小学数学相遇问题讲解
三年级数学:路程解析-相遇问题

三年级数学:路程解析-相遇问题(1)一般相遇问题:如果两个物体是同时出发,那么相遇路程就是两个物体原来相距的路程;如果两个物体不是同时出发,那么它们的相遇路程等于两个物体原来相距的路程减去其中一个物体先走的路程;
(2)中点相遇问题:相遇路程等于相遇地点与中点距离的两倍;
(3)往返相遇问题:同时出发,同时停止,则中间往返的时间就是相遇时间;
(4)环形相遇问题:同时、同地背向出发,相遇路程就是一周的长度。
一般行程问题中,路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
相遇问题中,路程差=速度差×时间差;速度差=路程差÷时间;时间=路程差÷速度差。
中点相遇问题中,快的多走的路程就是距离中点路程的两倍。
相遇时间=路程差÷速度差。
往返相遇问题的关键是,往返行驶的时间与相遇时间相等。
环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个全程,再根据相遇时间=路程÷速度和求解。
小学数学:相遇问题

相遇问题
【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应
用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速);总路程=(甲速+乙
速)×相遇时间
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利
用公式。
例1. 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经
过几小时两船相遇?
解:392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2. 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从
出发到第二次相遇需多长时间?
解:“第二次相遇”可以理解为二人跑了两圈。
因此,总路程为400×2相遇时间:(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇
需100秒时间。
例3. 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解:“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间:(3×2)÷(15-13)=3(小时)两地距离:(15+13)×3
=84(千米)答:两地距离是84千米。
小学相遇问题归纳总结题型

小学相遇问题归纳总结题型相遇问题是小学数学中的一个重要题型,要求学生根据给定的条件计算出两个物体相遇的时间或位置。
这种问题涉及到速度、时间、距离等概念,需要学生进行逻辑推理和数学计算。
下面对小学相遇问题进行归纳总结。
一、同向问题同向问题是最简单的相遇问题类型。
当两个物体以相同的速度、方向运动时,它们将永远保持相对位置不变,不会相遇。
因此,同向问题的答案常常为“永不相遇”。
二、背靠背问题背靠背问题是一种特殊的同向问题,在这种情况下,两个物体以相同的速度沿相反的方向运动。
对于背靠背问题,我们可以使用以下公式求解:相遇时间 = 总距离 / (速度1 + 速度2)此公式得出的结果即为两个物体相遇的时间。
三、反向问题反向问题是相遇问题中常见的一种类型。
在这种情况下,两个物体分别以不同的速度往相反方向移动,我们需要确定它们相遇的时间或位置。
对于反向问题,我们可以使用以下公式求解:相遇时间 = 总距离 / (速度1 + 速度2)相遇位置 = 速度1 ×相遇时间四、追及问题追及问题是相遇问题中较为复杂的一种类型。
在这种情况下,一个物体追逐另一个物体,它们的速度不同。
通常我们需要计算追及者追上被追者的时间或位置。
对于追及问题,我们可以使用以下公式求解:相遇时间 = 距离差 / 速度差相遇位置 = 追及者的速度 ×相遇时间总结:小学相遇问题归纳总结题型主要包括同向问题、背靠背问题、反向问题和追及问题。
其中同向问题的答案常为“永不相遇”,背靠背问题的相遇时间可由相遇公式计算得出,反向问题的相遇时间和位置也可通过相遇公式求解,追及问题则需要使用距离差和速度差来计算相遇时间和位置。
掌握这些相遇问题的求解方法,可以帮助小学生更好地理解速度、时间和距离的关系,培养逻辑思维和数学计算能力。
小学数学相遇问题

小学数学相遇问题相遇问题(一)指两运动物体从两地以不同的速度作相向运动。
相遇问题的基本关系是:相遇时间=相隔距离(两个物体运动时)÷速度和;相隔距离(两物体运动时)=速度之和×相遇时间;甲速=相隔距离(两个物体运动时)÷相遇时间-乙速例一:客车和货车同时从A、B两地相向开出,客车每小时行60千米,货车每小时行80千米。
两车在距中点30千米处相遇。
求A、B两地相距多少千米?从图中可以看出,两车相遇时,货车比客车多行了30×2=60(千米)。
两车同时出发,为什么货车会比客车多行了60千米呢?因为货车每小时比客车多行了80—60=20(千米),60里包含3个20,所以此时两车各行了3小时,A、B两地的路程只要用(60+80)×3就能得出。
解:30×2÷(80—60)=3(小时) (60+80)×3=420(千米) 答.A,B两柏相距420千米。
练习1.甲、乙两辆汽车同时从两地出发,相向而行。
甲汽车每小时行50千米,乙汽车每小行55千米。
两车在距中点15千米处相遇。
求两地之间的路程是多少千米?2.甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇:A、B两地相距多少千米?3.A、B两人分别从甲、乙两地同时相向而行,A每分钟行120米,B每分钟行80米。
一段时间后,A离中点还有560米的路程,B离中点还有1040米的路程。
求甲、乙两地相距多少米?例二:一列火车子下午1时30分从甲站向乙站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站向甲站开出,当天下午6时两车相遇。
甲、乙两站相距多少千米? 【思路】用第一列火车前1小时行的路程加上后来两列火车同时行的路程就可算出甲、乙两站相距多少千米。
也可以用第一列火车行的路程加上第二列火车行的路程,得出甲、乙两站相距多少千米。
小学数学高频考点讲义25专题二十五 相遇问题

专题二十五 相遇问题例题:1. 甲、乙两货车同时从相距300千米的A 、B 两地相对开出,甲车以每小时60千米的速度开往B 地,乙车以每小时40千米的速度开往A 地.甲车到达B 地停留2小时后以原速返回,乙车到达A 地停留半小时后以原速返回,返回时两车相遇地点与A 地相距多远?分析与解答: 根据题意,甲车从A 地行至B 地需300÷60=5(小时),加上停留2小时,经7小时从B 地返回;乙车从B 地行至A 地需300÷40=7.5(小时),加上停留半小时经8小时后从A 地返回.因此,甲车从B 地先行1小时后(走60千米),乙车才从A 地出发.所以,两车返回时的相遇时间是(300-60)÷(60+40)=2.4(小时).故两车返回时相遇地点与A 城相距40×2.4=96(千米).2. 甲、乙两车分别从A 、B 两站同时相向开出,已知甲车速度是乙车速度的1.5倍,甲、乙到达途中C 站的时刻依次为5:00和15:00,这两车相遇是什么时刻?分析与解答: 甲车到达C 站时,乙车距C 站还差15-5=10(时)的路,这段路两车共行需10÷(1.5+1)=4(时),所以两车相遇时刻是5+4=9(时).3. 铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问军人与农民何时相遇?分析与解答: 火车速度为30×1000÷60=500(米/分);军人速度为(500×41-110)÷41=60(米/分); 农民速度为(110-500×51)÷51=50(米/分). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50) =30(分),即8点30分两人相遇.4. 有一辆沿公路不停地往返于M 、N 两地之间的汽车.老王从M 地沿这条公路步行向N 地,速度为每小时3.6千米,中途迎面遇到从N 地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回. M 、N 两地的路程有多少千米?分析与解答: 设老王第一次遇到汽车是在A 处,20分钟后行到B 处,又50分钟后到C 处,又40分钟后到D 处(见下图).由题意AB =1.2千米;BC =3千米;CD =2.4千米.由上图知,老王行AC 的时间为20+50=70(分),这段时间内,汽车行的路加上老王行的路正好是MN 全程的2倍.老王行BD 的时间为50+40=90(分),这段时间内,汽车行的路减去老王行的路也正好是MN 全程的2倍.上述两者的时间差为90-70=20(分),汽车在第二段时间比第一段时间多行AC 段与BD 段路,即多行 (1.2+3)+(3+2.4)=9.6(千米),所以,汽车的速度为每小时行9.6×(60÷20)=28.8(千米).在老王行AC 段的70分钟里,老王与汽车行的路正好是MN 全程的2倍,所以MN 两地的路程为(3.6+28.8)×(70÷60)÷2=18.9(千米).习题:1. 一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_____米.2. 甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_____千米.3. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距____米.4. 一辆客车和一辆货车,分别从甲、乙两地同时相向而行,4小时相遇.如果客车行3小时,货车行2小时,两车还相隔全程的3011,客车行完全程需____小时.5. 甲、乙两人从A 、B 两地相向而行,相遇时,甲所行路程为乙的2倍多1.5千米,乙所行的路程为甲所行路程的52,则两地相距______千米.6. 从甲城到乙城,大客车在公路上要行驶6小时,小客车要行驶4小时.两辆汽车分别从两城相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长______千米?7. 甲、乙两车分别同时从A 、B 两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从A 城到B 城共有______小时.8. 王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了______米.9. A 、B 两地相距10千米,一个班学生45人,由A 地去B 地.现有一辆马车,车速是人步行速度的3倍,马车每次可乘坐9人,在A 地先将第一批9名学生送往B 地,其余学生同时步行向B 地前进;车到B 地后,立即返回,在途中与步行学生相遇后,再接9名学生送往B 地,余下学生继续向B 地前进;……;这样多次往返,当全体学生都到达B 地时,马车共行了______千米.10. 从电车总站每隔一定时间开出一辆电车.甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.则电车总站每隔______分钟开出一辆电车.———————————————答 案——————————————————————习题答案:1. 14题目实质上说,火车和人用8秒时间共同走了152米,即火车与人的速度和是每秒152÷8=19(米),火车的速度是每秒63360÷3600=17.6(米).所以,人步行的速度是每秒19-17.6=1.4(米).2. 86根据相遇问题的数量关系,可知两车每小时行程之和(即速度和)是 258÷4=64.5(千米).由汽车速度是拖拉机速度的2倍,可知汽车与拖拉机速度之差为速度之和的(3132-).所以,两车的速度之差为 64.5×(3132-) =64.5×31 =21.5(千米)相遇时,汽车比拖拉机多行21.5×4=86(千米).3. 3120解法一 依题意,作线段图如下:甲 2分钟 丙A B乙丙遇到乙后2分钟再遇到甲,2分钟甲、丙两人共走了(50+70)×2=240(米), 这就是乙、丙相遇时乙比甲多走的路程.又知乙比甲每分钟多走60-50=10(米). 由此知乙、丙从出发到相遇所用的时间是240÷10=24(分).所以,A 、B 两地相距(60+70)×24=3120(米).解法二 甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即(60+70)×2=260(米).甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需260÷(60-50)=26(分).所以, A 、B 两地相距 (50+70)×26=3120(米).4. 721 假如客车和货车各行了2小时,那么,一共行了全程的21,还剩下全程21的路程.现在客车行了3小时,货车行了2小时,还剩下3011的路程.所以,客车1小时行全程的21-3011=152. 因此,客车行完全程需1÷152= 721(小时).5. 10.5因为乙行的路程是甲行的路程的52,所以乙行的路程占全程的72,故两地相距1.5÷(1-72-72×2) =10.5(千米).6. 240大客车的速度是小客车的4÷6=32,相遇时小客车比大客车多行驶了24×2=48(千米),占全程的53-52=51,所以全程为48÷51=240(千米).7. 12.5由题意推知,两车相遇时,甲车实际行驶5小时,乙车实际行驶7.5小时.与计划的6小时相遇比较,甲车少行1小时,乙车多行1.5小时.也就是说甲车行1小时的路程,乙车需行1.5小时.进一步推知,乙车行7.5小时的路程,甲车需行5小时.所以,甲车从A 城到B 城共用7.5+5=12.5(小时).8. 580小狗跑的时间为(300-10)÷(50+50)=2.9(分),共跑了200×2.9=580(米).9. 28.75因为马车的速度是人步行速度的3倍,所以如下图所示,马车第一次到达B 地时行了10千米,第二、三、四、五次到达B 地时,分别行了20、25、27.5、28.75千米.10. 11电车15秒即41分钟行了(82-60)×10-60×41=205(米). 所以,电车的速度是每分钟205÷41=820(米).甲走10分钟的路电车需1分钟,所以每隔10+1=11(分钟)开出一辆电车.。
小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。
相遇问题--2024年六年级下册小升初数学思维拓展

相遇问题【知识点归纳】两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程. 小学数学教材中的行程问题,一般是指相遇问题.相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.1.A 、B 两地间有一座桥,甲、乙两人分别从A 、B 两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.50.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A 、B 两地相距多少千米?2.刘凯和王明两家相距1200米,两人同时从家出发,相向而行,走了6分钟后,两人还相距342米。
刘凯的速度是王明的1.2倍,刘凯每分钟走多少米?(用方程解答)3.A、B两地相距378千米,甲、乙两车同时从两地出发,相向而行。
甲车的速度是乙车的1.1倍,3小时后两车相遇。
甲车平均每小时行多少千米?4.甲乙两地相距325.5千米,两车从两地相向而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后,乙车才出发,再经过几小时两车相遇?5.一辆大客车和一辆小汽车分别从甲地和乙地出发,相向而行,大客车平均每小时行56.5千米,小汽车平均每小时行61.5千米,1.5小时两车相遇。
甲乙两地之间的路程是多少千米?6.甲乙两地相距810千米,一辆客车和一辆货车分别从甲乙两地同时出发,相向而行,经过6小时相遇。
客车每小时行75千米,货车每小时行多少千米?(用方程解答)7.甲、乙两地相距480千米,-列客车与-列货车从甲、乙两地同时相向而行,4小时相遇。
已知客车与货车的速度比是3∶2,客车每小时行多少千米?8.甲、乙两车同时从A地出发,甲车向南开,每时行驶55km,乙车向北开,3时后两车相距345km,乙车每时行驶多少千米?9.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。
小学数学应用题之相遇问题

小学数学应用题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例1:欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。
这条马路长()。
解:根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5 =700(米)。
例2:甲乙两车分别以不变的速度从AB两地同时出发,相向而行。
到达目的地后立即返回。
已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距()千米。
解:1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。
2、画线段图3、从图中可以看出,第一次相遇时甲行了50千米。
甲乙合行了一个全程的路程。
从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。
由于甲乙速度不变,合行两个全程时,甲能行50×2=100(千米)。
4、因此甲一共行了50+100=150(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。
所以AB两地相距150-60=90(千米)。
例3:欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。
如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过()次。
解:1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。
(线段图参考例2。
)2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。
3、因为从第一次相遇结束到第二次相遇,欢欢和乐乐要走两个全程,所以从第二次开始每相遇一次需要的时间是16秒的2倍,也就是32秒,则经过第一次相遇后,剩下的时间是600-16=584(秒),还要相遇584÷32=18.25(次),所以在这段时间里共相遇过18+1=19(次)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八讲相遇问题
【知识概述】
行程问题就是研究相向运动中得速度、时间与路程三者之间关系得问题,(涉及两个或两个以上物体运动得问题)指两个运动得物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:路程÷速度与=相遇时间
路程÷相遇时间=速度与
速度与×相遇时间=路程温馨提示:
(1)在处理相遇问题时,一定要注意公式得使用时二者发生关系那一时刻所处得状态;(2)在行程问题里所用得时间都就是时间段,而不就是时间点(非常重要);
(3)无论就是在哪类行程问题里,只要就是相遇,就与速度与有关。
解题秘诀:
(1)必须弄清物体运动得具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间得关系,帮助我们理解题意,迅速得找到解题思路。
【典型例题】
例1 东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时得速度比乙快10千米,二人每小时得速度各就是多少千米?
【学大名师】由“甲每小时比乙快10千米”知,速度差就是10 千米/时,二人每小时得速度与为60÷3= 20(千米/时),因此,求二人每小时得速度可用“与差问题”得方法解答。
解:甲(60÷3+10)÷2=15(千米)乙 15-10=5(千米)
答:甲得速度就是每小时15千米,乙得速度就是每小时5千米。
例2 A港与B港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号得速度比“名士”号快多少千米?
【学大名师】此题中得时间就是用“时刻”替代得,只要把时刻转换成时间就简单了。
换算得方法就是:结束时间-开始时间=经过时间。
解:“名士”号比“日立”号快艇先开时间: 12-9 =3(小时)
从“日立”号开出到与“名士”号相遇得时间:16-12=4(小时)“日立”号速度:(662-54×3)÷4-54
=500÷4-54
=125-54 =71(千米/时) 71-54 =17(千米/时)
答:“日立”号得速度比“名士”号快17千米/时。
例3 甲骑摩托车,乙骑自行车,同时从相距126千米得A、B两城出发、相向而行。
3小时后,在离两城中点处24千米得地方,甲、乙二人相遇。
求甲、乙二人得速度各就是多少?【学大名师】此题可用线段图表示:
如上图,中点处就就是A、B两城正中间得地方,所以由中点处到A城与B城之间得距离都就是(126÷2)千米。
甲骑摩托车比乙骑自行车速度快,所以同样行3小时,行驶得路程比乙多,要在离中点24千米处相遇,因此,甲走得路程就是(126÷2+24)千米;乙走得路程就是(126÷2-24)千米。
解:甲得速度(126÷2+24)÷3=29 (千米/小时)乙得速度(126÷2-24)÷3= 13(千米/小时)
答:甲骑摩托车得速度就是29千米/小时,乙骑自行车得速度13千米/小时。
例4 A、B两城间有一条公路长240千米,甲、乙两车同时从A、B两城出发,甲以每小时45千米得速度从A城到B城,乙以每小时35千米得速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?【学大名师】甲乙两人第一次相遇时,行了一个全程。
然后甲乙两人到达对方城市后立即以原速沿原路返回,当小华与小明第二次相遇时,共行了3个全程,这时甲乙共行了多少个小时呢?可以用两城全长得3倍除以甲乙速度与就可以了。
解:出发到第二次相遇时共行 240×3=720(千米)
甲、乙两人得速度与 45+35=80(千米)从出发到第二次相遇共用时间 720÷80=9(小时)
35×9-240=75(千米)
答:9小时后,两车在途中第二次相遇,相遇地点离A城75千米。
例5 体育场得环形跑道长400米,小刚与小华在跑道得同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
几分钟后她们第3次相遇?
【学大名师】两人在环形道上跑步,开始“反向”,后来会转化成“相向”,所以实际上就就是相向相遇问题。
相遇时两人正好走完一圈。
全长400米,所以第3次相遇时两人共跑了(400×3)米。
因此可以按照“甲程+乙程=全程”列方程解,也可用算术方法解。
解:(1)400×3÷(152+148)= 4(分)用方程解:解设x分钟后她们第三次相遇 152x+148x =400×3 300x=1200 x=4
答:4分钟后她们第3次相遇。
例6 客车与货车分别从甲、乙地相向而行,客车行全程需要4小时,货车每小时行60千米,行了90千米,遇上客车,求甲、乙两地得距离?
【学大名师】两车相遇时,货车行了90千米,因此可知相遇得时间为90÷60=1、5(小时),因为客车行完全程要4小时,所以客车行90千米需要4-1、5=2、5(小时),2、5小时占4小时得8
5
,即90千米时全程得
85,那么全程就就是90÷8
5
=144(千米)。
解:=144(千米)
答:甲、乙两地得距离就是144千米。
【我能行】
1.一辆汽车与一辆摩托车同时分别从相距900千米得甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?
2.甲、乙两车从相距675千米得两地相对出发,甲每小时行45千米,乙每小时行60千米,甲先行1小时后,乙才出发,再经过几小时两车才能相遇?
3.一条长400米得环形跑道,甜甜在练习骑自行车,她每分钟行560米,彬彬在练长跑,她每分钟跑240米,两人同时从同地同向出发,经过多少分钟两人可以相遇?
4.一列客车以每小时90千米得速度从甲站出发,4小时可到达乙站,有一列货车从乙站开出,6小时可以到达甲站。
如果两车同时从两地相向发车,几小时后两车相遇?
5.甲、乙两地间得路程就是600千米,上午8点客车以平均每小时60千米得速度从甲地开往乙地。
货车以平均每小时50千米得速度从乙地开往甲地。
要使两车在全程得中点相遇,货车必须在上午几点出发?
6.甲、乙两车分别从A、B两站同时出发,相向而行,第一次相遇时在距A站28千米处,相遇后两车继续前进,各自到达B、A两站后,立即沿原路返回,第二次相遇距A站60千米处。
A、B两站间得路程就是多少千米?
【我试试】
1.甲每分钟走80米,乙每分钟走60米。
两人分别从A、B两地同时出发,在途中相遇后继续前进,先后分别到B、A两地后即刻沿原路返回,甲乙二人又再次相遇。
如果A、B两地相距420米,那么两次相遇地点之间相距多少米?
2.甲、乙两名同学从相距100米得两点同时出发相向而跑,当跑到另一点时,立即返回,甲每秒跑6、5米,乙每秒跑5、5米,经过几秒钟两人第二次相遇?
3.一辆快车与一辆慢车分别从南京与扬州两地同时相向而行,经过5
3
小时在离中点3千米处相遇。
已知快车平均每小时行75千米,慢车平均每小时行多少千米?
4.客车从甲地开往乙地,货车从乙地开往甲地,两车同时相向开出,12小时后相遇,相遇后,客车又行了8小时到达乙地。
问:相遇后货车再行几小时到达乙地?。