供配电系统.ppt
合集下载
供配电技术(全套PPT课件)

3.三级负荷
三级负荷为不属于一级和二级负荷者。对一些非 连续性生产的中小型企业,停电仅影响产量或造成 少量产品报废的用电设备,以及一般民用建筑的用 电负荷等均属三级负荷。
配电线路:分6-10KV厂内高压配电线路和380/220V 厂内低压配电线路。
车间变电所(建筑物变电所):6-10KV降到 380/220V
3. 供配电的要求和课程任务
供配电的基本要求是:
(1)安全
(2)可靠
(3)优质
(4)经济
本课程的任务: 讲述供配电系统电能供应和分配的基本知识和
理论,使学生掌握供配电系统的设计和计算方法, 管理和运行技能,为学生今后从事供配电技术工作 奠定基础。
1.一级负荷
一级负荷为中断供电将造成人身伤亡者;中断供电 将在政治上、经济上造成重大损失者,如重大设备损 坏、重大产品报废、用重要原料生产的产品大量报废, 国民经济中重点企业的连续性生产过程被打乱而需要 长时间恢复等;中断供电将有重大政治、经济影响的 用电单位的正常工作的负荷者。
2.二级负荷
二级负荷为中断供电将在政治上、经济上造成较 大损失者,如主要设备损坏、大量产品报废,连 续性生产过程被打乱需较长时间才能恢复,重点 企业大量减产等;中断供电系统将影响重要用电 单位正常工作的负荷者;中断供电将造成大型影 剧院、大型商场等较多人员集中的重要公共场所 秩序混乱者。
2. 供配电系统--由总降变电所、高压配电所、 配电线路、车间变电所和用电设备组成。
总降压变电所:将35-110KV的外部供电电源降到610KV共高压配电所、车间变电所或建筑物变电所、 高压用电设备。一般大型企业都设之。
高压配电所:接受6-10KV电压,再分配。一般负荷
分散、厂区大的大型企业需设置。
三级负荷为不属于一级和二级负荷者。对一些非 连续性生产的中小型企业,停电仅影响产量或造成 少量产品报废的用电设备,以及一般民用建筑的用 电负荷等均属三级负荷。
配电线路:分6-10KV厂内高压配电线路和380/220V 厂内低压配电线路。
车间变电所(建筑物变电所):6-10KV降到 380/220V
3. 供配电的要求和课程任务
供配电的基本要求是:
(1)安全
(2)可靠
(3)优质
(4)经济
本课程的任务: 讲述供配电系统电能供应和分配的基本知识和
理论,使学生掌握供配电系统的设计和计算方法, 管理和运行技能,为学生今后从事供配电技术工作 奠定基础。
1.一级负荷
一级负荷为中断供电将造成人身伤亡者;中断供电 将在政治上、经济上造成重大损失者,如重大设备损 坏、重大产品报废、用重要原料生产的产品大量报废, 国民经济中重点企业的连续性生产过程被打乱而需要 长时间恢复等;中断供电将有重大政治、经济影响的 用电单位的正常工作的负荷者。
2.二级负荷
二级负荷为中断供电将在政治上、经济上造成较 大损失者,如主要设备损坏、大量产品报废,连 续性生产过程被打乱需较长时间才能恢复,重点 企业大量减产等;中断供电系统将影响重要用电 单位正常工作的负荷者;中断供电将造成大型影 剧院、大型商场等较多人员集中的重要公共场所 秩序混乱者。
2. 供配电系统--由总降变电所、高压配电所、 配电线路、车间变电所和用电设备组成。
总降压变电所:将35-110KV的外部供电电源降到610KV共高压配电所、车间变电所或建筑物变电所、 高压用电设备。一般大型企业都设之。
高压配电所:接受6-10KV电压,再分配。一般负荷
分散、厂区大的大型企业需设置。
《供配电系统》PPT课件 (2)

工 程
⑵供电要求
无特殊要求,可由单电源供电。
·
9
精选课件ppt
9
·
12.1 供电系统
负荷分级实例:
建
筑
一级负荷:
设
备
重要办公建筑:
工 程
——客梯电力;
——主要办公室、会议室、总值班室、档案室、 主要通道照明。
·
10
精选课件ppt
10
·
12.1 供电系统
一级负荷:
建
筑
一、二级旅馆(四星以上酒店):
·
12.1 供电系统
供配电系统:
建
筑
利用电气设备将电源与用电设备联系在一起的整
设 备
体。
工 程
分界开关:
城市电网与建筑供配电系统的分界点。
之前由供电部门管理,之后由建筑用电单位管理。
·
精选课件ppt
3
·
·
12.1 供电系统
一、负荷分级和供电电源
建
筑
㈠负荷等级
设
备
按电力负荷性质和停电造成的损失程度划分。
21
12.2 建筑用电负荷
·
·
一、负荷容量
建 筑
1. 设备容量(装机容量)
设 备
——所有安装的用电设备的额定功率之总和,kW
工 程
。
2. 计算容量
——通过计算求出的实际使用负荷容量,kW。
3. 装表容量
——计量用电度表所表明的容量,A。
用户限定在装表容量下使用电力。
装表容量在20A及以下时,允许采用单相供电,一
一级负荷中因停电导致:
实时处理计算机及网络工作异常;
发生爆炸、火灾以及严重中毒。
供配电系统学习课件

日常维护
定期检查设备运行状态,记录运行数据,及时发现并处理小故障,确保系统稳定运行。
定期维护
按照规定的时间周期对设备进行全面的检查、清洁、润滑等维护工作,预防性维护能延长设备使用寿命。
故障诊断
通过监测和检查,确定故障的性质和位置,为后续的故障处理提供依据。
05
CHAPTER
供配电系统的设计与优化
故障诊断与预防性维护
优化调度与自动控制
高级计量基础设施(AMI)
06
CHAPTER
供配电系统的安全与防护
Hale Waihona Puke 接地方式根据供配电系统的特点选择合适的接地方式,如中性点接地、保护接地等。
接地电阻
对接地电阻进行定期检测和维护,确保其符合相关标准。
接地故障检测
建立接地故障检测系统,及时发现和处理接地故障,保障供配电系统的安全运行。
二级负荷
不属于一级和二级的负荷,对供电可靠性要求较低,允许较长时间停电。
三级负荷
03
CHAPTER
供配电系统的主要设备
变压器是供配电系统中的核心设备之一,用于实现电压变换和电能传输。
变压器在供配电系统中主要用于连接不同电压等级的电网,以及为用户提供合适的电压等级。
变压器由铁芯、绕组、绝缘材料等部分组成,根据不同的需求可以选择不同的绕组匝数比,以实现升压或降压的功能。
组成
03
提高生活质量
供配电系统的发展为人民提供了便捷、舒适的生活条件,如照明、空调、电视等。
01
保障工业生产和人民生活的正常进行
供配电系统是现代社会运转的基础设施,为各种用电设备提供可靠的电能。
02
促进经济发展
稳定的供配电系统能够保障企业正常生产和经营,推动经济发展。
定期检查设备运行状态,记录运行数据,及时发现并处理小故障,确保系统稳定运行。
定期维护
按照规定的时间周期对设备进行全面的检查、清洁、润滑等维护工作,预防性维护能延长设备使用寿命。
故障诊断
通过监测和检查,确定故障的性质和位置,为后续的故障处理提供依据。
05
CHAPTER
供配电系统的设计与优化
故障诊断与预防性维护
优化调度与自动控制
高级计量基础设施(AMI)
06
CHAPTER
供配电系统的安全与防护
Hale Waihona Puke 接地方式根据供配电系统的特点选择合适的接地方式,如中性点接地、保护接地等。
接地电阻
对接地电阻进行定期检测和维护,确保其符合相关标准。
接地故障检测
建立接地故障检测系统,及时发现和处理接地故障,保障供配电系统的安全运行。
二级负荷
不属于一级和二级的负荷,对供电可靠性要求较低,允许较长时间停电。
三级负荷
03
CHAPTER
供配电系统的主要设备
变压器是供配电系统中的核心设备之一,用于实现电压变换和电能传输。
变压器在供配电系统中主要用于连接不同电压等级的电网,以及为用户提供合适的电压等级。
变压器由铁芯、绕组、绝缘材料等部分组成,根据不同的需求可以选择不同的绕组匝数比,以实现升压或降压的功能。
组成
03
提高生活质量
供配电系统的发展为人民提供了便捷、舒适的生活条件,如照明、空调、电视等。
01
保障工业生产和人民生活的正常进行
供配电系统是现代社会运转的基础设施,为各种用电设备提供可靠的电能。
02
促进经济发展
稳定的供配电系统能够保障企业正常生产和经营,推动经济发展。
供配电课件.ppt

供配电课件
目录
• 供配电系统概述 • 供配电系统的电源与负荷 • 供配电系统的设计与运行 • 供配电系统的保护与控制 • 供配电系统的安全与维护 • 供配电系统的未来发展与挑战
01
供配电系统概述
供配电系统的定义与组成
定义
供配电系统是指将电能从电源输 送到用户的整个过程所涉及的设 备和设施的总称。
供配电系统的保护装置
断路器
用于在电流超过预定值时断开电路, 保护电路和设备不受损坏。
熔断器
当电流超过预定值时,熔断器会熔断 ,断开电路。
过流保护继电器
监测电流并当电流超过预定值时触发 保护机制。
漏电保护装置
检测漏电电流,并在漏电发生时断开 电路。
供配电系统的控制方式
手动控制
自动控制
通过人工操作开关或按钮来控制电源的通 断。
ABCD
分布式控制系统(DCS)
用于集中监控和管理供配电系统。
能源管理系统(EMS)
用于监控、管理和优化供配电系统的能源使用。
05
供配电系统的安全与维护
供配电系统的安全措施
确保设备接地Leabharlann 配置过流保护为了防止触电事故,供配电设备应进 行接地处理,并定期检查接地电阻是 否符合标准。
为了防止电流过大导致设备损坏或火 灾事故,应配置过流保护装置,如熔 断器或断路器。
术创新、完善政策法规、提高投资回报等方面的对策。
智能电网的建设与发展
智能电网概述
智能电网是指通过先进的传感量测、通信、信息技术以及控制手段 ,实现电网的智能化管理和运行。
智能电网的主要功能
智能电网的主要功能包括需求响应、分布式电源接入、储能系统管 理、电网安全与控制等,能够提高供电可靠性和能源利用效率。
目录
• 供配电系统概述 • 供配电系统的电源与负荷 • 供配电系统的设计与运行 • 供配电系统的保护与控制 • 供配电系统的安全与维护 • 供配电系统的未来发展与挑战
01
供配电系统概述
供配电系统的定义与组成
定义
供配电系统是指将电能从电源输 送到用户的整个过程所涉及的设 备和设施的总称。
供配电系统的保护装置
断路器
用于在电流超过预定值时断开电路, 保护电路和设备不受损坏。
熔断器
当电流超过预定值时,熔断器会熔断 ,断开电路。
过流保护继电器
监测电流并当电流超过预定值时触发 保护机制。
漏电保护装置
检测漏电电流,并在漏电发生时断开 电路。
供配电系统的控制方式
手动控制
自动控制
通过人工操作开关或按钮来控制电源的通 断。
ABCD
分布式控制系统(DCS)
用于集中监控和管理供配电系统。
能源管理系统(EMS)
用于监控、管理和优化供配电系统的能源使用。
05
供配电系统的安全与维护
供配电系统的安全措施
确保设备接地Leabharlann 配置过流保护为了防止触电事故,供配电设备应进 行接地处理,并定期检查接地电阻是 否符合标准。
为了防止电流过大导致设备损坏或火 灾事故,应配置过流保护装置,如熔 断器或断路器。
术创新、完善政策法规、提高投资回报等方面的对策。
智能电网的建设与发展
智能电网概述
智能电网是指通过先进的传感量测、通信、信息技术以及控制手段 ,实现电网的智能化管理和运行。
智能电网的主要功能
智能电网的主要功能包括需求响应、分布式电源接入、储能系统管 理、电网安全与控制等,能够提高供电可靠性和能源利用效率。
《供配电系统》PPT课件

需用系数Kx是在确定某一类用电设备组的计算负荷时,考 虑成组用电设备运行时可能出现的现象,包括以下几个方面:
1.可能不同时工作,存在同时使用系数Kt。 2.未必全部在满负荷情况下运行,存在负载系数Kf。 3. 如果是由人工控制的用电设备组要考虑工人操作水平对 用电设备取用功率的影响,存在工作系数Kg。 其中Kt、Kf两项起主要作用。需要系数Kx一般是经过大量 实测数据积累得到的,并且随着工艺进步、技术发展而变化。
h
2
1866年德国的科学家西门子以电磁铁代替永磁铁,研制出自 激励式发电机,发电机开始进入实用阶段。1870年比利时的克拉 姆又研制出了自激励式直流发电机,1877年真正实用的发电机开 始进入商业化生产阶段。
发电机可以由水轮机、汽轮机、柴油机或其它动力驱动,将 机械能传给发电机,再由发电机转换为电能。
1.功率的概念: 在电网中,由电源供给负载的电功率有两种:有功功率和
无功功率。电阻消耗有功功率,是耗能元件,电感、电容不消 耗有功功率,是储能元件。
1)有功功率P (active power ):单位KW P=UI cosφ ,其中,cosφ称为功率因素。
h
8
例如40W的日光灯,除需40W有功功率(镇流器也需消耗 一部分有功功率)来发光外,还需80var左右的无功功率供镇 流器的线圈建立交变磁场用。由于它对外不做功,才被称之为 无功功率。
2)无功功率Q (reactive power ):单位VAR
Q=UI sinφ 电容是不连接的两块极板,用来储存电荷,并放出电荷,
把电能转化为电场能;在具有电感(或电容)的电路里,电感 (或电容)在半周期的时间里把电源的能量变成磁场(或电场) 的能量贮存起来,在另外半周期的时间里又把贮存的磁场(或 电场)能量送还给电源。它们只是与电源进行能量交换,并没 有真正消耗能量。
1.可能不同时工作,存在同时使用系数Kt。 2.未必全部在满负荷情况下运行,存在负载系数Kf。 3. 如果是由人工控制的用电设备组要考虑工人操作水平对 用电设备取用功率的影响,存在工作系数Kg。 其中Kt、Kf两项起主要作用。需要系数Kx一般是经过大量 实测数据积累得到的,并且随着工艺进步、技术发展而变化。
h
2
1866年德国的科学家西门子以电磁铁代替永磁铁,研制出自 激励式发电机,发电机开始进入实用阶段。1870年比利时的克拉 姆又研制出了自激励式直流发电机,1877年真正实用的发电机开 始进入商业化生产阶段。
发电机可以由水轮机、汽轮机、柴油机或其它动力驱动,将 机械能传给发电机,再由发电机转换为电能。
1.功率的概念: 在电网中,由电源供给负载的电功率有两种:有功功率和
无功功率。电阻消耗有功功率,是耗能元件,电感、电容不消 耗有功功率,是储能元件。
1)有功功率P (active power ):单位KW P=UI cosφ ,其中,cosφ称为功率因素。
h
8
例如40W的日光灯,除需40W有功功率(镇流器也需消耗 一部分有功功率)来发光外,还需80var左右的无功功率供镇 流器的线圈建立交变磁场用。由于它对外不做功,才被称之为 无功功率。
2)无功功率Q (reactive power ):单位VAR
Q=UI sinφ 电容是不连接的两块极板,用来储存电荷,并放出电荷,
把电能转化为电场能;在具有电感(或电容)的电路里,电感 (或电容)在半周期的时间里把电源的能量变成磁场(或电场) 的能量贮存起来,在另外半周期的时间里又把贮存的磁场(或 电场)能量送还给电源。它们只是与电源进行能量交换,并没 有真正消耗能量。
供配电系统常用电气设备课件(PPT38张)

• 1.环网供电单元
•
环网供电单元(The Unit of Ring Network
Power Supply)由间隔组成,一般至少有三个间隔组
成,即两个环缆进出间隔和一个变压器回路间隔。
23.07.2020
21
•
城网一般用环缆,在用架空线的地方,可将
架空线引至环网供电单元旁,再由电缆引进和引出,
如图所示。
低压负荷开关
播放 动画
19
•
2、3 高压熔断器(fuse)
• 高压熔断器是供配电网络中人为设置的最薄弱的元件。
当其所在电路发生短路或长期过载时,它便因过热而
熔断,并通过灭弧介质将熔断时产生的电弧熄灭,最
终开断电路,以保护电力电路及其他的电气设备。
跌落式熔断器
23.07.2020
限流式熔断器
20
• 2.4 组合电器成套装置
的核心设备,通过它将一种电压的交流电能转换成另
一种电压的交流电能,以满足输电、供电、配电或用
电的需要。
23.07.2020
3
• 1. 常用电力变压器的种类
• (1)按相数分类:有三相电力变压器和单相电力变压器。大
多数场合使用三相电力变压器,在一些低压单相负载较多的场 合,也使用单相变压器。
• (2)按绕组导电材料分类:有铜绕组变压器和铝绕组变压器。
减少测量仪表的规格,简化其生产过程,保证测量人
员的安全操作,对于高电压、大电流均采用互感器降
压、变流后再进行测量。同时互感器也可以作为继电
保护和信号装置的电源,以使控制和保护装置与高压
回路隔开。Leabharlann 23.07.20206
•
电压互感器可以扩大测量范围,相当
供配电系统的构成 PPT课件

上接线端子
负荷隔离开关
上隔离开关
传动机构
真空负荷开关 弹簧脱扣机构 下接线端子
接地开关
5、熔断器 FA 功能:过电流时熔断 自身以开断电路。 特征:不可自复;灭弧能力强。 可开断部分过负荷电流和短路电流。 是一种一次保护电器。
户内高压限流熔断器结构
石英沙 熔断撞针 金属熔体缠绕在内瓷管上
瓷熔管剖面
第2章 供配电系统的构成
2.1 供配电系统结构要素
2.1.1 供配电系统的电源与负荷 电源:变配电所,自备电源(包括自备发电机、 电池逆变电源等)。 负荷:用电设备。 标称供电电压:供电企业与电力用户连接点 (PCC-Point of Common Coupling)所处电网标称电 压,也即供配电系统的电源电压。0.38~110kV。 标称用电电压:用电设备额定电压。220/380V、 6kV、10kV。
术语解释 以下均为业界大致认同的含义,非严格定义。 设备(Equipment,Device):由工厂制造的具有 某类特定功能的整体,以产品形式提供。 装置(Installation):由若干设备及安装构件(在 工作现场)装配起来的具有更复杂功能的整体。 设施(Facility):具有特定功能的一系列设备和 (或)装置的组合,连同为这些设备(装置)服务的 建、构筑物所构成的整体。
2.1.2 供配电系统的电压层次 背景:供电电压与用电电压相同或不同。 要求:电力用户可能需要变换电压等级。 结果:用户电网也可能有不同的电压等级。 为何采用与用电电压不一致的供电电压? 技术经济综合平衡结果。不同负荷量值和分布区 域(统称系统规模)的用户,适合不同的供电电压。 但用电电压绝大多多数固定为220/380V,或10kV,与 系统规模无关。
《供配电系统》课件

变电站由变压器、断路器、隔离开 关、电流互感器和电压互感器等设 备组成。
用电设备
用电设备的作用
用电设备是供配电系统的终端,负责消耗电能以实现各种功能。
用电设备的种类
用电设备种类繁多,包括家用电器、工业设备、交通工具等。
用电设备的接入方式
用电设备通过输配电线路接入电源,根据用电需求选择相应的接入 方式和控制方式。
优化运行方式
如采用变压器的经济运行、电 动机的调速运行等,避免不必 要的能源浪费。
实施需求侧管理
通过合理的用电安排,如分时 电价、错峰用电等,有效降低 高峰期的用电负荷。
加强能源管理和监测
通过安装智能电表、能源管理 系统等,实时监控能源使用情 况,及时发现和解决能源浪费
问题。
供配电系统的环保要求
减少污染物排放
通过检测供配电系统中的电流、电压、功率等电 气量,判断是否超过设定的阈值,从而判断是否 发生故障。
继电保护的组成
包括测量部分、逻辑部分和执行部分,分别负责 检测电气量、进行逻辑判断和执行切除操作。
自动控制装置
自动控制装置的作用
01
在供配电系统中,自动控制装置能够根据系统的运行状态自动
调整设备的运行参数,保证系统的稳定和安全。
分布式电源的应用将有助于提高供配 电系统的可靠性和稳定性,降低对传 统集中式能源供应的依赖,同时为能 源的可持续发展提供有力支持。
THANK YOU
详细描述
供配电系统应满足安全性、可靠性、经济性和可持续性等基本要求。安全性是指系统在异常情况下能够保证人员 和设备的安全;可靠性是指系统能够保证持续、稳定地供电;经济性是指系统建设和运行的成本应合理;可持续 性是指系统应符合环保和节能的要求。
用电设备
用电设备的作用
用电设备是供配电系统的终端,负责消耗电能以实现各种功能。
用电设备的种类
用电设备种类繁多,包括家用电器、工业设备、交通工具等。
用电设备的接入方式
用电设备通过输配电线路接入电源,根据用电需求选择相应的接入 方式和控制方式。
优化运行方式
如采用变压器的经济运行、电 动机的调速运行等,避免不必 要的能源浪费。
实施需求侧管理
通过合理的用电安排,如分时 电价、错峰用电等,有效降低 高峰期的用电负荷。
加强能源管理和监测
通过安装智能电表、能源管理 系统等,实时监控能源使用情 况,及时发现和解决能源浪费
问题。
供配电系统的环保要求
减少污染物排放
通过检测供配电系统中的电流、电压、功率等电 气量,判断是否超过设定的阈值,从而判断是否 发生故障。
继电保护的组成
包括测量部分、逻辑部分和执行部分,分别负责 检测电气量、进行逻辑判断和执行切除操作。
自动控制装置
自动控制装置的作用
01
在供配电系统中,自动控制装置能够根据系统的运行状态自动
调整设备的运行参数,保证系统的稳定和安全。
分布式电源的应用将有助于提高供配 电系统的可靠性和稳定性,降低对传 统集中式能源供应的依赖,同时为能 源的可持续发展提供有力支持。
THANK YOU
详细描述
供配电系统应满足安全性、可靠性、经济性和可持续性等基本要求。安全性是指系统在异常情况下能够保证人员 和设备的安全;可靠性是指系统能够保证持续、稳定地供电;经济性是指系统建设和运行的成本应合理;可持续 性是指系统应符合环保和节能的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 110kV及以下供配电系统
4.0.1 概述
-1 本章主要讲供配电系统的设计方案,核心内容是电气主接线。
-2 电气主接线对电力系统的可靠性、经济性和灵活性具有决定意义, 与设备导体选择、变配电所布置、继电保护、自动装置等密切相关。
-3 电能质量和无功补偿,也是供配电系统及其主接线方案的重要内容。
-4 必须正确处理各方面的关系,全面分析各种相关因素,确定合理的 主接线方案。
g. 隔离开关的配置 :断路器的两侧均配置;母线上的避雷器和电压互 感器合用一组;变压器中性点上的避雷器可不配;跨条上宜两组串联。
h. 接地开关的配置:每组母线上1~2组(通常在母联处、PT处);断 路器两侧,线路隔离开关外侧等。
4.2.2 高压系统中性点接地方式
-1 概述 电力网中性点接地方式是一个综合性问题:直接影响电网的过电压水平 和绝缘水平、系统供电的可靠性和连续性、继电保护配置、对通讯线路 的干扰等。 -2 中性点接地方式的比较 见表4-2-2。 -3 中性点接地方式的选择[29] a.110kV及以上系统应采用有效接地方式(X0≤3X1,R0 ≤X1 ),通常为 直接接地。
变配电所的主接线(续)
421.3 设备配置 a. 所用变压器的配置
b. 中性点接地设备(4.2.2)
c. 无功补偿设备(4.4)
d. 避雷器的配置(11.2.1.) e. 电压互感器的配置:满足测量、保护、自动装置的要求。(如每组 母线上、出线外侧、电容器泄能等。)
f. 电流互感器的配置:满足测量、保护、自动装置的要求。(如直接 接地系统按三相配置,非有效接地系统可两相或三相配置。)
供配电系统设计的基本原则(续)
-3 供电可靠性 a、应满足负荷对供电连续性的要求,多路供电线路之一中断时,其余线路 应满足全部一级和二级负荷的需要。 b、不考虑检修、故障叠加和罕见故障。 c、主接线应简单可靠。
-4 经济性和灵活性 a、总降 / 配电所宜靠近负荷中心 。 b、设低压联络线。 c、适当考虑发展,远近结合,近期为主。
b.3~10kV不直接连接发电机的系统和所有35kV、66kV系统,当单相接地 故障电流不超过下列数值时,应采用不接地方式;超过时,应采用消弧 线圈接地方式:
* 3~10kV导电电杆架空线路构成的系统和所有35kV、66kV系统,10A;
* 3~10kV电缆线路构成的系统,30A。(当单相接地故障电流很大时, 宜采用低电阻接地方式。) -4 主变压器110kV侧接地的实施[60]p70 * 中、低压侧有电源时,至少应有一台主变压器直接接地。
4.0.2 设计步骤
-1 负荷计算 a. 负荷调查与框算:性质、特点、数量 b. 负荷统计与计算
-2 外电源确定 a. 供电电压、电源方位、线路路由、进线点 b. 供电部门要求、惯例
-3 变电所布点 a. 布点依据:负荷分布 b. 要面积:变电所、配电间、竖井、机房
-4 高压供配电系统 -5 低压配电系统 -6 应急电源系统
4.1 供配电系统设计的基本原则
根据GB50052-1995《供配电系统设计规范》,归纳为5个方面。 -1 电源选择
a、优先由地区电网取得。 b、四种情况下可设自备电源。 c、一定条件下可从邻近单位接第二电源。 -2 电压选择 (A)供电电压:取决于地区电网条件和线路的送电能力(表4-1-1)。 a、多路进线宜采用同级电压,但不排除不同电压。 b、小负荷宜接低压电网。 (B)配电电压:取决于配电范围、负荷大小及分布、用电设备电压。 a、配电电压优先采用10kV;有大量6kV电动机时可考虑用6kV。 b、技术经济合理时,一级配电电压可用35kV(包括直配)或110kV。 c、低压配电电压应采用220/380V。
-5 电能质量 a、电压偏差; b、冲击性负荷 ; c、非线性负荷; d、单相负荷。
4.2 供配电系统的接线方式
4.2.1 变配电所的主接线
421.1 接线方式 -1 基本形式及其适用范围 单母线: 6~10kV出线≤5回;35~63kV出线≤3回;110kV出线≤2回。 分段单母线: 6~10kV出线≥6回;35~63kV出线4~8回;110kV出线3~4回。 双母线: 6~10kV出线带电抗器时;35~63kV出线>8回;110kV出线≥5回。 分段双母线、带旁路母线的接线: 大型重要变电所,企业少见。 -2 其他形式 内桥和外桥、线路—变压器组、变压器—电动机组。
* 终端变电所的主变压器一Fra bibliotek不接地,但应装设接地用隔离开关。
4.2.3 高压配电方式
。 放射式、树干式、环式、组合式
举例说明
…
4.2.4 低压配电系统的接线方式
424.1 低压系统设计要点 -1 配电电压应采用220/380;带电导体系统宜采用单相二线制、两相三 线制、三相三线制、三相四线制。 -2 低压配电方式: * 树干式:正常环境的室内,大部分用电设备为中小容量,无特殊要求。 * 放射式:用电设备为大容量,或负荷性质重要,或在有特殊要求环境。 * 分区树干式:高层建筑内向各楼层供电。 * 链式:容量很小的次要用电设备。(每路不宜超过5台、10kW。) -3 电力配电系统应与工艺流程密切配合。 同一流水线与平行流水线或互 为备用机组,宜不同处理。 -4 照明配电系统应处理好正常、备用、疏散照明的关系。 -5 尽可能减少配电级数,以利保护的上下级配合。 -6 便于运行维护:分路与空间对应;适当设置电源开关,如建筑物进线 点附近。 -7 在TN及TT系统中,宜选用D,yn11结线的三相变压器。
变配电所的主接线(续)
421.2 变压器的台数和容量选择 a. 35(110)kV主变压器: 一般为两台;有充分理由时可为一台或三台以上。 容量按一台退出时, 其余变压器能带全部一级和二级负荷考虑。 b. 10kV配电变压器(不包括专用变): 每一变电所以两台为宜,负荷密度很高时,可为四台或更多。只装一 台者应为负荷小、可靠性要求低或有低压联络线。 c. 专用变压器: 照明(负荷大;IT系统);冲击性负荷;非线性负荷;季节性负荷; 单相负荷很大时; 3~6kV电动机。 d. 关于变压器负荷率问题: * 主要偏向是偏低,负荷计算方法仍不合理。 * 按5—10年预期负荷问题,适用于公用变电所,用户变要具体分析, 以近期为主。 * 对经济负荷率应进一步讨论。要考虑负荷计算误差和年利用小时。 TOC法可试用。
4.0.1 概述
-1 本章主要讲供配电系统的设计方案,核心内容是电气主接线。
-2 电气主接线对电力系统的可靠性、经济性和灵活性具有决定意义, 与设备导体选择、变配电所布置、继电保护、自动装置等密切相关。
-3 电能质量和无功补偿,也是供配电系统及其主接线方案的重要内容。
-4 必须正确处理各方面的关系,全面分析各种相关因素,确定合理的 主接线方案。
g. 隔离开关的配置 :断路器的两侧均配置;母线上的避雷器和电压互 感器合用一组;变压器中性点上的避雷器可不配;跨条上宜两组串联。
h. 接地开关的配置:每组母线上1~2组(通常在母联处、PT处);断 路器两侧,线路隔离开关外侧等。
4.2.2 高压系统中性点接地方式
-1 概述 电力网中性点接地方式是一个综合性问题:直接影响电网的过电压水平 和绝缘水平、系统供电的可靠性和连续性、继电保护配置、对通讯线路 的干扰等。 -2 中性点接地方式的比较 见表4-2-2。 -3 中性点接地方式的选择[29] a.110kV及以上系统应采用有效接地方式(X0≤3X1,R0 ≤X1 ),通常为 直接接地。
变配电所的主接线(续)
421.3 设备配置 a. 所用变压器的配置
b. 中性点接地设备(4.2.2)
c. 无功补偿设备(4.4)
d. 避雷器的配置(11.2.1.) e. 电压互感器的配置:满足测量、保护、自动装置的要求。(如每组 母线上、出线外侧、电容器泄能等。)
f. 电流互感器的配置:满足测量、保护、自动装置的要求。(如直接 接地系统按三相配置,非有效接地系统可两相或三相配置。)
供配电系统设计的基本原则(续)
-3 供电可靠性 a、应满足负荷对供电连续性的要求,多路供电线路之一中断时,其余线路 应满足全部一级和二级负荷的需要。 b、不考虑检修、故障叠加和罕见故障。 c、主接线应简单可靠。
-4 经济性和灵活性 a、总降 / 配电所宜靠近负荷中心 。 b、设低压联络线。 c、适当考虑发展,远近结合,近期为主。
b.3~10kV不直接连接发电机的系统和所有35kV、66kV系统,当单相接地 故障电流不超过下列数值时,应采用不接地方式;超过时,应采用消弧 线圈接地方式:
* 3~10kV导电电杆架空线路构成的系统和所有35kV、66kV系统,10A;
* 3~10kV电缆线路构成的系统,30A。(当单相接地故障电流很大时, 宜采用低电阻接地方式。) -4 主变压器110kV侧接地的实施[60]p70 * 中、低压侧有电源时,至少应有一台主变压器直接接地。
4.0.2 设计步骤
-1 负荷计算 a. 负荷调查与框算:性质、特点、数量 b. 负荷统计与计算
-2 外电源确定 a. 供电电压、电源方位、线路路由、进线点 b. 供电部门要求、惯例
-3 变电所布点 a. 布点依据:负荷分布 b. 要面积:变电所、配电间、竖井、机房
-4 高压供配电系统 -5 低压配电系统 -6 应急电源系统
4.1 供配电系统设计的基本原则
根据GB50052-1995《供配电系统设计规范》,归纳为5个方面。 -1 电源选择
a、优先由地区电网取得。 b、四种情况下可设自备电源。 c、一定条件下可从邻近单位接第二电源。 -2 电压选择 (A)供电电压:取决于地区电网条件和线路的送电能力(表4-1-1)。 a、多路进线宜采用同级电压,但不排除不同电压。 b、小负荷宜接低压电网。 (B)配电电压:取决于配电范围、负荷大小及分布、用电设备电压。 a、配电电压优先采用10kV;有大量6kV电动机时可考虑用6kV。 b、技术经济合理时,一级配电电压可用35kV(包括直配)或110kV。 c、低压配电电压应采用220/380V。
-5 电能质量 a、电压偏差; b、冲击性负荷 ; c、非线性负荷; d、单相负荷。
4.2 供配电系统的接线方式
4.2.1 变配电所的主接线
421.1 接线方式 -1 基本形式及其适用范围 单母线: 6~10kV出线≤5回;35~63kV出线≤3回;110kV出线≤2回。 分段单母线: 6~10kV出线≥6回;35~63kV出线4~8回;110kV出线3~4回。 双母线: 6~10kV出线带电抗器时;35~63kV出线>8回;110kV出线≥5回。 分段双母线、带旁路母线的接线: 大型重要变电所,企业少见。 -2 其他形式 内桥和外桥、线路—变压器组、变压器—电动机组。
* 终端变电所的主变压器一Fra bibliotek不接地,但应装设接地用隔离开关。
4.2.3 高压配电方式
。 放射式、树干式、环式、组合式
举例说明
…
4.2.4 低压配电系统的接线方式
424.1 低压系统设计要点 -1 配电电压应采用220/380;带电导体系统宜采用单相二线制、两相三 线制、三相三线制、三相四线制。 -2 低压配电方式: * 树干式:正常环境的室内,大部分用电设备为中小容量,无特殊要求。 * 放射式:用电设备为大容量,或负荷性质重要,或在有特殊要求环境。 * 分区树干式:高层建筑内向各楼层供电。 * 链式:容量很小的次要用电设备。(每路不宜超过5台、10kW。) -3 电力配电系统应与工艺流程密切配合。 同一流水线与平行流水线或互 为备用机组,宜不同处理。 -4 照明配电系统应处理好正常、备用、疏散照明的关系。 -5 尽可能减少配电级数,以利保护的上下级配合。 -6 便于运行维护:分路与空间对应;适当设置电源开关,如建筑物进线 点附近。 -7 在TN及TT系统中,宜选用D,yn11结线的三相变压器。
变配电所的主接线(续)
421.2 变压器的台数和容量选择 a. 35(110)kV主变压器: 一般为两台;有充分理由时可为一台或三台以上。 容量按一台退出时, 其余变压器能带全部一级和二级负荷考虑。 b. 10kV配电变压器(不包括专用变): 每一变电所以两台为宜,负荷密度很高时,可为四台或更多。只装一 台者应为负荷小、可靠性要求低或有低压联络线。 c. 专用变压器: 照明(负荷大;IT系统);冲击性负荷;非线性负荷;季节性负荷; 单相负荷很大时; 3~6kV电动机。 d. 关于变压器负荷率问题: * 主要偏向是偏低,负荷计算方法仍不合理。 * 按5—10年预期负荷问题,适用于公用变电所,用户变要具体分析, 以近期为主。 * 对经济负荷率应进一步讨论。要考虑负荷计算误差和年利用小时。 TOC法可试用。