C 是上底面正方形的三个顶点,则∠ABC =90°.11.在半径为13的球面上有A 、B 、C 三点,其中AC =6,BC =8,AB =10,则球心到经过这三个点的截面的距离为________. 答案 12解析 由线段的长度知△ABC 是以AB 为斜边的直角三角形,所以其外接圆的半径r =AB 2=5,所以d =R 2-r 2=12.三、解答题12.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,则⎩⎪⎨⎪⎧h +h 1h=49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h,h 2=2h ,即h 1∶h 2=2∶1.13.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离;(3)f (x )的最大值.解 将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°. (1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4). f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR , ∴SR =SA ·SM AM =4xx 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4). (3)∵f (x )=x 2+16(0≤x ≤4)是增函数,∴f (x )的最大值为f (4)=32.。
人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。
2.培养学生善于通过观察实物形状到归纳其性质的能力。
教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。
请列举一些空间几何体的实例。
二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。
那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。
高中数学 第一章 空间几何体章末复习课学案 新人教A版必修2-新人教A版高一必修2数学学案

第一章空间几何体章末复习课1.空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形.棱台是棱锥被平行于底面的平面所截而成的.这三种几何体都是多面体.(2)圆柱、圆锥、圆台、球分别是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体.在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面.(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体.2.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括正视图、侧视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则. 注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:(1)画轴;(2)画平行于x、y 、z 轴的线段分别为平行于x ′、y ′、z ′轴的线段;(3)截线段:平行于x 、z 轴的线段的长度不变,平行于y 轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化,这也是高考考查的重点;根据三视图的画法规则理解三视图中数据表示的含义,从而可以确定几何体的形状和基本量.3.几何体的侧面积和体积的有关计算 柱体、锥体、台体和球体的侧面积和体积公式面积体积圆柱 S 侧=2πrh V =Sh =πr 2h圆锥S 侧=πrl V =13Sh =13πr 2h =13πr 2l 2-r 2圆台 S 侧=π(r 1+r 2)lV =13(S 上+S 下+S 上S 下)h =13π(r 21+r 22+r 1r 2)h直棱柱 S 侧=Ch V =Sh 正棱锥S 侧=12Ch ′ V =13Sh正棱台S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上S 下)h球S 球面=4πR 2V =43πR 3方法一 几何体的三视图和直观图空间几何体的三视图、直观图以及两者之间的转化是本章的难点,也是重点.解题需要依据它们的概念及画法规则,同时还要注意空间想象能力的运用.【例1】 将正方体如图(1)所示截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为( )解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.答案 B【训练1】若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析所给选项中,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有B 选项符合.答案 B方法二几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常能够遇到的问题,如制作物体的下料问题、材料最省问题等.这里应注意各数量之间的关系及各元素之间的位置关系.在计算中,要充分利用平面几何知识,特别注意应用柱体、锥体、台体的侧面展开图.组合体的表面积和体积,可以通过割补法转化为柱体、锥体、台体等的表面积和体积.【例2】如图所示,已知三棱柱ABC-A′B′C′,侧面B′BCC′的面积是S,点A′到侧面B′BCC′的距离是a,求三棱柱ABC-A′B′C′的体积.解连接A′B,A′C,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+12π×22×4=16+8π.答案 A方法三 转化与化归思想运用转化与化归的思想寻求解题途径,常用如下几种策略:(1)已知与未知的转化.由已知想可知,由未知想需知,通过联想,寻找解题途径.(2)正面与反面的转化.在处理某一问题时,按照习惯思维方式从正面思考遇到困难,甚至不可能时,用逆向思维的方式去解决,往往能达到以突破性的效果.(3)一般与特殊的转化.特殊问题的解决往往是比较容易的,可以利用特殊问题内含的本质联系,通过演绎,得出一般结论,从而使问题得以解决.(4)复杂与简单的转化.把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是解数学问题的一条重要原则.【例3】 如图所示,圆台母线AB 长为20 cm ,上、下底面半径分别为5 cm 和10 cm ,从母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点,求这条绳子长度的最小值.解 如图所示,作出圆台的侧面展开图及其所在的圆锥. 连接MB ′,P 、Q 分别为圆台的上、下底面的圆心.在圆台的轴截面中,∵Rt △OPA ∽Rt △OQB , ∴OA OA +AB =PA QB ,∴OA OA +20=510.∴OA =20(cm). 设∠BOB ′=α,由扇形弧BB ′︵的长与底面圆Q 的周长相等, 得2×10×π=2×OB ×π×α360°, 即20π=2×(20+20)π×α360°,∴α=90°.∴在Rt △B ′OM 中,B ′M =OM 2+OB ′2=302+402=50(cm),即所求绳长的最小值为50 cm.【训练3】 圆柱的轴截面是边长为5 cm 的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A.10 cm B.52π2+4 cm C.5 2 cmD.5π2+1 cm解析 如图所示,沿母线BC 展开,曲面上从A 到C 的最短距离为平面上从A 到C 的线段的长.∵AB =BC =5,∴A ′B =AB ︵=12×2π×52=52π.∴A ′C =A ′B 2+BC 2=254π2+25=5π24+1=52π2+4(cm). 答案 B1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20π B.24πC.28π D.32π解析由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l=(23)2+22=4,所以圆锥的侧面积为S锥侧=12×4π×4=8π,圆柱的侧面积S柱侧=4π×4=16π,所以组合体的表面积S=8π+16π+4π=28π,故选C.答案 C2.(2016·全国Ⅲ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.81解析由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+3×45×2=54+18 5.答案 B3.(2015·全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).答案 B4.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C.323 cm3D.403cm 3解析 先由三视图还原几何体,再利用相应的体积公式计算.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3).所以该几何体的体积V =V 1+V 2=323(cm 3).答案 C5.(2015·陕西高考)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为:S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.答案 D6.(2014·浙江高考)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 2解析 该几何体如图所示,长方体的长、宽、高分别为 6 cm ,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm ,4 cm ,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+⎝ ⎛⎭⎪⎫5×3+4×3+2×12×4×3=99+39=138(cm 2).答案 D7.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由三视图知该四棱柱为直四棱柱,底面积S =(1+2)×12=32,高h =1,所以四棱柱体积V =S ·h =32×1=32.答案 328.(2016·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm ,下面长方体是底面边长为4 cm ,高为2 cm ,其直观图如右图:其表面积S =6×22+2×42+4×2×4-2×22=80(cm 2).体积V =2×2×2+4×4×2=40(cm 3).答案 80 409.(2013·浙江高考)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3).答案 24。
2019-2020学年高中数学 第一章 空间几何体章节复习导学案新人教版必修2.doc

2019-2020学年高中数学 第一章 空间几何体章节复习导学案新人教版必修2【学习目标】1、熟悉简单空间几何体及简单组合体的结构特征,2、能画出简单空间几何体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述三视图表示的立体模型。
3、了解简单空间几何体的表面积和体积的计算公式。
重点:熟悉简单几何体及简单组合体的结构特征,并会画出它们的三视图。
难点:区别各种几何体结构特征的异同,并能与实际生活中相联系。
【课前导学】 1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积和体积【典例探究】例1、 (P36 A10) 直角三角形的三边长分别为3cm 、4cm 、5cm ,绕三边旋转一周分别形成三个几何体.说明它们的结构特征,画出其直观图和三视图,并求出它们的表面积和体积.变式1、有一个几何体由8个面围成,每一个面都是正三角形,并且有四个顶点A ,B ,C ,D 在同一个平面内,ABCD 是边长为30cm 的正方形.说明这个几何体的结构特征,画出其直观图和三视图,并求出它的表面积和体积.(P36 B1)棱柱圆柱棱锥圆锥棱台圆台简单组合体柱体锥体台体球体中心投影平行投影斜二测画法俯视图侧视图正视图三视图直观图投影例2、圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长.【总结提升】【反馈检测】1、如图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )甲 乙 丙①长方体 ②圆锥 ③三棱锥 ④圆柱A.④③②B.②①③C.①②③D.③②④ 2、正方体的内切球和外接球的半径之比为( )2C.3、如图,一个三棱柱形容器中盛有水,且侧棱'8AA 。
若侧面''AAC C 水平放置时,液面恰好过的中点。
当底面水平放置时,液面高为多少?4、下列图形表示水平放置图形的直观图,画出它们原来的图形.。
5、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.。
必修2第一章立体几何导学案

1、1简单几何体学习目标1、知识与技能了解简单旋转体和简单多面体的有关概念。
通过教材展示的几何体的实物、模型、图片等,让学生感受空间几何体的结构特征。
3、情感、态度与价值观通过学生生活中的实物展示和化学中的物质晶体状来培养学生观察、分析、思考的科学态度。
进一步培养学生的数学建模思想。
【重点】简单几何体的有关概念。
【难点】对简单多面体中棱柱、棱台概念的理解。
学习过程一、预习案:“我学习,我主动,我参与,我收获!”◆学法指导:认真阅读教材p3-p4,初步了解简单几何体的有关概念及结构特征,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学共同探究解决。
◆教材助读:1、旋转体(1)旋转面:一条绕着它所在的平面内的一条旋转所形成的曲面。
(2)旋转体:的旋转面围成的几何体。
2、球(1)球面:所在的直线为旋转轴,将半圆旋转所围成的曲面。
(2)球:所围成的几何体叫作球体,简称球。
(3)球的有关概念①球心: .②球的半径:连接和的线段。
③球的直径:连接,并且的线段。
3、圆柱、圆锥、圆台(1)定义:分别以、、所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。
(2)高、底面、侧面及侧面的母线。
4、多面体:由若干个围成的几何体叫作多面体。
5、棱柱:两个面互相平行(无公共点的两个平面是平行的),其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱。
(1)棱柱的有关概念:棱柱定义里的的平面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是。
叫作棱柱的棱,与的公共顶点叫作棱柱的顶点。
(2)棱柱的分类按侧棱是否垂直于底面(侧棱垂直于底面)斜棱柱(侧棱不垂直于底面)按底面多边形形状(底面是三角形)(底面是四边形)(底面是五边形)……(3)正棱柱:底面是的叫作正棱柱。
6、棱锥:有一个面是,其余各面是的三角形,这些面围成的几何体叫作棱锥。
7、棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。
高中数学 第一章 空间几何体导学案(无答案)新人教版必修2 学案

习题课 空间几何体课时目标: 熟练掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算. 教学重难点:掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算. 复习:1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式.2.空间几何体的表面积和体积公式.名称几何体 表面积体积柱体(棱柱和圆柱)S 表面积=S 侧+2S 底V =________锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =________台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =_____________________球S =________ V =43πR 3习题: 一、选择题1.圆柱的轴截面是正方形,面积是S ,则它的侧面积是( ) A .1πS B .πS C .2πS D .4πS 2.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .12B .23C .1D .23.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.一个几何体的三视图如图,该几何体的表面积为( )A .280B .292C .360D .372 二、填空题7.一个几何体的三视图如图所示,则这个几何体的体积为________.8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm 3.三、解答题10.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空间几何体复习
三维目标
1.认识柱、锥、台、球及其简单组合体的结构特征;
2. 能画出简单空间几何体的三视图,能识别三视图所表示的立体模型;
3. 了解球、柱体、锥体与台体的表面积和体积的计算公式.能用这些公式解决简单实际问题. ________________________________________________________________________________ 目标三导 学做思1
问题1. 请做以下基础练习
(1)充满气的车轮内胎可由下面某个图形绕对称轴旋转而成,这个图形是(
)
(2)如图,在正四面体A -BCD 中, E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是( C )
A .①③
B .②③④
C .③④
D .②④
*(3)如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( ) A .81π B .100π C .14π D .169π
① ② ③ ④
A B
C
D
∙
∙
∙
E
F G
问题2. 请梳理本章的知识结构.
【学做思2】
1.已知三棱锥的底面是边长为1的正三角形,两条侧棱长为13
2,则第三条侧棱长的取值范围是________.
2.―个几何体的三视图如图所示 (单位:m ),则该几何体的体积为______3
m .
*3.长方体1111A BC D ABCD 内接于底面半径为1,高为1的圆柱内,如图,设矩形ABCD 的面积为S ,长方体A 1B 1C 1D 1-ABCD 的体积为V ,设矩形ABCD 的一边长AB =x . (1)将S 表达为x 的函数; (2)求V 的最大值. 达标检测
1.已知两个圆锥,底面重合在一起,
其中一个圆锥顶点到底面的距
(2)
离为2cm ,另一个圆锥顶点到底面的距离为3cm ,则其直观图中这两个顶点之间的距离为( )
A .2cm
B .3cm
C .2.5cm
D .5cm
2.一个几何体的三视图如图(2)所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.
3.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球如图(3)所示,则球的半径是________cm.
*4.已知在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动
点,如图所示,则CP +P A 1的最小值为_____.
(3)。