《数学模型》第四版-第三章简单的优化模型
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
简单的优化模型

整数规划模型的基本概念
整数规划定义
整数规划是一类要求决策变量取整数值的数学优化问题。在 实际应用中,由于某些决策变量可能要求取整数值,如设备 数量、人员分配等,因此整数规划具有广泛的应用背景。
整数规划分类
根据决策变量的限制条件,整数规划可分为纯整数规划(所 有决策变量均取整数值)和混合整数规划(部分决策变量取 整数值)。
多目标优化模型的求解方法
权重法
通过给每个目标函数分配一个权 重,将多目标问题转化为单目标 问题进行求解。权重的确定可以
根据实际情况或专家经验。
ε约束法
将多个目标中的一个作为主目标, 其他目标作为约束条件,通过不断 调整约束条件的参数ε来求解多目 标问题。
遗传算法
通过模拟生物进化过程中的选择、 交叉和变异等操作,搜索帕累托最 优解集。遗传算法适用于复杂非线 性多目标问题的求解。
线性规划模型的应用案例
生产计划优化
利用线性规划模型确定各 种产品的生产数量,以最 大化利润或最小化成本。
资源分配问题
在有限资源的条件下,通 过线性规划模型实现资源 的最优分配,满足需求并 最大化效益。
投资组合优化
投资者可以通过线性规划 模型,根据预期收益和风 险约束,求解最优投资组 合。
03
整数规划模型
多目标优化模型的应用案例
水资源分配问题
在水资源规划中,需要同时考虑供水、灌溉、发电、防洪等多个目标。通过构建多目标优 化模型,可以寻求水资源分配方案,使得各个目标在整体上达到最优。
投资组合优化问题
在金融领域,投资者需要在多个投资项目中选择合适的投资组合,以最大化收益并最小化 风险。这是一个典型的多目标优化问题,可以通过多目标优化模型求解得到帕累托最优解 集,供投资者决策参考。
简单的优化模型

分析问题中的约束条 件
从问题中分析出各种约束条件,如资 源限制、时间限制、物理条件等。
02
将约束条件转化为数 学表达式
将上述约束条件转化为数学表达式, 如不等式、等式等。
03
将约束条件加入目标 函数中
将上述数学表达式加入目标函数中, 作为目标函数的约束条件。
选择适当的变量类型和范围
确定变量的类型和范围
03
优化算法的选择
梯度下降法
1 2
基本概念
梯度下降法是一种基于梯度下降的优化算法, 通过迭代计算函数梯度,逐步逼近函数的最小 值点。
应用场景
适用于凸函数或非凸函数,尤其在大数据处理 和机器学习领域,用于优化损失函数。
3
注意事项
在处理非凸函数时,可能会陷入局部最小值点 ,需要结合全局优化算法使用。
简单的优化模型
xx年xx月xx日
contents
目录
• 引言 • 优化模型的分类 • 优化算法的选择 • 优化模型的建立 • 应用案例展示
01
引言
定义和重要性
定义
优化模型是一套用于描述、分析和解决特定问题的数学 模型,通过采用数学方法和算法,寻找最优解决方案。
重要性
优化模型在各行各业都有广泛的应用,如制造业、物流 、金融等。通过优化模型,可以提高效率、降低成本、 增加效益,为企业和社会创造价值。
金融投资优化模型
要点一
总结词
提高投资收益、降低投资风险
要点二
详细描述
金融投资优化模型是针对金融投资领域的一种优化模型 。它通过优化投资组合,提高投资收益、降低投资风险 。该模型考虑了多种资产价格波动、相关性等因素,并 利用统计学习或机器学习算法计算出最优的投资组合方 案。应用该模型可以帮助投资者在保证本金安全的前提 下获得更高的投资收益。
数学建模简单的优化模型

q T1 时, t 0, 故有 Q rT1 . 在 T1 到 T 这段缺货时间内需求率
量,当 t
⑻
q
q 不变, t 按原斜率继续下降,
Q
由于规定缺货量需补足,所以在
R A r
T1
t T 时数量为 R 的产品立即达,
B
T
t
使下周期初的存储量恢复到Q. 与不容许缺货的模型相似,一个周期内的存储费是c2 乘以图中三角形 A 的面积,缺货损失费是 c3乘以三角形 面积B, 加上准备费,得一周期内的总费用为
2
⑷
而
2c1r Q rT . c2
将⑷代入到⑶式,得最小的平均费用为
⑸
C 2c1c2 r .
⑷,⑸被称为经济订货批量公式(EOQ公式).
⑹
结果解释 由⑷,⑸式可以看到,当 c1(准备费用)提高时,生 产周期和产量都变大;当 c2存储费增加时,生产周期和 产量都变小;当需求量 r 增加时,生产周期变小而产量 变大。这些结果都是符合常识的。
从而赢得竞争上的优势。
模型假设 为处理上的方便,假设模型是连续型的,即周期 T , 产量Q 均为连续变量. 1.每天的需求量为常数 r; 2.每次生产的准备费用为 c1 ,每天每件的存储费为 c2 ,
Q 3.生产能力无限大,即当存储量为零时, 件产品可以
立即生产出来.
建模 设存储量为 q t , q 0 Q. q t 以 r 递减,直到
0.1不变,研究 r 变化
40r 60 t r
r 1.5
⑶
t 是 r 的增函数,下图反映了t 与 r 的关系。
t 20
15
10
5
1.5
简单优化模型.ppt

已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
优化模型分类
优
化模
型离
散
优
化模型 线性规划模型 第四章数学规 连续优化模型 第三章简单优化模型
划模
型
离散优化模型:目标函数和约束函数非连续 连续优化模型:目标函数和约束函数连续
线性规划模型:如果一个优化问题满足以下性质,该优化问 题成为线性规划
1)有唯一的目标函数 2)当一个决策变量出现在目标函数和任何约束函数中时,
Q(10)=660 > 640 10天后出售,可多得利润20元
敏感性分析
t 4r 40 g 2 rg
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设g=0.1不变
t 40r 60 , r 1.5 r
t 对r 的(相对)敏感度
20
t
15
S(t, r)
Δt Δr
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
平均每天费用950元
• 50天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元。
第3章简单的优化模型

模型2 允许缺货的存储模型 模型建立
一个周期 T 内的储存费是
c2 q(t )dt c2QT 1 2
0 T1
一个周期 T 内的缺货损失费是
c3 q (t ) dt c3r T T1 2
T 2 T1
模型2 允许缺货的存储模型 模型建立
一个周期 T 内的总费用是 2 C c1 c2QT1 2 c3rT T1 2 利用(8)式,得到每天的平均费用是
第3章 简单的优化模型 3.1 存储模型
建立数学模型来优化存储 量,使总费用最小
模型1 不允许缺货的存储模型 问题的提出
配件厂为装配线生产若干种部件。 轮换生产不同的部件时,因更换设备要付生 产准备费(与生产数量无关)。 同一部件的产量大于需求时,因积压资金、 占用仓库要付储存费。 今已知某一部件的日需求量100件,生产准备 费5000元,储存费每日每件1元。 如果生产能力远大于需求,并且不允许出现 缺货,试安排该产品的生产计划,即多少天 生产一次(称为生产周期),每次产量多少, 可使总费用最小。
模型1 不允许缺货的存储模型 模型假设
设生产周期 T 和产量 Q 均为连续量, 1.产品每天的需求量为常数 r; 2.每次生产准备费为 c1 , 每天每件产品存储 费为 c2 ; 3.生产能力为无限大(相对于需求量) ,不 允许缺货,即当存储量降到零时,Q 件产 品立即生产出来供给需求。
模型1 不允许缺货的存储模型 模型建立
求得最优生产周期为
2c1 c2 c3 T c2c3r
模型2 允许缺货的存储模型 模型求解
每周期初的最优存储量为
Q 2c1c3 r c2 c2 c3
每周期的最优供货量为
数学建模中的优化模型

数学建模中的优化模型优化模型在数学建模中起着重要的作用。
通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。
本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。
让我们来了解一下什么是优化模型。
优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。
这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。
在优化模型中,目标函数是我们希望最大化或最小化的指标。
它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。
约束条件是对变量的限制,可以是等式约束或不等式约束。
变量则是我们需要优化的决策变量,可以是连续变量或离散变量。
常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。
线性规划是指目标函数和约束条件都是线性的优化模型。
它可以通过线性规划算法来求解,如单纯形法和内点法。
非线性规划是指目标函数和约束条件中包含非线性项的优化模型。
它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是指变量取值只能是整数的优化模型。
它的求解方法包括分支定界法和割平面法等。
动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。
优化模型在实际问题中有着广泛的应用。
例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。
在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。
优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。
通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。
优化模型在数学建模中是非常重要的。
它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。
数学建模中的优化模型

允许缺货的存贮模型
当贮存量降到零时仍有需求r, 出现缺货,造成损失. 原模型假设:贮存量降到零时 Q件立即生产出来(或立即到货). 周期T, t=T1贮存量降到零 一周期 c T1 q(t )dt c2 A 2 0 贮存费
q Q r
Q rT1
T1 B T t
A
0
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足.
~ C c1 c2 rT C (T ) T T 2
2
每天总费用平均 值(目标函数)
模型求解
dC 0 dT
c1 c2 rT Min 求 T 使C (T ) T 2
T
2c1 rc2
2c1r Q rT c2
模型解释
定性分析
敏感性分析
c1 T , Q
c2 T , Q
106
u=4~5(千米/小时), V0= 107 (米3), Y(u,V0)最 小
结果分析
大型拖船V0= 107 (米3),船速 u=4~5(千米/小时),冰山到 达目的地后每立方米水的费用 Y(u,V0)约0.065(英镑). 虽然0.065英镑略低于淡化海水的成本0.1英镑, 但是模型假设和构造非常简化与粗糙. 由于未考虑影响航行的种种不利因素,冰山 到达目的地后实际体积会显著小于V(u,V0). 有关部门认为,只有当计算出的Y(u,V0)显著 低于淡化海水的成本时,才考虑其可行性.
简单的优化模型(静态优化)
• 现实世界中普遍存在着优化问题.
• 静态优化问题指最优解是数(不是函数).
• 建立静态优化模型的关键之一是根据 建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
1. 存贮模型 问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10天生产一次,平均每天费用最小吗?
2021/2/4
4
问题分析与思考
• 周期短,产量小 • 周期长,产量大
贮存费少,准备费多 准备费少,贮存费多
存在最佳的周期和产量,使总费用(二者之和)最小.
• 这是一个优化问题,关键在建立目标函数.
显然不能用一个周期的总费用作为目标函数.
目标函数——每天总费用的平均值.
• 假定只有甲乙两种商品供消费者购买, • 建立的模型可以推广到任意多种商品的情况.
2021/2/4
26
效用函数
当消费者购得数量分别为x1, x2的甲乙两种商品时, 得到的效用可用函数u (x1, x2)度量,称为效用函数.
利用等高线概念在x1, x2平面上画出函数u 的等值线, u (x1, x2)=c 称为等效用线 ——一族单调减、下凸、
利润 Q= R–C =pw– 4t Q (t) (8 g )8 t( r 0 ) t4 t
求 t 使Q(t)最大 t 4r40g2 =10 rg
Q(10)=660 > 640 10天后出售,可多得利润20元.
2021/2/4
16
敏感性分析
t 4r40g2 rg
估计r=2, g=0.1
研究 r, g微小变化时对模型结果的影响.
如果估计和预测有误差,对结果有何影响?
分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大.
2021/2/4
15
建模及求解
估计r=2, g=0.1
若当前出售,利润为80×8=640(元)
t 天 生猪体重 w=80+rt 出售 出售价格 p=8–gt
销售收入 R=pw 资金投入 C=4t
2021/2/4
18
强健性分析
研究 r, g不是常数时对模型结果的影响.
w=80+rt w = w(t) p=8–gt p =p(t)
利润 Q (t)p(t)w (t)4t
Q(t)0 p ( t)w ( t) p ( t)w ( t) 4
每天收入的增值 每天投入的资金
保留生猪直到每天收入的增值等于每天的费用时出售. 由 S(t,r)=3 若 1.8w 2.2(10%), 则 7t1(330%)
2021/2/4
6
模 型 建 立 离散问题连续化
q
贮存量表示为时间的函数 q(t)
t=0生产Q件,q(0)=Q, q(t)以
Q r
需求速率r递减,q(T)=0.
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt
c2
QT 2
一周期 总费用
C~
c1
c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
分析B(t)比较困难, 转而讨论单位时间
B B(t2)
烧毁面积 dB/dt
(森林烧毁的速度).
O
t1
t2
t
2021/2/4
21
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度). 2)t1tt2, 降为–x (为队员的平均灭火速度).
3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3 .
C(T)C ~c1c2rT TT 2
2021/2/4
7
模型求解 求 T 使C(T)c1c2rTmin
T2
dC 0 dT
T 2 c1 rc 2
模型解释
Q rT 2c1r c2
定性分析 c1T,Q c2T,Q rT,Q
敏感性分析 参数c1,c2, r的微小变化对T,Q的影响
T对c1的(相 对)敏感度
假设1)的解释
火势以失火点为中心,均匀向四
r
周呈圆形蔓延,半径 r与 t 成正比. B
面积 B与 t2 成正比
dB/dt与 t 成正比
2021/2/4
22
模型建立
假设1) 假设2)
dB
bt , 1
t2
t1
b
x
b
dt
t t t1
2 1 x O
t1
x
t2 t
B(t2)
t2 dB dt b2t t12 2t12
22
3
r R
注意:缺货需补足
O
T1 T
t
Q~每周期初的存贮量
每周期的生产量 R (或订货量)
RrT 2c1rc2 c3 c2 c3
RQQ Q~不允许缺货时的产量(或订货量)
2021/2/4
13
存贮模型
• 存贮模型(EOQ公式)是研究批量生产计划的 重要理论基础, 也有实际应用.
• 建模中未考虑生产费用, 为什么?在什么条件下 可以不考虑(习题1)?
T1 q (t )dt
0
c2 A
一周期
缺货费
c3
T T1
q (t ) dt
c3B
一周期总费用
Cc1c2Q 21T c3r(T 2T1)2
2021/2/4
10
允许缺货的存贮模型
一周期总费用 Cc1cQ T 1cr(TT)2
2 2 1
21
3
1
每天总费用 平均值
C(T,Q) C c1c2Q2c3(rTQ)2 T T 2rT 2rT
互不相交的曲线.
x2
等效用线就是“ 实
u(x1,x2) = c
物交换模型”中的
c增加
无差别曲线,效用
就是那里的满意度.
O
2021/2/4
l 3
l 1
l2
x1
27
效用最大化模型 x1, x2 ~购得甲乙两种商品数量
p1, p2~甲乙两种商品的单价, y~消费者准备付出的钱 在条件 p1 x1+p2 x2 =y 下使效用函数u(x1, x2)最大.
建议过一周后(t=7)重新估计 p,p,w,w, 再作计算.
2021/2/4
19
3.3 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
问题 记队员人数x, 失火时刻t=0, 开始救火时刻t1, 分析 灭火时刻t2, 时刻t森林烧毁面积B(t).
22
3
不允许 缺货 模型
T 2c1 rc 2
Q rT 2c1r c2
记 c2 c3
c3
T T, Q Q
不 允
1 TT, Q Q c3
许 缺
c3 1 T T,Q Q
货
2021/2/4
12
允许 缺货
T 2c1 c2 c3 rc2 c3
q Q
模型
Q
2c r 1
c3
c c c
~火势蔓延速度, ~每个队员平均灭火速度.
c1, t1, x
c3 , x
模型 应用
2021/2/4
c2 x 为什么?
c1,c2,c3已知, t1可估计, ,可设置一系列数值
由模型决定队员数量 x
25
3.4 消费者的选择
背景
消费者在市场里如何分配手里一定数量的钱, 选择购买若干种需要的商品. 根据经济学的一条最优化原理——“消费者追 求最大效用” ,用数学建模的方法帮助消费 者决定他的选择.
• 设g=0.1不变
t40r60, r1.5 r
t 对r 的(相对)敏感度
20
t
15
S(t,
r)
Δt Δr
/ /
t r
dt dr
r t
10
S(t,r) 60 3
5
40r60
0 1.5
2
2.5
r3
生猪每天增加的体重 r 变大1%,出售时间推迟3%.
2021/2/4
17
敏感性分析t 4r40g源自 rg2021/2/45
模型假设
1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量
为零时,Q件产品立即到来(生产时间不计);
4. 为方便起见,时间和产量都作为连续量处理.
建模目的
设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小.
ΔT/T S(T,c1) Δc1 /c1
d T c1 d c1 T
1 2
c1增加1%, T增加0.5%
S(T,c2)=–1/2, S(T,r)=–1/2 c2或r增加1%, T减少0.5%
2021/2/4
8
模型应用
• 回答原问题
T 2 c1 rc 2
Q rT 2c1r c2
c1=5000, c2=1,r=100
• 建模中假设生产能力为无限大(生产时间不计), 如果生产能力有限(大于需求量的常数), 应作怎 样的改动(习题2)?
2021/2/4
14
3.2 生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80kg重的生猪体重增加2kg.
市场价格目前为8元/kg,但是预测每天会降低 0.1元,问生猪应何时出售?
几何分析
消费线AB
u(x1, x2) = c 单调减、 下凸、互不相交.
AB必与一条等效用线
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dB
dC 0 dx