运筹学对偶问题

合集下载

《运筹学》线性规划的对偶问题

《运筹学》线性规划的对偶问题

3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm

政治经济学-运筹学-对偶-对偶问题总结

政治经济学-运筹学-对偶-对偶问题总结

原问题求极大值时,对偶问题求极小:
约束条件中是 <= 对偶变量是 >= 相反 约束条件中是 = 对偶变量是 无约束 相反 约束条件中是 >= 对偶变量是 <= 相反 变量条件中是 <= 对偶约束是 <= 相同 变量条件中是 无约束 对偶约束是 = 相反 变量条件中是 >= 对偶约束是 >= 相同 原问题求极小值时,对偶问题求极大:
约束条件中是 <= 对偶变量是 <= 相同 约束条件中是 = 对偶变量是 无约束 相反 约束条件中是 >= 对偶变量是 >= 相同 变量条件中是 >= 对偶约束是 <= 相反 变量条件中是 无约束 对偶约束是= 相反 变量条件中是 <= 对偶约束是 >= 相反 1231231231231231231231231212max min 2523..225..12221,321,00,0x x x y y y s t x x x s t y y y x x x y y y x x x y y y x x y y -++++⎧⎧⎪⎪++≤-+≥-⎪⎪⎪⎪-+-≥⇒+-≥⎨⎨⎪⎪-+=-+=⎪⎪⎪⎪≥≥≤⎩⎩原问题:。

运筹学2对偶问题

运筹学2对偶问题

运筹学2对偶问题运筹学教程运筹学Operations Research Chapter 2 对偶问题Dual Problem1. 线性规划的对偶模型Dual Model of LP2.对偶性质对偶性质3.对偶单纯形法对偶单纯形法4.灵敏度分析灵敏度分析Dual property Dual Simplex Method Sensitivity Analysis 运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dual model of LPCh2 Dual Problem2022年11月26日星期五Page 2 of 19在线性规划问题中,存在一个有趣的问题,即每一个线性规划问题都伴随有另一个线性规划问题,称它为对偶线性规划问题。

【例2.1】某企业用四种资源生产三种产品,工艺系数、例资源限量及价值系数如下表:产品资源Ⅰ Ⅱ Ⅲ Ⅳ 每件产品利润9 5 8 7 100 8 4 3 6 80 6 7 2 4 70 500 450 300 550 A B C 资源限量建立总收益最大的数学模型。

运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dualmodel of LPCh2 Dual Problem2022年11月26日星期五Page 3 of 19 设x1,x2,x3分别为产品A,B,C的产量,则线性规划数学模解型为:m Z = 100x + 80x + 70x ax1 2 39x1 + 8x2 + 6x3 ≤ 500 5x + 4x + 7x ≤ 450 2 3 1 8x1 + 3x2 + 2x3 ≤ 300 7x + 6x + 4x ≤ 550 2 3 1 x1, x2, x3 ≥ 0 现在从另一个角度来考虑企业的决策问题。

假如企业自己不生产产品,而将现有的资源转让或出租给其它企业,那么资源的转让价格是多少才合理?价格太高对方不愿意接受,价格太低本单位收益又太少。

运筹学对偶问题

运筹学对偶问题

步骤1
• 判断对偶单纯形法的条件是否满足。

Cj ↓
→ 基
0 b
-1 -4
P1
P2
0 P3
-3 P4
0 P5
0 P6
y0b 对偶问题(B) minW
cx0 原问题(A) maxZ
定理5(强对偶定理)
若线性规划A存在最优解,则对偶规划B也存 在最优解,并且它们的最优值相等;相反地, 若规划B存在最优解,则规划A也存在最优解 ,并且它们的最优值相等。
定理6(存在性定理)
若线性规划A和B都存在可行解,则A和B都存 在最优解。
运筹学对偶问题
2020年4月21日星期二
一、对偶问题的一般形式
若设一线性规划问题如下 :
(A)
则以下线性规划问题:
(B)
称为原问题(A)的对偶线性规划问题, 或称A、B互为对偶问题。
如果采用向量、矩阵来表示
(A) 其中:
(B)
可以将以上关系列成以下对偶表:
max min
x1
x2…ຫໍສະໝຸດ xnby1
a11
a12

a1n

b1
y2
a21
a22


b2

………………
ym
am1
am2

amn

bm
≥≥…≥
c
c1
c2

cn

写出下列线性规划问题的对偶问题
解:
可以将原问题的有关参数列成下表
max
min
x1
x2
x3
b
y1
1
4
2

48

运筹学课件第二章对偶问题

运筹学课件第二章对偶问题

第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。

应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。

例:某家具厂木器车间生产木门与木窗;两种产品。

加工木门收入为56元/扇,加工木窗收入为30元/扇。

生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。

问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。

他想利用该木器车间的木工与油漆工来加工完成他的订单。

他就要考虑付给该车间每个工时的价格。

他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。

解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。

运筹学04-线性规划的对偶问题

运筹学04-线性规划的对偶问题

生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。

直观描述对偶问题可以从几个方面来理解。

首先,可以从成本和效益的角度来理解。

原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。

这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。

其次,可以从约束条件的角度来理解。

原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。

这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。

另外,可以从几何图形的角度来理解。

原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。

总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。

通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。

运筹学第3章 对偶问题

运筹学第3章 对偶问题
y1 + 2 y2 + 4 y3 = 3 2 y1 + y2 + 3 y3 = 2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2
x3
b
y1
1
4
2

48
y2
1
2
4

60



c
6
14
13
∴ 对偶规划问题为
min W 48y1 60 y2 s.t. y1 y2 6 4 y1 2 y2 14 2 y1 4 y2 13 y1 0, y2 0
比较
max F 6x1 14x2 13x3 s.t. x1 4x2 2x3 48 x1 2x2 4x3 60 x1 0, x2 0, x3 0
第四章 对偶问题
对偶问题的一般形式 对偶问题的经济意义 对偶性质 对偶单纯形法 对偶单纯形法的解题原理
一、对偶问题的一般形式
若设一线性规划问题如下 :
(A)
max F c1x1 c2 x2 cn xn s.t.
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2
am1
am2

amn

bm
≥≥…≥
c
c1
c2

cn

写出下列线性规划问题的对偶问题
max F 6x1 14x2 13x3 s.t. x1 4x2 2x3 48 x1 2x2 4x3 60 x1 0, x2 0, x3 0
解:
可以将原问题的有关参数列成下表
max
min
x1
am1 x1 am2 x2 amn xn bm x1 0, x2 0, xn 0
则以下线性规划问题:
(B)
minW b1 y1 b2 y2 bm ym s.t.
a11 y1 a21 y2 am1 ym c1
a12 y1 a22 y2 am2 ym c2
min W ' 20 y1 '10 y2 '5 y3 '5 y4 ' s.t. 3 y1 '4 y2 ' y3 ' y4 ' 4 2 y1 '3y2 ' y3 ' y4 ' 5 2 y1 '3 y2 ' y3 ' y4 ' 5 y1 ' 0, y2 ' 0, y3 ' 0, y4 ' 0
min W 20 y1 10 y2 5 y3 s.t.
3y1 4 y2 y3 4 2 y1 3y2 y3 5 2 y1 3y2 y3 5 y1 0, y2 0, y3为自由变量
4x1 3x2 10
xx11
x2 x2
5 5
x1 x2 5
设x 2 x 3 x 4 , x3 0, x 4 0
则,原问题变为
(A)
max Z 4x1 5x2 s.t.
3x1 2x2 20
4x1 3x2 10
x1 x2 5
x1
0,
x
为自由
2
变量
max Z ' 4x1 5x3 5x4 s.t.
Y y1 y2 ym
b1
B
b2 bm
a11 a12 a1n
A
a21 an1
a22 am2
a2n
amn
x1
X
x2
xn
可以将以上关系列成以下对偶表:
max min
x1
x2

xn
b
y1
a11
a12

a1n

b1
y2
a21
a22


b2

………………
ym
min W 48y1 60 y2 s.t. y1 y2 6 4 y1 2 y2 14 2 y1 4 y2 13 y1 0, y2 0
以上我们介绍的对偶问题是严格定义的对偶问题,也 成为对称对偶问题 。
它满足两个条件:
两个条件:
1、所有变量非负:即X>0,Y>0 2、约束条件均为同向不等式。若原问题约束条件均 为“≤”,则它的对偶问题的约束条件都是“≥”。
调整
对照问题B‘目标函数系数的符号与原问题A中 约束条件右端常数项的符号,可做以下调整:
令y1=y1’,y2=-y2’,y3=y4’-y3’
令y1=y1’,y2=-y2’,y3=y4’-y3’ 则得到以下对偶问题
(B‘)
(B)
min W ' 20y1 '10y2 '5y3 '5 y4 ' s.t. 3y1 '4 y2 ' y3 ' y4 ' 4 2 y1 '3y2 ' y3 ' y4 ' 5 2 y1 '3y2 ' y3 ' y4 ' 5 y1 ' 0, y2 ' 0, y3 ' 0, y4 ' 0
对比结果
以上对偶问题(B‘)并非原问题(A)的对偶问题, 它是线性规划问题(A’)的对偶问题。
(A)
max Z 4x1 5x2 s.t. 3x1 2x2 20 4x1 3x2 10 x1 x2 5 x1 0, x2为自由变量
(B‘)
min W ' 20y1 '10y2 '5y3 '5 y4 ' s.t. 3y1 '4 y2 ' y3 ' y4 ' 4 2 y1 '3y2 ' y3 ' y4 ' 5 2 y1 '3y2 ' y3 ' y4 ' 5 y1 ' 0, y2 ' 0, y3 ' 0, y4 ' 0
a1n y1 a2n y2 amn ym cn y1 0, y2 0, ym 0
称为原问题(A)的对偶线性规划问题,
或称A、B互为对偶问题。
如果采用向量、矩阵来表示
max F CX
s.t. (A) AX B
X 0
minW YB s.t. (B) YA C T Y 0
其中: C c1 c2 cn
当原问题的约束条件的符号不完全相同时,也存在 对偶问题,这种对偶问题称为非对称对偶问题。


max Z 4x1 5x2 s.t.
3x1 2x2 20
4x1 3x2 10
x1 x2 5
x1
0,
x
为自
2



分析:
为求对偶问题,可先做过渡,将问题对称化:
对称化
max Z 4x1 5x2 s.t. 3x1 2x2 20 4x1 3x2 10 x1 x2 5 x1 0, x2为自由变量
(A‘)
3x1 2x3 2x4 20 4x1 3x3 3x4 10 x1 x3 x4 5 x1 x3 x4 5 x1 0, x3 0, x4 0
则(A’)的对偶问题如下:
(A‘)
(B‘)
max Z ' 4x1 5x3 5x4 s.t. 3x1 2x3 2x4 20 4x1 3x3 3x4 10 x1 x3 x4 5 x1 x3 x4 5 x1 0, x3 0, x4 0
相关文档
最新文档