八年级数学下册22.6三角形梯形的中位线3教案沪教版五四制

合集下载

八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制

八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制

八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制一. 教材分析《三角形梯形的中位线》是沪教版八年级数学下册第22章第6节的内容,本节课主要让学生掌握三角形和梯形的中位线定理,并能够运用该定理解决相关问题。

教材通过引入中位线的概念,引导学生探究中位线的性质,进而推导出中位线的长度等于它所对的边的长度,以及中位线平行于第三边。

这一内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析八年级的学生已经掌握了平行线、三角形和梯形的基本知识,具备了一定的空间想象能力和逻辑思维能力。

但学生在学习过程中,可能对中位线的概念和性质理解不深,对中位线定理的应用还不够熟练。

因此,在教学过程中,教师需要通过丰富的教学手段,帮助学生理解和掌握中位线定理,提高学生的解题能力。

三. 教学目标1.让学生理解三角形和梯形的中位线定理,掌握中位线的性质。

2.培养学生运用中位线定理解决实际问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.重难点:三角形和梯形的中位线定理的推导和应用。

2.难点:学生对中位线定理的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究中位线的性质。

2.利用几何画板和实物模型,帮助学生直观地理解中位线定理。

3.通过例题和练习题,让学生巩固中位线定理的应用。

4.分组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.准备几何画板和实物模型,用于展示中位线的性质。

2.准备相关的PPT和教学课件,用于辅助教学。

3.准备一系列的例题和练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过提问方式复习三角形和梯形的基本知识,引导学生思考中位线的作用和意义。

2.呈现(10分钟)利用几何画板和实物模型,呈现三角形和梯形的中位线,引导学生观察和思考中位线的性质。

3.操练(10分钟)让学生分组讨论,每组尝试找出三角形和梯形的中位线,并测量中位线的长度,验证中位线定理。

沪教版(上海)数学八年级第二学期-22.6 《梯形中位线 》 教案

沪教版(上海)数学八年级第二学期-22.6 《梯形中位线 》 教案

EBC ADFEBCAD FDA E《梯形中位线 》教案 〖教学目标〗1.掌握梯形中位线的概念和梯形中位线性质.2.能够运用梯形中位线的概念及性质进行有关的计算和证明.3.经历“操作-观察-猜想-验证”的探索过程,进一步感受数学中的化归思想.、 〖教学重点〗梯形中位线及其性质的应用 〖教学难点〗梯形中位线性质的证明 教学过程: 一、知识回顾1.三角形中位线定理:△ABC 中,D 、E 分别为AB 、 AC 边上的中点,则DE//BC DE=1/2BC (位置关系、数量关系) 2.其它衍生结论:△ADE 与△ABC 的周长比为1:2 ,面积比为1:4...... 二、学习新知(一)概念:联结梯形两腰的中点的线段 ,叫梯形中位线如图:梯形ABCD 中,AD//BC ,E 、F 为AB 、CD 的中点,则EF 为梯形ABCD 的中位线概念辨析:识别下图中EF 是否为梯形的中位线HFE B C AD(二)学生操作:度量EF 、AD 、BC ,AD+BC ,∠B ∠AEF (三)类比猜测:EF 与AD 、BC 的关系:位置关系 EF//AD//EF 数量关系 EF=1/2(AD+BC) (五)分析证明:(六)得出新知:梯形的中位线平行于两底,并等于两底和的一半即:梯形ABCD 中,AD//BC ,E 、F 为AB 、CD 的中点,则 EF//AD//EF EF=1/2(AD+BC) (七)巩固练习1.一个梯形的上底长4 cm ,下底长6 cm ,则其中位线长为 cm .2.一个梯形的上底长10 cm ,中位线长16 cm ,则其下底长为 cm . 3.已知梯形的中位线长为6 cm ,高为8 cm ,则该梯形的面积为________ cm 2 4.已知等腰梯形的周长为80 cm ,中位线与腰长相等,则它的中位线长cm .三、应用新知例题7、一把梯子部分如图所示,已知:AB//CD//EF//GH ,AC=CE=EG,BD=DF=FH,AB=0.3m ,CD=0.4m,求EF 、GH 的长。

2024春八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制

2024春八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制

2024春八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制一. 教材分析《2024春八年级数学下册》第22.6节主要讲述三角形和梯形的中位线性质。

本节内容是在学生已经掌握了三角形和梯形的定义、性质的基础上进行教学的,对于学生来说,本节内容具有一定的挑战性。

教材通过详细的讲解和丰富的例题,帮助学生理解和掌握三角形和梯形的中位线性质,为后续的学习打下基础。

二. 学情分析八年级的学生已经掌握了一定的数学基础知识,对于三角形和梯形的定义、性质有一定的了解。

但是,对于三角形和梯形的中位线性质,学生可能还没有听说过,或者只是一知半解。

因此,在教学过程中,需要教师通过生动的讲解和丰富的实例,帮助学生理解和掌握中位线的性质。

三. 教学目标1.让学生了解三角形和梯形的中位线性质。

2.让学生能够运用中位线性质解决一些几何问题。

3.培养学生的逻辑思维能力和空间想象力。

四. 教学重难点1.重点:三角形和梯形的中位线性质。

2.难点:如何运用中位线性质解决几何问题。

五. 教学方法采用讲解法、实例分析法、问题解决法、小组合作法等,通过生动的语言、形象的图形、实际的问题,激发学生的学习兴趣,引导学生主动参与课堂,培养学生的动手操作能力和思维能力。

六. 教学准备1.准备相关的教学PPT或黑板报。

2.准备一些实际的例子,用于讲解和练习。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形和梯形的定义、性质,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过PPT或黑板报,呈现三角形和梯形的中位线性质,并用生动的图形进行解释,让学生初步了解中位线的性质。

3.操练(15分钟)教师给出一些实际的例子,让学生运用中位线性质进行解答,巩固所学知识。

期间,教师可引导学生进行小组讨论,分享解题心得。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检查学生对中位线性质的掌握情况。

《22.6三角形、梯形的中位线》作业设计方案-初中数学沪教版上海八年级第二学期

《22.6三角形、梯形的中位线》作业设计方案-初中数学沪教版上海八年级第二学期

《三角形、梯形的中位线》作业设计方案(第一课时)一、作业目标1. 巩固学生对于三角形和梯形中位线的基本概念,掌握其性质及运用方法。

2. 提升学生的空间想象力和逻辑思维能力,培养学生的解题策略意识。

3. 通过练习与实际生活中的应用问题,培养学生数学学习兴趣及解题自信。

二、作业内容本课时的作业内容主要围绕三角形和梯形的中位线展开,具体包括:1. 基础概念练习:要求学生掌握中位线的定义、性质及与三角形、梯形的关系,并完成相关概念题。

2. 性质运用:通过例题和习题,让学生理解并掌握中位线在三角形、梯形中的性质及运用方法,包括角度、边长关系等。

3. 解题策略:布置具有实际意义的情境问题,要求学生通过绘制图示、理解问题情境并应用中位线的性质来解题。

4. 综合应用:选取典型问题,要求学生在解决过程中综合考虑三角形的边角关系和中位线的运用,并灵活应用相关知识解决实际问题。

三、作业要求1. 学生需在完成作业时注意题目中给定的图形与实际情况是否相符,需对题目中的信息加以核对与验证。

2. 在完成练习时,需标明解题步骤和结果,书写规范、整洁,对易错、易混淆的点进行重点标注。

3. 作业需独立完成,严禁抄袭他人答案或使用其他不正当手段。

4. 遇到问题时,应积极思考并尝试自己解决,如无法解决可查阅相关资料或向老师请教。

四、作业评价1. 评价标准:作业的完成情况、解题思路的正确性、步骤的完整性及答案的准确性等。

2. 评价方式:教师批改、学生自评和互评相结合。

教师批改时需对每道题目进行详细评阅,给出明确的对错判断及改进意见;学生自评和互评时,需根据评价标准对作业进行自我评价和相互评价,提出自己的看法和建议。

五、作业反馈1. 教师需及时批改作业,对学生的错误进行指导纠正,并提供详细的解题思路和步骤。

2. 对于学生的疑问和困惑,教师需及时解答和指导,帮助学生掌握相关知识。

3. 通过作业反馈,教师可以了解学生的学习情况及存在的问题,以便调整教学计划和教学方法。

沪教版(上海)数学八年级第二学期-22.6 三角形的中位线 教案

沪教版(上海)数学八年级第二学期-22.6 三角形的中位线 教案

课题:三角形的中位线教学目标1、理解三角形中位线的概念,知道三角形中位线和中线的区别。

2、经历三角形中位线性质的探索过程,掌握三角形中位线定理,体会转化的思想方法,并能运用该定理进行简单的计算和论证,解决一些实际问题。

3.通过对问题的探索,学生提高分析问题与解决问题的能力,体验数学学习的探索性和乐趣。

状态分析教学内容分析教学重点:掌握三角形中位线定理及其推导,并能应用定理进行简单的计算和证明。

教学难点:三角形中位线定理证明中添加辅助线的思想方法。

内容分析:本节课是九年制义务教育初二第二学期三角形的中位线的第一课时。

本节课以“探”为主,第二节课以“用”为主。

三角形中位线的概念和三角形中位线定理,是三角形非常重要的概念与定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,是学习梯形中位线定理必不可少的基础知识。

因此正确理解三角形中位线概念和性质是学好本节的关键。

针对本班学生的知识结构和心理特征,选择引导探索法,从生活实际引入课题,通过学生自主探索,合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

学生分析学生已学习了三角形的中线、角平分线、高和平行四边形和特殊的平行四边形的判定及其性质,会运用已学知识进行几何证明及计算,有一定的数形结合能力和探究能力,但若遇需添加辅助线加以证明较困难。

教学准备制作多媒体课件、尺、量角器教学过程教学步骤教师教学活动设计学生学习活动设计设计意图情景引入小小设计师:为响应虹桥枢纽地区西部会展板块的有序发展,现将部分村庄拆迁后组建成三个新小区(如图所示),现在请你帮忙设计一条马路,使三个小区到马路的距离相等,马路应如何建造?思考并简述理由从实际问题出发,激发学生学习兴趣,引入新授。

AB CD EmF HG。

沪教版(上海)数学八年级第二学期-22.6 梯形的中位线 教案

沪教版(上海)数学八年级第二学期-22.6 梯形的中位线 教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯学科数学课题22.6 ⑵梯形的中位线执教人班级时间地点教学目标1.理解梯形的中位线概念.2.掌握梯形的中位线的性质定理,会运用这个定理进行简单的几何计算和论证.3.经历探索梯形中位线性质的过程,体会转化的思想方法.能以运动变化的观点认识三角形的中位线、梯形中位线之间的区别和联系.教学重点难点重点:梯形中位线定理.难点:梯形中位线性质定理的证明.教学设计教学环节教学过程设计意图一复习引入复习三角形中位线(1)线段MN叫△ABC的什么?(2)这样的中位线有几条?(3)线段MN与BC有什么关系?为引出课题,以及猜想并证明梯形中位线做铺垫二新知探究1、概念的形成和巩固(1)让学生根据几何画板引入过程,自己用文字概括出梯形中位线的定义:联结梯形两腰中点的线段叫做梯形的中位线(2)操作:在梯形ABCD中,AD∥BC,作梯形ABCD的中位线MN培养学生归纳概括的能力突出概念中的“要素”—“两腰”A D2、梯形中位线的性质探索(1) 猜一猜:应用几何画板测量得出如下猜想 ①梯形的中位线平行于两底 ②梯形中位线的长度等于两底和的一半 (2)证一证:已知:如图,在梯形ABCD 中,AD //BC ,AM =MB ,DN =NC . 求证:MN //BC ,且MN =12(AD+BC ).证明:联结AN 并延长AN 交BC 的延长线于E, ∵N 为CD 的中点 ∴DN=CN ∵AD ∥BC∴∠DAN=∠E, ∠D=∠ECN ∴△ADN ≌△ECN ∴AN=NE,AD=CE 又∵M 为AB 中点 ∴ MN ∥BE 且MN=12BE ∵BE=BC+CE=BC+AD∴MN ∥BC 且梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半. 符号语言1()2MN BC AD =+NMA CBD一天,毕达哥拉斯应邀到朋友家做客。

这位习惯观察思考的人,突然,对主人家地面上一块块漂亮的正方形大理石感兴趣。

沪教版(上海)数学八年级第二学期-22.6 中位线定理在几何证明中的运用 教案

沪教版(上海)数学八年级第二学期-22.6 中位线定理在几何证明中的运用  教案

课时计划学科数学课题中位线定理在几何证明中的运用执教班级教学设计教学设想:本节是以三角形、梯形中位线定理为基础,是学生学完新概念之后的应用和深化。

进一步学习并掌握中位线的概念和性质,提高学生解决数学问题的能力。

同时又向学生渗透了类比和转化的数学思想,提高学生分析问题和解决问题的能力。

教材分析:本节课是在学过三角形、梯形中位线定理后的练习课,由于学生对一个新的数学概念的理解肯定需要经过一定时间、一定过程甚至多次的反复,特别是几何概念。

本节课学生对三角形、梯形中位线概念只是获得一定的体验和一些初步的理解,后继的学习,将会对这类概念不断地补充、完善。

学情分析:该年龄段学生思维活跃,求知欲强,已经具备一定的观察、猜想、归纳和推理能力。

但由于他们的说理能力较差,探究易具有盲目性,所以教学过程中我会注意问题设置的针对性与层次性。

教学目标:在学生已掌握三角形、梯形中位线定理的基础上,不但能运用它们进行简单的几何计算和论证,更能综合运用三角形和特殊的四边形的有关知识解决简单的数学问题。

教学重点运用中位线定理证明几何题教学难点正确书写证明过程教学准备ppt教学流程与步骤:教学过程教师活动学生活动设计意图引入新课1、三角形中位线定理2、梯形中位线定理师生对话、交流回顾旧知例题选编例1、已知如下左图 EF是梯形ABCD的中位线 AD∥BC AD=8BC=12 求EF长例2、已知如上右图EF是梯形ABCD的中位线 AD∥BC AD=8 BC=12 对角线AC交EF于G点。

求EG 、FG的长组织学生讨论、交流.通过举例,促进学生理解中位线概念.针对练习例3、已知如上右图梯形ABCD中AD∥BC M、N分别是对角线BD、AC的中点求证:MN=()ADBC-21例4、已知如下左图在四边形ABCD中 AB=CD 点E、H、G分别是AD、AC、学生观察、思考,根据自己对中位线概念的理解发表看法.针对出现的不同观点,组织学生讨论、交流通过对例题中若干问题的思考与讨论再次中位线等概念,让学生体会到问题中的多个几何概念之间都存在确定的依赖关系.增进对确定的依赖关系的理解,进而增进对几何概念的理解.BD的中点。

八年级数学下册22.6三角形梯形的中位线3教案沪教版五四制

八年级数学下册22.6三角形梯形的中位线3教案沪教版五四制

三角形、梯形的中位线
教学过程
课题引入:
课前练习一
1. 填空:
(1) 顺次联结菱形各边中点得到的四边形是___形;
(2) 顺次联结等腰梯形各边中点得到的四边形是____形;
(3) 顺次联结对角线_________的四边形各边中点得到的四边形是正方形.
2. (1) 等腰梯形的中位线长为a,腰长为b,则等腰梯形的周长为______;
(2) 梯形的中位线长为m,上底为n,则下底为______;
(3) 梯形的中位线长为12cm,上、下两底差为4cm,则上底为___cm,下底为___cm.
课前练习二
3. 如图,等腰梯形ABCD,AD∥BC,AB=CD.E、F分别是AD、BC的中点,G、H 分别是EB、EC的中点.求证: 四边形EGFH是菱形.
知识呈现:
课内练习
1. 已知:如图,在△ABC
2. 已知:如图,在△ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,联结EF.
求证:EF∥AB,EF=(AC-AB).
课堂小结:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形、梯形的中位线
教学过程
课题引入:
课前练习一
1. 填空:
(1) 顺次联结菱形各边中点得到的四边形是___形;
(2) 顺次联结等腰梯形各边中点得到的四边形是____形;
(3) 顺次联结对角线_________的四边形各边中点得到的四边形是正方形.
2. (1) 等腰梯形的中位线长为a,腰长为b,则等腰梯形的周长为______;
(2) 梯形的中位线长为m,上底为n,则下底为______;
(3) 梯形的中位线长为12cm,上、下两底差为4cm,则上底为___cm,下底为___cm.
课前练习二
3. 如图,等腰梯形ABCD,AD∥BC,AB=CD.E、F分别是AD、BC的中点,G、H 分别是EB、EC的中点.求证: 四边形EGFH是菱形.
知识呈现:
课内练习
1. 已知:如图,在△ABC
2. 已知:如图,在△ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,联结EF.
求证:EF∥AB,EF=(AC-AB).
课堂小结:。

相关文档
最新文档