数字式显示仪表的工作原理
2013第四章第二节数字显示仪表(2013)

反馈式线性化就是利用反馈补偿原理,引入非线性的 负反馈环节,用负反馈环节本身的非线性特性去补偿 检测元件或传感器的非线性,使输入和输出具有线性 关系特性。 Ui f ( X )
U 0 SX U0 U f Ui f ( X ) f ( ) S
X
传感器
Ui
+
ΔU
_
放大器
U0
Uf
非线性反馈 反馈式线性化原理图
驱动器 EPROM 锁存器 A/D转换器
Ux
K分度号热电偶温度测量范围为0~999℃ ,999℃ 时 的热电势为41.237mV,量化单位为:
Δ= 41.237/999=0.04128≈0.0413mV。
为了节省成本,采用三位LED数码管显示温度值,用 个位数数码管的小数点代表0.5 ℃或0.0 ℃。小数点亮 代表0.5 ℃ ;小数点不亮,代表0.0 ℃。当≤0.25 ℃时, 小数点不亮;当大于0.25 ℃ 并小于0.75 ℃ 时,小数 点亮;当≥ 0.75 ℃ 时,进位显示1 ℃。
数字式检测仪表就是以十进制测量数据形式显示测 量结果的检测仪表。测量数据包括测量数字和测量单位 两部分,二者缺一不可。只有数字,没有单位,这样的 数字只有相对意义没有绝对意义。因此,被测量 X 总是 以其测量数字N(十进制数)和测量单位x1表示:
X x1 N
X N x1
测量单位x1,就是N=1所对应的被测量X。例如,压力数 字的单位是Pa,流量数字的单位是m3/h,温度数字的单 位是℃等。
常
把0~1V的模拟电压量化为三位二进制代码,划分量化电平的两 种方法如图所示。(a)图Δ =1/23,量化误差为Δ ;(b)图Δ = (2×1)/(2× 23 -1),量化误差为Δ /2 。
数字温度显示仪表校准方法分析

Experience Exchange经验交流DCW243数字通信世界2020.120 引言数字温度显示仪表是一种以十进制数码显示被测值的仪表,仪表本身并不能单独测量温度,与温度传感器配合、接受其信号才能测量温度,仪表输入信号是标准化、规范化的信号,通常数字温度显示仪表与热点阻、热电偶等温度传感器配合使用,具精度高、显示清晰正确、可读性强、安装方便等优点。
1 数字温度显示仪表的一般原理及基础知识数字温度显示仪表主要原理图如图1所示,测量电路将传感器形成的电动势进行测量,将得到的信号通过电平放大,进行非线性校正及A/D 转换,最终在显示端输入被测温度数值。
图1 数字温度显示仪表原理图数字温度显示仪表的准确度等级有0.1级、0.2级、0.5级、1.0级,常见的是1.0级;分辨力有0.1℃和1℃。
数字温度显示仪表通常与热电偶或热电阻连接,常用热电偶的类型有B 、S 、R 、K 、N 、E 、J 、T 等,常用热电阻的类型有Pt100,Pt500,Pt1000,Cu50,Cu100等;在我市常见应用K 型热电偶和Pt100热电阻,后文校准方法以K 型热电偶和Pt100热电阻为主。
2 数字温度显示仪表校准条件2.1 标准器及其他设备校准时标准器主要有直流电阻箱、标准直流电压源、温度校准仪、专用补偿导线、0℃恒温器、专用连接导线和绝缘电阻表;其中直流电阻箱和标准直流电压源在实际使用可用符合要求的温度校准仪替代。
2.2 环境条件数字温度显示仪表校准环境温度为15℃~25℃,相对湿度45%~85%。
当环境不能满足标准器使用的环境要求时,在不确定度评定时应增加环境条件的不确定度分量。
2.3 准备工作(1)数字温度显示仪表的校准前应检查被校设备的外观是否损坏,接上电源打开开关,查看数字温度显示仪表是否能够正常显示。
(2)校准前仪表应通电预热,预热时间按制造厂说明书的规定确定,一般不少于15min ,具有参考段温度自动补偿的仪表预热时间不少于30min 。
数字显示器的工作原理

数字显示器的工作原理
数字显示器是一种能够显示数字和字符的设备,其工作原理主要基于液晶显示技术。
液晶显示器由数百万个微小像素组成,每个像素都包含一个液晶单元和一个透明电极。
液晶显示器中常用的液晶材料是向列型液晶分子,液晶分子可通过电场的作用而改变其排列方式,从而控制光的通过情况。
当液晶显示器接收到发送的数字信号时,电子设备会将这些信号转换成控制信号,通过透明电极作用于液晶单元。
液晶分子受电场的作用向不同方向旋转,进而改变光的通过情况。
当电流通过透明电极时,电场影响液晶分子的排列方式,使得液晶分子允许或阻碍背光的通过。
这样,只有在特定电场条件下(即数字所代表的信号),光线才能通过液晶显示器的像素区域。
通过控制每个像素区域中液晶分子的旋转方向,液晶显示器可以显示出各种数字和字符。
显示器的亮度和对比度可以通过调节电场的强度来调整。
以上就是数字显示器的工作原理。
液晶数字显示仪表工作原理

液晶数字显示仪表工作原理
液晶数字显示仪表是一种通过液晶技术实现数字显示的仪表。
其工作原理如下:
1. 液晶分子:液晶是一种有机分子,具有有序排列的特性。
液晶分子在电场的作用下可以通过改变其排列状态来表现出不同的光学性质。
2. 液晶层:液晶数字显示仪表由多层液晶材料组成,液晶层位于两个透明电极层之间。
液晶层可以简单地理解为一层透明的液状薄膜。
3. 透明电极层:透明电极层是由透明导电材料制成的,通常使用的是氧化锡、氧化铟等导电材料。
透明电极层位于液晶层的两侧,电极层之间通过导线与电路板连接。
4. 电场控制:当电流通过透明电极层时,产生的电场可以作用于液晶分子。
液晶分子在电场的作用下,会有不同程度的扭曲或排列变化,从而改变液晶层的光学性质。
5. 光透过:液晶分子排列变化后,会对通过液晶层的光产生影响。
当液晶分子排列得到改变时,液晶层会对光进行不同程度的旋转、吸收或散射,从而实现光的模式切换和数字显示。
6. 光偏振:液晶数字显示仪表通过将光偏振的方式进行显示。
在正常情况下,液晶分子的排列会使光的偏振方向发生旋转,使其通过偏振片时出现相位差,最终呈现为黑色。
而当液晶分
子的排列改变时,光的偏振方向不会发生旋转,使其通过偏振片时不会产生相位差,最终呈现为亮色。
7. 级差控制:液晶数字显示仪表可以根据需要,通过控制电场的强弱来改变液晶层的排列状态,从而控制显示的数字或图像。
总结起来,液晶数字显示仪表的工作原理是通过改变液晶层中液晶分子的排列状态,从而改变光通过液晶层时的光学性质,使其产生不同的颜色或亮度,最终实现数字的显示。
数显流量计工作原理

数显流量计工作原理数显流量计是一种常用的工业仪表,用于测量流体的流量。
它采用数字显示方式,可以实时显示流体的流量信息,广泛应用于各种工业领域中。
数显流量计的工作原理是基于一定的物理原理和电子技术,下面我们将详细介绍其工作原理。
数显流量计的工作原理基于流体力学原理。
当流体通过流量计的测量管道时,会产生一定的压力差。
数显流量计中通常安装有压力传感器,它可以测量流体在测量管道内的压力差。
根据流体力学原理,流体的流速和压力差之间存在一定的关系。
通过测量流体在管道内的压力差,数显流量计可以计算出流体的流速,从而实现对流量的测量。
数显流量计的工作原理还涉及到传感器技术。
除压力传感器外,数显流量计中还通常包含有温度传感器、流速传感器等。
这些传感器可以实时地采集流体的温度、密度、流速等参数。
将这些参数输入到流量计的计算模块中,便可以通过一定的算法计算出准确的流体流量值。
数显流量计还采用了现代电子技术。
传感器采集到的参数会被转换成电信号,并传输给数显流量计的控制模块。
控制模块对接收到的信号进行处理和分析,然后将处理后的结果显示在数显屏上。
数显屏会将流体的流量信息以数字形式直观地显示出来,便于操作人员进行实时监测和控制。
在实际工作中,数显流量计还会根据需要进行校准和修正。
由于流体的性质、压力、温度等因素的不同,流量计在测量时可能存在一定的误差。
为了提高测量的精确度,数显流量计通常会进行校准,校正其输出的流量数值。
这通常需要在实验室或专门的校准设备下进行,以确保测量结果的准确性和可靠性。
数显流量计是一种基于流体力学原理、传感器技术和电子技术相结合的工业仪表。
通过对流体流速、压力、温度等参数的实时监测和处理,它能够准确地显示出流体的流量信息。
在工业生产和流体控制领域中,数显流量计发挥着重要的作用,为生产和流程控制提供了重要的技术支持。
数显 千分尺 原理

数显千分尺原理
数显千分尺是一种用于测量小间隔距离的仪器。
它采用了数显技术,可以通过数字显示屏直接读数,准确度高,操作简便。
以下是数显千分尺的原理。
数显千分尺的核心部件是传感器,它能够感知待测量物体的位移并转化为电信号。
传感器通常采用光电子或电容式的原理。
光电子传感器利用光电二极管和光敏电阻组成的光电二极管电路。
当待测量物体发生位移时,光线通过物体的透光孔,进入光电二极管电路,使其产生电信号。
电容式传感器则采用电容变化来感知位移,当待测位移发生时,电容值会发生变化,从而产生电信号。
传感器将感知到的电信号传送给数显芯片,数显芯片是数显千分尺的关键部件之一。
数显芯片会对电信号进行处理,将其转化为相应的数字信号。
这些数字信号会通过显示屏上的数码显示,直接以数字形式显示出来。
数显千分尺还包括了一些增强功能,例如单位切换、绝对值和相对值测量等。
单位切换功能可以根据需要将数字结果显示为毫米、英寸等不同单位。
绝对值测量功能是指当千分尺重新上电或重置时,显示值不会发生改变,能够记录上一次测量结果。
相对值测量功能是指可以对两个位置之间的距离进行测量。
数显千分尺的原理简单明了,通过传感器感知待测位移,经过数显芯片处理并在显示屏上显示出来。
使用数显千分尺能够提高测量准确度和效率,广泛应用于机械加工、仪器仪表等领域。
仪表工作原理

仪表工作原理
仪表工作原理简介
仪表是用来测量、监测和控制电气、电子、机械等系统中各种物理量的装置。
仪表的工作原理主要涉及传感器、信号处理和显示三个方面。
1. 传感器:仪表中的传感器负责将待测物理量转化为电信号。
传感器可以根据测量物理量的性质选择不同的传感原理,如电阻、电容、电感、压电效应、光电效应等。
传感器的输出信号通常是微弱的模拟电信号,需要经过信号处理模块进行放大和滤波处理。
2. 信号处理:信号处理模块起到放大、滤波和线性化等功能。
放大模块将传感器输出的微弱信号放大到合适的电平,以便进行后续处理。
滤波模块可以去除噪声,提高信号的质量。
线性化模块主要用于解决信号非线性问题,将非线性信号转化为线性信号。
3. 显示:显示模块将经过处理的信号转化为人们能够直观理解的形式。
常见的显示方式包括指针式、数字式、液晶显示等。
显示模块根据不同的仪表需要,可以输出不同的信号形式,如电压、电流、频率等。
总体而言,仪表工作的基本原理是通过传感器将测量物理量转化为电信号,经过信号处理模块进行处理后,再通过显示模块将结果以人们能够理解的形式进行展示。
不同的仪表会根据测量需求选择适当的传感器和信号处理方式。
数字显示仪表第3章 数字基础

1表示热电偶或辐射温度计;
2表示热电阻;
3表示霍尔式压力变送器;
4表示电阻式远传压力计;
5表示输入电流电压信号;
6表示热敏电阻;
第四位用拼音字母表示仪表的适用场合, C表示船用, F
表示耐大气腐蚀, K表示开方。
五. XMT仪表的类型与功能
XMT仪表的类型与功能
XMT仪表测量范围 XMT仪表配用热电偶和热电阻时的测温范围
第三章 数字式显示仪表
一、数字式显示仪表的定义及其特点
数字式显示仪表是能将被测的连续电量(模拟量)自 动地变成断续量,然后进行数字编码,并将测量结果以数 字显示的电测仪表。
模拟量 A/D变换器
数字量 电子计数器 显示器
读出
图 数字式显示仪表方框图
17
第二节 数字式显示仪表
特点
准确度、灵敏度高; 读数方便、清晰直观、不会产生视差。 测量速度快,从每秒几十次到每秒上百万次; 仪表的量程和被测量的极性可自动转换,可自动检查 故障、报警以及完成指定的逻辑程序; 可以方便地实现多点测量; 可以与电子计算机配合,给出一定形式的编码输出。
30
图自动平衡电桥工作原理
⑤ 具有与上位机通讯的标准,可靠性高,价格与一般记录 仪相仿。
25
第三节 新型显示仪表
2、虚拟显示仪表
利用计算机强大的功能来完成显示仪表所有的工作。
输入通道
采样
开关
模数
转换
个人计算机
输入通道插卡
实时
数据管理
数据
计算处理
多媒体
显示 显示 模式
图 虚拟显示仪表原理框图
26
第三节 新型显示仪表
2、虚拟显示仪表
第三节 新型显示仪表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压型仪表工作原理
接受电压或电流信号,它的工作原理是将输入的电压信号,通过模拟-数字转换,变换成相应的断续信号,一般为二-十进制编码信号,然后经数字译码和光电显示器件将数字显示出来。
频率型仪表工作原理
接受脉冲或频率信号,它的工作原理是通过对输入信号进行计数和逻辑控制,累计一定时间间隔内的脉冲数,并将计得的脉冲数转换成相应的二-十进制编码信号,再经译码实现数字显示。
也可直接接受来自检测仪表的数字信号,经变换、数据处理后,实现数字显示。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
/。