(工艺技术)不锈钢管焊接工艺及热处理
1.2mm的不锈钢管子的焊接工艺

1.2mm的不锈钢管子的焊接工艺
焊接不锈钢管子需要特别的工艺和注意事项,以确保焊接质量
和管道的持久性。
首先,选择合适的焊接方法对于不锈钢管子至关
重要。
常用的方法包括TIG(氩弧焊)、MIG(气体保护焊)、电阻
焊等。
在选择焊接方法时,需要考虑管道的材质、厚度和管道用途
等因素。
其次,焊接不锈钢管子时,需要特别注意保护性气体的选择和
流量控制。
对于TIG焊接,使用惰性气体(通常是氩气)进行保护,以防止氧气和其他杂质进入焊接区域,从而避免产生氧化和腐蚀。
对于MIG焊接,同样需要保护性气体来保护焊接区域。
另外,焊接电流和电压的选择也是关键。
对于不锈钢管子,通
常需要较低的电流和电压,以避免产生过多的热量导致变形或者焊
接区域的氧化。
焊接速度也需要适当控制,以确保焊缝的质量和外观。
此外,还需要注意焊接工艺中的预热和后热处理。
对于较大直
径或者壁厚的不锈钢管子,通常需要进行预热以减少焊接应力和避
免裂纹的产生。
焊接完成后,还需要进行适当的后热处理,以消除
残余应力并提高焊接接头的性能。
最后,焊接不锈钢管子时,还需要严格控制焊接工艺参数,包括焊接速度、焊接角度、焊接层间间隙等。
同时,还需要进行焊后的检测和评价,以确保焊接质量符合相关标准和要求。
总之,焊接不锈钢管子需要综合考虑材料特性、焊接方法、工艺参数等多个因素,以确保焊接质量和管道的使用性能。
希望以上信息能够帮助你更好地理解不锈钢管子的焊接工艺。
管道焊接工艺和热处理

5、热熔和电熔 接头型002-2006 《燃气用聚乙烯管道焊接技术规则》
2、实施单位 热熔:管道元件制造单位和管道安装单位 电熔:管道元件制造单位在产品设计定型时进行,管道安装 单位应当对其进行验证,验证项目为工艺评定规定的全部项 目
3、实施条件 首次采用焊接工艺参数; 不同原材料级别(例如PE80与PE100)的管道元件互焊; 同一原材料级别的管道元件,熔体质量流动速率(MFR)差值 大于0.5g/10min(190℃,5kg); 管道元件对焊接有特殊要求;
预热温度对焊缝边界焊接热循环的影响
(2)预热要求
测温点位置(预热范围): 每侧宽度不小于3δ ,且不小于25mm;(距焊缝坡口边缘)
GB/T 20801对预热温度的要求:
6、其他焊接工艺
层间温度:不低于预热温度 焊接参数:由焊接工艺评定确定
线能量(热输入):焊接电流、焊接电压、焊接速度 缓冷 后热处理:在焊接完成后,立即加热到一定温度
奥氏体不锈钢与碳素钢、低合金钢、马氏体不锈钢、铁素体不 锈钢的异种接头应选用:
25Cr-13Ni(E309型),25Cr-20Ni(E310型)
(三)不锈钢的焊接
4、焊接工艺
马氏体、铁素体不锈钢:与低合金钢相类似 奥氏体不锈钢:快速冷却(与低合金钢相反)
不预热,层间温度≤150℃, 小线能量,多层多道焊, 背面充氩保护 药芯焊丝的应用
使用同一管道元件制造单位提供的管道元件时,管道安装 单位任选一个DN≥63mm规格进行验证即可覆盖所有规格。
5、试件数量:2组 6、试件检验项目及要求
热熔对接
电熔承插
电熔鞍形
7、检验要求
(1)热熔 外观
卷边应沿整个外圆周平滑对 称,尺寸均匀、饱满、圆润。 翻边不得有切口或者缺口状 缺陷,不得有明显的海棉状 浮渣出现,无明显的气孔。
不锈钢的焊接方法教程

不锈钢的焊接方法教程一.不锈钢焊接方法、不锈钢焊接技术及注意事项不锈钢管的标准规格有200多种,大小均有,小管较贵,尤其是毛细管.毛细管最差得由304材质生产,不然管子简易爆裂.还可以为客户定做非标规格的管材.无缝管主要用于工业上,表面为雾面,不光洁.有缝管的表面是光洁面,管内有一条很细的焊接线,俗称焊接管,主要用于装饰材料.另有工业流体管,其抗压力视壁厚决定.310与310S为耐高温管.1080度以下能正常使用,最高耐温达到1150度.二.不锈钢焊管生产工艺原料--分条--焊接制管--修端--抛光--检验(喷印)--包装--出货(入仓)(装饰焊管)原料--分条--焊接制管--热处理--矫正--矫直--修端--酸洗--水压测试--检验(喷印)-包装--出货(入仓)(焊管工业配管用管)三.不锈钢最常用的焊接方法主要是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG)。
1. 焊前准备4mm 一下的厚度不用开破口,直接焊接,单面一次焊透。
4到6mm厚度对接焊缝可采用不开破口接头双面焊。
6mm以上,大凡开V或U,X形坡口。
其次:对焊件,填充焊丝进行除油和去氧化皮。
以保证焊接质量。
2 焊接参数包括焊接电流,钨极直径,弧长,电弧电压,焊接速度,保护气流,喷嘴直径等。
(1)焊接电流是决定焊缝成形的关键因素。
通常根据焊件材料,厚度,及坡口形状来决定的。
(2)焊极直径根据焊接电流大小决定,电流越大,直径也越大。
(3)焊弧和电弧电影,弧长范围约0.5到3mm,对应的电弧电压为8~10V。
⑷焊速:选择时要考虑到电流大小,焊件材料敏感度,焊接位置及操作方式等因素决定。
①手工焊(MMA)手工焊是一种非常普遍的、易于使用的焊接方法。
电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小。
同时,当作为电弧载体时,电焊条也是焊缝填充材料。
这种焊接方法很简单,可以用来焊接几乎所有材料。
TP347不锈钢厚壁管焊接及热处理工艺试验分析

1 TP347不锈钢管的概述及应用背景TP347不锈钢管是奥氏体型不锈耐酸钢,TP347在酸,碱,盐等溶液具有良好的耐腐蚀性能,因此广泛应用于航空,石油化工等工业中。
起初TP347和TP347作为一种国外引进材料,根据引进的工艺不同,分为焊后做稳定化热处理和焊后不做稳定化热处理两种,壁厚基本在30mm以下,主要用途是在炉管方面。
随着国内钢厂制造工艺技术的提升,TP347材料逐渐国产化,管道材料逐渐变厚,开始应用于工艺管道方面,工艺条件也变得越来越复杂。
在TP347材料应用于工艺管道的工程实践中,多个装置出现管道在焊接或稳定化热处理后出现焊缝裂纹的问题。
比如:某200万t/a渣油加氢装置施工过程中厚壁TP347管道焊接或稳定化热处理后发现裂纹;某煤制油装置施工过程中厚壁TP347管道稳定化热处理后发现裂纹;某渣油加氢和蜡油加氢装置TP347材质高压厚壁管道焊后稳定化热处理后出现大面积焊缝开裂,部分焊缝延迟到试车和生产阶段;某20万m 3/h制氢装置Ⅱ系列2009年投入运行至2014年大修更换新的上集合管及部分支管(材质均为TP347H)期间曾先后出现6次转化炉上集合管三通与支管连接处焊缝开裂,造成装置多次非计划停车事件等。
2 开展试验研究分析TP347厚壁管焊缝裂缝问题鉴于如此多装置的TP347材质厚壁管在施工过程中出现由于焊接或稳定化热处理后产生裂纹的现象,为了保证施工质量、进度及后期装置长周期安全运行,对TP347厚壁不锈钢管的焊接及热处理工艺进行试验,寻找合适的焊接工艺和热处理工艺并分析稳定化热处理工艺对TP347厚壁管焊缝是否必要及其可行性。
针对某沸腾床渣油加氢装置TP347厚壁不锈钢管,采用不同的焊接工艺和热处理工艺,以验证拟定的或既有的焊接工艺是否合理,分析稳定化热处理工艺是否必要及对拟定稳定化热处理工艺的是否可行及其是否合理进行验证。
3 试验过程拟分3个阶段进行了试验,第一阶段对711×73.02和φ406.4×44.45两种规格TP347厚壁管的手工焊做了5组试件,试件拟定试验项目如表1所示:TP347不锈钢厚壁管焊接及热处理工艺试验分析梁子轩 中国石化润滑油有限公司 北京 100728摘要:针对某沸腾床渣油加氢装置TP347厚壁不锈钢管,采用不同的焊接工艺和热处理工艺,利用3个阶段试验数据,研究分析拟定的或既有的焊接工艺科学性以及稳定化热处理工艺必要性及可行性,为后续类似项目施工提供参考。
2205双相不锈钢焊接和焊后热处理工艺

2205双相不锈钢焊接和焊后热处理工艺研究摘要:采用了等离子弧焊(PAW)打底+钨极氩弧焊(TIG)盖面和等离子弧焊(PAW)打底+熔化极氩弧焊(MIG)盖面两种焊接工艺焊接2205双相不锈钢,并对焊接接头进行了固溶处理,对采用两种焊接工艺的焊件进行金相组织、铁素体-奥氏体两相比例、力学性能以及耐点腐蚀性检测。
结果表明,两种焊接工艺都可以保证焊接接头的各项性能均能满足技术要求,TIG焊盖面的焊接接头铁素体含量低于MIG 焊盖面,且冲击韧性也于优于MIG焊盖面,而MIG焊盖面的焊接接头的耐点腐蚀性能优于TIG焊盖面。
关键词:2205双相不锈钢TIG焊MIG焊力学性能点腐蚀一、引言双相不锈钢是由奥氏体和铁素体两相组成,当两相比例约为50%时,双相不锈钢将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所有的较高强度和耐氯化物应力腐蚀性能结合在一起,使其兼具奥氏体不锈钢和铁素体不锈钢的优点。
2205双相不锈钢是20世纪70年代首先由瑞典研制成功,材料牌号为SAF2205,属于第二代双相不锈钢。
中国在80年代初开始研究相当SAF2205的00Cr22Ni5Mo3N双相不锈钢,它是一种典型的含N、超低碳、双相铁素体—奥氏体不锈钢,它具有较高的屈服强度(为奥氏体不锈钢的二倍)及良好的塑性,有良好的低温冲击性能,优良的耐应力腐蚀、晶间腐蚀、点腐蚀和缝隙腐蚀性能;与奥氏体不锈钢相比,具有导热系数大、线膨胀系数小、可焊性好、热裂倾向小、钢中含镍量较小、价格相对便宜等优点,使其广泛应用于化工、石油能源及海洋等领域,是目前应用最普遍的双相不锈钢材料。
本实验分别采用了两种不同焊接方法进行对比,在焊后对焊接接送进行了热处理,研究了焊接和热影响区组织及性能变化和奥氏体-铁素体相比例对其的影响。
二、实验材料和实验方法1、实验材料实验采用太原钢铁公司生的2205双相不锈钢,其化学成分和力学性能如表1和表2所示。
2205双相不锈钢试板的尺寸为160mm×320mm×10mm。
对2507超级双相不锈钢焊接及热处理工艺的相关探究

(2)准备工作及工作要求。首先,前期准备。采取的 是机械加工的方式,可对焊接缝隙的坡口进行填充。其次, 在焊接前进行清理工作。在清理过程中,可以采取不锈钢的 钢丝对坡口及其两侧大约 0.3cm 的范围内进行油污和铁锈的 处理,还需要对氧化皮等物质进行清理。再次,做好设备的 检验工作。在模拟焊枪的行走过程中,要对焊接设备的送水 与送气装置进行检验,可以保证设备的正常运转,之后,对 焊丝的规格、材料以及牌号等的匹配情况进行检验。最后, 试板组对。采取的是手工 TIG 不填丝的焊接方式实现对试板 的点焊和组队,保证焊接之间不能留有缝隙。
(4)HAZ 金相组织分析。从试验分析中可以看出,第三 相析出情况相对严重,而且呈现出了黑色小块状物的状况, 主要分布在奥氏体和铁素题晶界处,在该组织结构中,铁素 体的体积分数大概在 35% 左右,两相比例的差异性比较大, 这也是造成强度过高、焊接脆性不断加大的重要因素,这种 情况也会导致冲击功率下降、延伸率受影响的问题。而在试 验中进行观察可以看出,靠近左侧的木材区域,岛状的奥氏 体在铁元素的基体上进行了分布,而母材热轧带组织比ห้องสมุดไป่ตู้明 显。右侧位置与焊缝区域比较靠近,奥氏体会以针状的方式 呈现,生长方向也相对明确,晶粒生长整体与焊接组织之间 会呈现相似性的特征,这时,组织中的铁素体就会占整个体 积分数的一半以上。
对 2507 超级双相不锈钢 焊接及热处理工艺的相关探究
中国设备工程
China Plant Engineering
邵丽辉 (甘肃金阳高科技材料有限公司,甘肃 兰州 730100)
摘要:在对 2507 超级双相不锈钢焊接进行探析时,通常是利用腐蚀方法、力学实验等方式对其组织性能结构进行研究, 并根据最终的实验结果采取相应的处理方式。在多重实验的研究后得出,利用混合气体保护的方式开展焊接工艺,在焊接 过后大概 1050℃以上,保温时间为 14min 左右的热处理后,焊接的试样会在焊缝位置第三相严重析出,并且出现比例明显 加大的情况,这样就会导致裂缝的脆性出现增大的情况,焊缝的性能无法与有关标准相吻合。而采取纯氩气焊接和多层多 道的焊接工艺后,在焊接后大概 1100℃以上,保温时间为 52min 左右的热处理后,焊接试样的焊接缝位置比例相对适宜, 最终所取得的焊缝各项性能都比较完好,可以很好地满足焊接的要求。
316L不锈钢管道焊接工艺

316L不锈钢管道焊接工艺焊接工艺(1)焊接方法:由于现场多数为不锈钢管道且大小不一,根据不锈钢的焊接特点,尽可能减小热输入量,故使用手工电弧焊、氩弧焊两种方法,d >Φ159 mm 的使用氩弧焊打底,手工电弧焊盖面。
d ≦Φ159 mm 的全用氩弧焊。
焊机使用手工电弧焊/氩弧焊两用的WS7 一400 逆变式弧焊机。
document.write("");xno = xno+1;(2)焊接材料:奥氏体不锈钢是特殊性能用钢,为满足接头具有相同的性能,应遵循“等成分”原则选择焊接材料,同时为增强接头抗热裂纹与晶间腐蚀能力,使接头中出现少量铁素体,选择HooCr19Ni12Mo2氩弧焊用焊丝,手弧焊用焊条CHSO22 作为填充材料,其成分见表1 与表2。
表1 焊丝HOOCr19Ni12Mo2化学成分(%)C Si Mn P S Ni Cr Mo0.0120.131.700.0190.00713.2318.722.38C Cu Si Mn P S Ni Cr Mo0.030.200.640.750.020.00711.7719.662.05(3)焊接参数。
奥氏体不锈钢的突出特点是对过热敏感,故使用小电流、快速焊,多层焊时要严格操纵层间温度,使层间温度小于60 ℃ 。
具体参数见表3 。
表3 焊接参数接头形式焊缝层次焊接方法焊接材料焊接电流I/A电弧电压U/V焊接速度v/(cm.min)牌号直径d/mm管对接一层手工钨极氩弧焊HOOCr19Ni12Mo22.575-8010-116-83.283-9011-136-8二层手工钨极氩弧焊HOOCr19Ni12Mo22.575-8010-116-83.285-9312-136-8手工电弧焊CHS022 2.580-8525-269-12(4 )坡口形式及装配定位焊。
坡口形式使用V 形坡口,由于使用了较小的焊接电流,熔深小,因而坡口的钝边比碳钢小,约为0-0.5 mm,坡口角度比碳钢大,约为65°- 700°,其形式见图l 。
钢制压力容器焊接与热处理

钢制压力容器的焊接和热处理钢制压力容器制造中,焊接技术是极为关键的一项技术,文章综合理论与实际两大方面,对钢制压力容器(尤其是不锈钢复合钢板制压力容器)详细讨论了设计中的焊接工艺和热处理工艺,强调了焊接质量的重要性,对钢制压力容器的设计与制造,都有一定的指导意义。
<b> 焊接,是涉及、生产及安装压力容器中非常重要的一项技术,设计中焊接接头的正确选择和制造中焊接质量的优缺点,都会对压力容器的工作及使用寿命产生决定性影响,甚至还可能会危及人类的生命、财产安全。
从这点来看,压力容器的焊接质量,既是个安全性问题,同时也是个经济性问题。
1.不锈钢复合板的焊接工艺通过翻阅与焊接相关的资料,以及开展焊接性试验,根据NB/T 47015-2011《压力容器焊接规程》,SH/T 3527-2009《石油化工不锈复合钢板焊接规程》,GB/T 13148-2008《不锈钢复合钢板焊接技术要求》等标准来对焊接工艺进行评定,接焊缝焊后RT探伤、晶间腐蚀试验及力学性能试验等项目都应严格符合标准及需求。
焊接工艺的最终评估结果将作为制定产品焊接工艺的重要依据。
1.1.焊接方法不锈钢复合钢板有许多成熟的焊接方法,大体可分为焊条电弧焊、钨极氩弧焊、埋弧焊等。
有些换热器的管箱与浮头盖都是复合材料,没有很大的焊接空间,直焊缝不长,可进行双面焊,对于这类换热器产品,采用焊条电弧焊方法更为合适,这样不仅能提升焊接质量,同时还可压缩成本,其操作较为灵活,几乎不受工件形状与焊接位置的影响。
1.2.焊接材料的选择焊材的选择,应根据基层强度相等和保证复合层耐腐蚀性的原则进行。
1.3.焊接设备和环境通常可选择直流焊机,基层、复层及过渡层这3种焊缝均可选择焊条电弧焊。
所采用的钢丝刷、扁铲等工具都,都应是不锈钢材料。
焊接应在0 ℃以上的环境下进行,同时,现场应采取必要的防风措施。
1.4.焊接沟槽和接头装配1.4.1.沟槽选用沟槽形式时,应充分考虑焊接渡层的特点,焊接顺序应依次为焊基层、渡层到复层,,要尽可能不对复层进行焊接或进行少量焊接,同时还应避免复层焊缝被多次受热,从而逐步增强复层焊缝的耐腐蚀性能,该沟槽形式还能有效降低设备内部的铲磨工作量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不锈钢管焊接工艺及热处理
[我的钢铁] 2009-02-03 15:10:20
不锈钢管热处理
不锈钢管热处理国外普遍采用带保护气体的无氧化连续热处理炉,进行生产过程中的中间热处理和最终的成品热处理,由于可以获得无氧化的光亮表面,从而取消了传统的酸洗工序。
这一热处理工艺的采用,既改善了钢管的质量,又克服了酸洗对环境的污染。
根据目前世界发展的趋势,光亮连续炉基本分为三种类型:
(1)辊底式光亮热处理炉。
这种炉型适用于大规格、大批量钢管热处理,小时产量为1.0吨以上。
可使用的保护气体为高纯度氢气、分解氨及其它保护气体。
可以配备有对流冷却系统,以便较快地冷却钢管。
(2)网带式光亮热处理炉。
这种炉型适合于小直径薄壁精密钢管,小时产量约为0.3-1.0吨,处理钢管长度可达40米,也可以处理成卷的毛细管。
(3)马弗式光亮热处理炉。
钢管装在连续的把架上,在马弗管内运行加热,能以较低的成本处理优质小直径薄壁钢管,小时产量约在0.3吨以上。
不锈钢焊管工艺技术——氩弧焊
不锈钢焊管要求熔深焊透,不含氧化物夹杂,热影响区尽可能小,钨极惰性气体保护的氩弧焊具有较好的适应性,焊接质量高、焊透性能好,其产品在化工、核工业和食品等工业中得到广泛应用。
焊接速度不高是氩弧焊的不足之处,为提高焊接速度,国外研究开发了多种方法。
其中由单电极单焊炬发展采用多电极多焊炬的焊接方法在生产中应用。
70年代德国首先采用多焊炬沿焊缝方向直线排列,形成长形热流分布,明显提高焊速。
一般采用三电极焊炬的氩弧焊,焊接钢管壁厚S≥2mm,焊接速度比单焊炬提高3-4倍,焊接质量也得以改善。
氩弧焊与等离子焊组合可以焊接更大壁厚的钢管,此外,在氩气中5-10%的氢气,再采用高频脉冲焊接电源,也可提高焊接速度。
多焊炬氩弧焊适用于奥氏体和铁素体不锈钢管的焊接。
不锈钢焊管工艺技术——高频焊
高频焊用于碳钢焊管生产已经有40多年的历史,但用于焊接不锈钢管却是较新的技术。
其生产的经济性,使其产品更为广泛地用于建筑装饰、家用器具和机械结构领域。
高频焊接具有较电源功率,对不同的材质、外径壁厚的钢管都能达到较高的焊接速度。
与氩弧焊相比,是其最高焊接速度的10倍以上。
因此,生产一般用途的不锈钢管具有较高的生产率。
因为高频焊接速度高,给焊管内毛刺的去除带来困难。
目前,高频焊不锈钢管尚不能为化工、核工业所接受,这也是其原因之一。
从焊接材质看,高频焊可以焊接各种类型的奥氏体不锈钢管。
同时,新钢种的开发和成型焊接方法的进步,也成功地焊接了铁素体不锈钢AISI409等钢种。
焊管工艺技术——合焊接技术
不锈钢焊管的各种焊接方法均有各自的优点和不足。
如何扬长避短,将几种焊接方法加以组合形成新的焊接工艺,满足人们对不锈钢焊管质量和生产效率的要求,是当前不锈钢焊管技术发展的新趋势。
经过近几年的探索研究,组合焊接工艺已取得了进展,日本、法国等国家的不锈钢焊管生产已掌握了一定的组合焊接技术。
组合焊接方法有:氩弧焊加等离子焊、高频焊加等离子焊、高频预热加三焊炬氩弧焊、高频预热加等离子加氩弧焊。
组合焊接提高焊速十分显着。
对于采用高频预热的组合焊接钢管焊缝质量与常规的氩弧焊、等离子焊相当,焊接操作简单,整个焊接系统易实现自动化,这种组合易于与现有的高频焊接设备衔接,投资成本低,效益好。
TIG焊活性剂对焊缝成形的影响(1)
TIG焊在生产中已经得到广泛的应用,它可以获得优质焊缝,常用来焊接有色金属、不锈钢、超高强度钢等材料。
但是TIG焊存在熔深浅(≤3mm)、焊接效率低等缺点,对于厚板需要开坡口进行多道焊。
增大焊接电流虽然能使熔深增加,但熔宽和熔池体积增加的幅度要远大于熔深的增加幅度。
TIG焊活性剂对焊缝成形的影响(2)
活性化TIG焊方法近年来引起了世界范围内的重视。
这种技术是在焊前将焊缝表面涂敷上一层活性焊剂(简称活性剂),在相同的焊接规范下,同常规的TIG焊相比,可以大幅度地提高熔深(最大可达300%)。
对于8mm的厚板焊接可以不开坡口一次获得较大的熔深或一次焊透,对于薄板可以在不改变焊接速度的情况下减小焊接热输入。
目前A-TIG焊可以用于焊接不锈钢、碳钢、镍基合金和钛合金等材料。
同传统的TIG焊相比,A-TIG焊,可以大大地提高生产率,降低生产成本,同时还可以减小焊接变形,具有非常重要的应用前景。
A-TIG焊关键的因素在于活性剂成分的选配。
目前常用的活性剂成分主要有氧化物、氯化物和氟化物,不同的材料,其适用的活性剂成分不同。
但是由于这种技术的重要性,活性剂的成分和配方在PWI和EWI都有专利限制,公开出版物上很少报道。
目前对A-TIG焊的研究主要集中在活性剂作用机理的研究和活性化焊接应用技术的研究两个方面。
TIG焊活性剂对焊缝成形的影响(3)
目前国内外开发并使用的活性剂主要有三种类型:氧化物、氟化物和氯化物。
早期由PWI研制的用于钛合金焊接的活性剂以氧化物和氯化物为主,但是氯化物的毒性大,不利于推广和应用。
目前国外焊接不锈钢、碳钢等所使用的活性剂以氧化物为主,而对于钛合金材料的焊接其活性剂中含有一定的氟化物成分。
TIG焊活性剂对焊缝成形的影响(4)
单一成分的活性剂对不锈钢焊缝成形的影响:
(1)对于涂敷了SiO2活性剂的焊缝,随着SiO2涂敷量的增加,焊道宽度逐渐变窄,弧坑变长变窄变深。
焊道后部余高变高,在涂敷活性剂和未涂敷活性剂的交接处,焊道金属堆积多,在所有活性剂中,SiO2对焊缝成形作用效果最大。
(2)活性剂NaF、Cr2O3对焊道
成形的影响不明显。
随着涂敷量的增加,焊缝宽度变化并不大,弧坑也没有明显变化。
与无活性剂的焊缝相比,焊道宽度也没有明显的变化,但弧坑比无活性剂的要大。
(3)随着TiO2涂敷量的增加,焊道外观变化不大,弧坑没有明显变化,与无活性剂时相似。
但所形成的焊缝表面比较平整规则,没有出现咬边现象,比无活性剂的焊道成形要好。
(4)活性剂CaF2对焊道成形影响较大。
随着CaF2涂敷量的增加,焊缝成形变差,弧坑变化不大,焊缝宽度变化不大。
但随着CaF2量的增加出现咬边等缺陷。
(5)对熔深的影响上,与无活性剂相比,上述五种活性剂都能够增加焊缝的熔深,而且随着涂敷量的增加,熔深也相应的增加。
但是当涂敷量达到一定值时,熔深增加达到饱和,再增加涂敷量,熔深反而下降。
TIG焊活性剂对焊缝成形的影响(5)
先进的TANDEM高速高效MIG/MAG双丝焊技术
该工艺可以焊接碳钢、低合金钢、不锈钢、铝等各种金属材料,是一种高速高效、应用广泛的先进焊接技术。
高速焊接和高熔敷率焊接是今后焊接技术的发展方向,而MIG/MAG双丝高速高效焊接又是热点之一,它将在工业生产中得到越来越广泛的应用
TANDEM双丝焊原理
TANDEM双丝焊系统由两台焊机、两台送丝机及一把焊枪等组成,可与自动化专机或焊接机器人配套使用。
两个送丝机通过两根送丝管分别将两根焊丝送进焊枪中两个独立的导电嘴,在双电弧中被熔化,形成一个熔池。
TANDEM双丝焊的工艺特点
1、高性能焊机,100%暂载率时的焊接电流1000A,脉冲电流1500A;
2、数字化双脉冲电源,可编程,连接PC机、打印机;
3、每根焊丝的规范参数可单独设定,质材、直径也可以不相同;
4、每根焊丝的送丝速度可达30m/min;
5、大大提高熔敷效率和焊接速度;
6、在熔敷效率增加时,保持较低的热输入;
7、电弧稳定,熔滴过渡受控;
8、焊接变形小;
9、飞溅小;
10、焊接数据监控和管理;
11、使用标准气体,耗气量少;
12、使用范围广,生产率高。
304不锈钢焊接工艺
实际上就是不锈钢焊接工艺。
焊道背面充氩,小电流(比碳钢、合金钢要小,一般焊接电流在60左右),短电弧(电弧电压在10V以下),焊接过程摆动要利用锯齿形摆动方式,层间温度尽量地,焊缝颜色以白黄为标准,氩弧焊焊枪角度于前进方向成90度及以下角度,对口间隙控制在2mm左右。
904L不锈钢焊接工艺
904L不锈钢焊接工艺方法,属于低碳双相奥氏体不锈钢焊接工艺。
它采用手工钨极[wiki]氩[/wiki]弧焊焊接和在焊缝表面进行酸洗钝化处理两大步骤。
首先将准备焊接的接头处理好,采用与904L同种材质的焊丝做的填充金属,一面施焊一面用冷水浇焊缝,焊接温度控制在80℃以下,焊接速度在45~50厘米/分钟以上,焊缝宽深比保持在
1.5∶1~2∶1之间,焊件厚度≤12mm。
然后在焊缝表面进行酸洗钝化处理。
其优点是在低温下焊接,904L不锈钢内部不发生分子之间的转化,避免了脆性转换的现象,也避免了焊接时晶间[wiki]腐蚀[/wiki]、热裂纹等缺陷的产生,控制了焊件的整体变形。
可充分发挥904L不锈钢本身抗酸、碱、高温腐蚀的本能,大大延长使用寿命。